| v

ERLANG

Graphics System (GS)

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
Graphics System (GS) 1.5.14
October 19 2011

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

October 19 2011

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 1

1.1 GS-The Graphics System

1 GS User's Guide

The Graphics System application, GS is a library of routines for writing graphical user interfaces. Programs written
using GS work on al Erlang platforms and do not depend upon the underlying windowing system.

1.1 GS - The Graphics System

1.1.1 Introduction

Warning:

GS is not recommended for use in new applications. Instead we recommend WX for applications that need a
graphical user interface.

GSis not maintained and we plan to deprecate and remove it from the distribution as soon as possible, maybe
already in the next major release (R15).

This section describes the genera graphics interface to Erlang. This system was designed with the following
requirements in mind:

e agraphics system which iseasy to learn
» agraphics system which is portable to many different platforms.

Erlang has been implemented on awide range of platformsand the graphics system workson all these platforms. Erlang
applications can be written towards the same graphics APl and the application can run on all supported platforms

without modification.
GUI Applications GUI Builder

General Graphics Interface (API)

Possible backends to many systems and platforms

i otif Win3.2 Q=2 Tl Tk PR

Figure 1.1: Graphics Interface for Erlang

1.1.2 Basic Architecture of GS

The basic building block in the graphics system is the graphical object. Objects are created in a hierarchical fashion
where each object has a parent. The most common object types are:

2 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.2 Interface Functions

e window
e button

e labd

e list box
e frame.

Whenever a new object is created, a unique object identifier is returned. This object identifier makes it possible to
configure the object by changing its appearance and behaviour. This configuration of the object is controlled by the
Options, also known asattributesor properties. Theseincludewidth and height. M ost optionshave aval ue of aspecified
type, but not all.

Whenever an Erlang process creates a graphical object, it is said to own the object. The graphics system must keep
track of the owner of every graphical object in order to forward incoming events to the owner-process and kill the
appropriate graphics window if the owner process suddenly dies.

window ohjec

owner relationship _ _ - = —

W Graphics
g | System

=, | Underlying
backand

Application Process grics
SBrVer

Figure 1.2: Owner Process

Events are messages which are sent from the graphical object to the owner-process. The events the owner-processis
informed about may include:

» theuser has clicked on abutton
e theuser has entered text into an entry field
» the user hastaken some action on the object, like moving the window.

window ohjec

O
O [evenl, Objectid .| MJ

U | backend

Application Process graphics
SEIVEr

Figure 1.3: Events Delivered to Owner Process

1.2 Interface Functions

1.2.1 Overview
The following interface functions are included with the graphics system:

e« gs:start(). Thisfunction starts the graphics server and returns its object identifier. If the graphics server
has aready been started, it returnsits original identifier.

e gs:stop(). Thisfunction stops the graphics server and closes al windows which gs haslaunched. This
function is not the opposite of gs: st art/ 0 becausegs: st op/ 1 causesall applications to lose the graphics
server and the objects created with the gs system.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 3

1.2 Interface Functions

e gs:create(njtype, Parent, Options). Thisfunction createsanew object of specified Obj t ype

as achild to the specified Par ent . It configures the object with Opt i ons and returns the identifier for the
object, or { err or, Reason}.

e gs:create(njtype, Name, Parent, Options). Thisfunctionisidentical tothe previoudy listed

function, except that a Narre is specified to reference the object. Nane is an atom.
e gs:destroy(ldOr Nane). Thisfunction destroysan object and all its children.

e gs:config(ldO Nene, Options). Thisfunction configuresan object with Opt i ons. It returns ok, or

{error, Reason}.

e gs:read(ld_or_Nane, OptionKey). Thisfunction readsthe vaue of an object option. It returnsthe
value, or{error, Reason}.

The above list contains all the function which are needed with the graphics system. For convenience, the following

aliases also exist:

e (gsS:create(nttype, Parent).

e (gs:create(njtype, Parent, Options).

e (gs:create(njtype, Parent, Option).

e gs:create(njtype, Nanme, Parent, Options).
e (gs:create(njtype, Name, Parent, Option).
e gs: Objecttype(Parent).

e gs: Objecttype(Parent, Options).

e gs: Objecttype(Parent, Option).

e gs: (bjecttype(Nane, Parent, Options).

e g¢gs: Objecttype(Nanme, Parent, Option).

e gs:config(ldO Nanme, Option).

These shorthands can be used as follows:

e gs:window(gs:start(), {map,true}).
e gs:button(W.
e gs:config(B,{label,{text,"H!"}}).

Thecr eat e_tree/ 2 function is useful for creating alarge hierarchy of objects. It has the following syntax:

create_tree(Parentld, Tree) -> | {error, Reason}

Treeisalist of Obj ect , and Obj ect isany of the following:

« {bj ect Type, Nane, Opti ons, Tree}

e {ObjectType, Options, Tree}

e {bj ect Type, Opti ons}

The following example constructs a window which contains two objects, a button and a frame with alabel:

R = [{wi ndow, [{map, true}],

[{button, [{] abel ,{text,"Butt1"}}]},

{frame, [{y, 40}],[{I abel ,[{l abel ,{text,"Lbl 1"}}]1}1}]1}1,
gs:create_tree(gs:start(),R).

4 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.2 Interface Functions

1.2.2 A First Example

The first action required is to start up the graphics server. This operation returns an identifier for the server process,
which registersitself under the namegs. If agraphics server was already started, itsidentifier isreturned. We can now
create objects and configure the behavior and appearance of these objects. When al objects are created and configured
in atop level window, we map it on the screen to make it visible. The example below shows how to create a window
with a button that says "Press Me".

- modul e(ex1).
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([init/0]).

init() ->
S = gs:start(),
%Wothe parent of a top-level windowis the gs server
Wn = gs:create(w ndow, S, [{wi dt h, 200}, { hei ght, 100}]),
Butt = gs:create(button, Wn,[{label, {text,"Press Me"}}]),
gs: config(Wn, {map,true}),
| oop(Butt).

| oop(Butt) ->
receive
{gs, Butt, click, Data, Args} ->
io:format ("Hell o There~n",[]),
| oop(Butt)
end.

The following steps were completed in this code:

e dtart agraphics server

» create awindow of specified width and height
» create abutton with the text "Press Me"

e map the window on the screen

e enter the event loop.

The event loop is where we receive events from gs. In this case, we want to receive a click event from the button.
This event is delivered when the user presses the button.

wi I [=] E3

Fress Me |

Figure 2.1: "Press Me" Button Example

The Erlang gs system includes many examples. All examples in this document can be found in the doc/
users_gui de/ exanpl es/ directory. Inaddition, thereisan example directory which contains examples of fractal
trees, bouncing balls, a color editor, and a couple of other gs applications.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 5

1.2 Interface Functions

1.2.3 Creating Objects

You create an object of a specified type with the cr eat e/ 3 or the cr eat e/ 4 function. The difference is that the
cr eat e/ 4 function allows you to assign nhames to the objects. Y ou can then refer to the object instead of using the
object identifier. The two forms of the cr eat e function look as follows:

j I d
j I d

gs: create(Objtype, Parent, Options)
gs: create(Objtype, Nane, Parent, Options)

Examples of built-in object types are:

e window

o frame

e menu

e button

« radio button
e list box.

Objects are created in a hierarchical order. The top level object is the window object which is a container object for
most other object types.

window
button frame

radicbutton radiobutton
Figure 2.2: Hierarchy of Objects

A frame object is like a sub-window but also a container object which can have children objects.

Thecreat e/ 3 or cr eat e/ 4 functions return an object identifier, or thetuple{ error, Reason}. The object
identifier uniquely identifies the object within the system. The object identifier is used to:

» reconfigure an object

* identify eventsfrom a particular object.

1.2.4 Ownership

The process which creates an object is said to own the object. When a processdies, all objects owned by the processare
destroyed. The ownership also meansthat all events generated by a specific object are delivered to the owner process.
The graphics server keeps track of all Erlang processes that create objects. It is therefore able to take appropriate
actionsif aprocess should die.

1.2.5 Naming Objects

Asshown previoudly, thecr eat e/ 4 function can be used to name objects. The name should be a unique atom which
is used to reference the object. The advantage of naming objects is that we do not have to pass object identifiers
as arguments to the event loop. Instead, we can use the object name in our code. To hame objects in the following
example, the code gives the namewi n1 to the window, and b1 to the button.

- modul e(ex2) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').

6 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.3 Options

-vsn(' $Revision: /main/release/2 $ ').
-export([init/0]).

init() ->
S = gs:start(),
gs: creat e(wi ndow, wi n1, S, [{wi dt h, 200}, { hei ght, 100}]),
gs: create(button, bl, winl, [{label, {text,"Press Me"}}]),
gs: config(w nl, {map,true}),
I oop() .

l'oop() ->
receive
{gs, b1, click, Data, Args} ->
io:format ("Hello World!~n",[]),

I oop()
end

The name is local for the process which creates the object. This means that the name have a meaning only for one
process. Different processes can give different objects the same name. When passing references to objects between
processes, the object identifier has to be used because names only has a meaning in a process context. If necessary,
the object identifier can be retrieved by reading thei d option.

When using distributed Erlang, objects should be named carefully. A named object always refers to an object in the
graphics system on the node where it was created. The syntax { Nane, Node} should be used when referring to a
named object on another node.

Thefollowing example receives acanvas object from another node and createsalinenamed iy | i nel that will appear
in the canvas. Also, this example demonstrates how to configure the line using the special syntax.

foo() ->
receive
{gs_obj, Canvas, FromNode} -> ok
end
gs: create(line, nylinel, Canvas, [{coords, [{10, 10}, {20, 20}1}1),
gs: config({nylinel, FronNode}, [{ buttonpress,true}]).

Unnamed objects are transparent. For example, a line object can be created from a canvas on another node and then
configured as any other object.

bar() ->
receive
{gs_obj, Canvas, _FronNode} -> ok
end
L = gs:create(line, Canvas, [{coords, [{10, 10}, {20, 20}1}1),
gs: config(L, [{buttonpress,true}])

1.3 Options

1.3.1 The Option Concept

Each object has a set of options. The options are key-value tuples and the key is an atom. Depending on the option,
the value can be any Erlang term. Typical options are: X, y, width, height, text, and color. A list of options should be

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 7

1.3 Options

supplied when an object is created . It is also possible to reconfigure an object with the function gs: conf i g/ 2. The
following example shows one way to create ared button with the text "Press Me" on it:

Butt = gs:create(button, Wn, [{x, 10},{y, 10}]),
gs: config(Butt, [{w dth, 50}, {height, 50}, {bg, red}]),
gs:config(Butt, [{label, {text,"Press Me"}},{y, 20}]),

The evaluation order of options is not defined. This implies that the grouping of options shown in the following
example is not recommended:

Rect = gs:create(rectangl e, Can, [{coords,[{10, 10}, {20, 20}]},
{nove, {5, 5}}]),

After the operation, the rectangle can be at position [{10, 10}, {20, 20}] or [{15, 15}, {25, 25}]. The
following example produces a deterministic behaviour:

Rect = gs:create(rectangle, Can, [{coords,[{10, 10}, {20, 20}]1},
gs: confi g(Rect, [{rove, {5,5}}]),

The value of each option can be read individually with ther ead/ 2 function as shown in the following example:
Val ue = gs:read(Objectld, Option)
The next example shows how to read the text and the width options from a button:

Text = gs:read(Butt, text),
Wdth = gs:read(Butt, w dth),

1.3.2 The Option Tables

Each object is described in terms of its options. The options are listed in atable asis shown in the following example:

{Option,Value} Default Description
{fg, Color} <unspec> Foreground color of the object
{map, Bool} fase Visibility on the screen

Table 3.1: Options

8 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.3 Options

The <unspec> default value means that either gs or the back-end provides the default value. For example, the f g
option can be used as follows:

Rect = gs:create(rectangle, Wndow, [{fg, red}]),
Col or = gs:read(Rect, fg),

1.3.3 Config-Only Options

Most optionsareread/writekey-valuetuplessuchas{ sel ect, t rue| f al se} and{ map, t rue| f al se, butsome
options are by nature write-only, or read-only. For example, buttons can flash for a short time and canvas objects can
be moved dx, dy. The following table exemplifies some config-only options:

Config-Only Description

flash Causes the object to flash for 2 seconds.

raise Raises the object on top of other overlapping objects.
{move, {Dx, Dy}} Moves the object relative to its current position.

Table 3.2: Config-Only Options

gs: config(Button,[flash]), causesthe button to flash.

1.3.4 Read-Only Options

The opposite of config-only options are read-only options. The following table exemplifies some read-only options:

Read-Only Return Description
size Int The number of items (entries).
{get, Index} String Theentry at index | ndex.

Table 3.3: Read-Only Options

EntryString = gs:read(Listbox,{get, Index}), isanexample.

1.3.5 Data Types

As previoudly stated, each object is described in terms of its options. This section defines the data types for options.

Anchor|Align.

nlw s| el nw se| ne| sw center
Atom.

An Erlang atom such as my\\ay .
Booal.

trueorfal se

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 9

1.4 Events

Color.
{R G B}, or athe predefined namer ed,gr een, bl ue, whi t e, bl ack, gr ey, oryel | ow. For example
{0, 0, 0} ishlack and { 255, 255, 255} iswhite.
Cursor.
A mouse cursor, or any of the following: ar r ow, busy, cr oss, hand, hel p,resi ze, t ext, or par ent.
par ent hasaspecial meaning, namely that this object will have the same cursor asits par ent .
FileName.
Fi | eName isastring. The file name may include a directory path and should point out afile of a suitable type.
The path can be either absolute or relative to the directory from where Erlang was started.
Float.
Any float, for example 3.1415.
Font.
A Font isrepresented as atwo or threetuple{ Fani | y, Si ze} or{Fani | y, Styl e, Si ze},whereStyl e
isbol d,italic,oracombination of thosein alist. Si ze isan arbitrary integer. Fani | y isatypeface of
typeti mes, couri er, hel veti ca, synbol ,new _cent ury_school book, or scr een (whichisa
suitable screen font).
Int.
Any integer number, for example 42.
Label.
A label can either beaplaintext label {t ext, String},oranimage{i nage, Fil eNane} where
Fi | eName should point out a bitmap.
Sring.
An Erlang list of ASCII bytes. For example, "Hi t here"=[72, 105, 32, 116, 104, 101, 114, 101]
Term.
Any Erlang term.

In cases where the type is self-explanatory, the name of the parameter is used. For example, { nrove, {Dx, Dy}}.

1.4 Events

1.4.1 Event Messages

Events are messages which are sent to the owner process of the object when the user interacts with the object in some
way. A simple case is the user pressing a button. An event is then delivered to the owner process of the button (the
process that created the button). In the following example, the program creates a button object and enables the events
click and enter. This example shows that events are enabled in the same way as objects are configured with options.

B = gs:create(button, Wn, [{click,true},{enter,true}]),
event _| oop(B).

The processisnow ready to receive click and enter events from the button. The events delivered are alwaysfive tuples
and consist of:

{gs, |dOrNanme, EventType, Data, Args}

e gs isatagwhich saysitisan event from the gs graphics server.
* 1 dOr Name contains the object identifier or the name of the object in which the event occurred.

10 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.4 Events

* Event Type contains the type of event which has occurred. In the example shown, it iseither cl i ck or
enter.

« Dat aisafield which the user can set to any Erlang term. It is very useful to have the object store arbitrary data
which is delivered with the event.

e Args isalist which contains event specific information. In a motion event, the Args argument would contain
the x and y coordinates.

There are two categories of events:

e generic events
» object specific events.

1.4.2 Generic Events

Generic events are the same for all types of objects. The following table shows a list of generic event types which
the graphics server can send to a process. For generic events, the Ar gs argument always contains the same data,
independent of which object deliversiit.

The following sub-sections explains the event types and what they are used for.

Event Args Description
A mouse button was pressed over
buttonpress [ButtonNo,X,Y|_] the object.
buttonrelease [ButtonNo,X,Y] A mouse button was released over
the object.
Delivered when the mouse pointer
enter [l '
enters the objects area.
Keyboard focus has changed. 0
focus [Int]] means lost focus. 1 means gained
focus.
keypress [KeySym,Keycode, Shift, Control|] | A key has been pressed.
leave (1 Mouse pointer leaves the object.
The mouse pointer ismoving in
motion [X,YL] the object. Used when tracking the
mouse in awindow.

Table 4.1: Generic Event Types

The Buttonpress and Buttonrelease Events

These events are generated when a mouse button is pressed or released inside the object frame of awindow, or frame
object type. The button events are not object specific (compare to click). The format of the buttonpress event is:

{gs, Ovj ect | d, but t onpress, Dat a, [MouseButton, X, Y|]}

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 11

1.4 Events

The mouse button number which was pressed is the first argument in the Ar gs field list. This number is either 1,
2 or 3, if you have athree button mouse. The X and Y coordinates are sent along to track in what position the user
pressed down the button. These events are useful for programming things like "rubberbanding", which is to draw out
an area with the mouse. In detail, this event can be described as pressing the mouse button at a specific coordinate
and releasing it at another coordinate in order to define a rectangular area. This action is often used in combination
with motion events.

The Enter and Leave Events
These events are generated when the mouse pointer (cursor) enters or leaves an object.

The Focus Event

Thefocusevent trackswhich object currently holdsthe keyboard focus. Only one object at atime can hold the keyboard
focus. To have the keyboard focus means that all keypresses from the keyboard will be delivered to that object. The
format of afocus event is.

{gs, Ovj ectld, focus, Data,[FocusFlag|]}

The FocusFlag argument is either 1, which means that the object has gained keyboard focus, or 0, which means that
the object has lost keyboard focus.

The Keypress Event

Thisevent is generated by an object which receivestext input from the user, like entry objects. It can aso be generated
by window objects. The format of akeypress event is:

{gs, vj ect | d, keypr ess, Dat a, [Keysym Keycode, Shi ft, Control | _]}

The Keysym argument is either the character key which was pressed, or a word which describes which key it
was. Examples of Keysyns are; a,b,c..,1,23...,"' Return',' Del ete',' I nsert',' Home',' BackSpace',
' End' . The Keycode argument is the keycode number for the key that was pressed. Either the Keysymor the
Keycode argument can be used to find out which key was pressed. The Shi ft argument contains either aOor al
toindicate if the Shift key was held down when the character key was pressed. The Control argument is similar to the
Shift key argument, but applies to the Control key instead of the Shift key.

The Motion Event

The motion event is used to track the mouse position in a window. When the user moves the mouse pointer (cursor)
to anew position a motion event is generated. The format of amotion event is:

{gs, wjectld, notion,Data,[X Y] _]}

The current x and y coordinates of the cursor are sent along in the Ar gs field.

1.4.3 Object Specific Events

Theclick and doubleclick eventsare the object specific event types. Only some objects havethese eventsand the Ar gs
field of the events vary for different type of objects. A click on a check button generates a click event where the data

12 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.4 Events

field contains the on/off value of the indicator. On the other hand, the click event for alist box contains information

on which item was chosen.

Event Args Description
. . - Pressing a button or operating on a
click <object specific> object in some predefined way.
. . . Pressing the mouse button twice
double-click <object specific> quickly. Useful with list boxes.

Table 4.2: Object Specific Events

1.4.4 Matching Events Against Object Identifiers

Events can be matched against the object identifier in the receive statement. The disadvantage of matching against
identifiersisthat the program must pass the object identifiers as arguments to the event loop.

- modul e(ex3) .

-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([init/0]).

init() ->
S = gs:start (),

W = gs: create(w ndow, S, [{wi dt h, 300}, { hei ght, 200}]),
Bl = gs:create(button, W[{label, {text,"Buttonl"}},{y,0}]),
B2 = gs:create(button, W[{label, {text,"Button2"}},{y, 40}]),

gs: config(W {map,true}),

| oop(B1, B2) .

| oop(B1, B2) ->
receive

{gs,Bl,click, Data, Arg} -> %button 1 pressed
io:format ("Button 1 pressed!~n",[]),

| oop(B1, B2) ;

{gs,B2,click, Data, Arg} -> %button 2 pressed
io:format ("Button 2 pressed!~n",[]),

| oop(B1, B2)
end.

1.4.5 Matching Events Against Object Names

Another solution isto name the objectsusing thecr eat e/ 4 function. In thisway, the program does not have to pass
any parameters which contain object identifiers for each function call made.

- modul e(ex4) .

-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([init/0]).

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 13

1.4 Events

init() ->
S = gs:start(),

gs: creat e(wi ndow, wi n1, S, [{w dt h, 300}, { hei ght, 200}]),
gs: create(button, bl, winl, [{label, {text,"Buttonl"}},{y,0}]),

gs: create(button, b2, wi nl, [{l abel, {text,"Button2"}},{y,40}]),

gs: config(wi nl, {map,true}),
| oop(). %%l ook, no args!

| oop() ->
receive
{gs,bl,click, , } -> %button 1 pressed
io:format ("Button 1 pressed!~n",[]),
I oop();
{gs,b2,click, , } -> %button 2 pressed
io:format ("Button 2 pressed!~n",[]),
I oop()
end.

1.4.6 Matching Events Against the Data Field

A third solution isto set the dat a option to some value and then match against this value. All built-in objects have an
option called dat a which can be set to any Erlang term. For example, we could set the data field to atuple { Mod,
Fun, Args} and have the receiving function make an appl y on the contents of the data field whenever certain

events arrive.

- modul e(ex5) .

-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').

-vsn(' $Revision: /main/release/2 $ ').
-export([start/0, init/0, bl/0, b2/0]).

start() ->
spawn(ex5, init, []).

init() ->
S = gs:start (),
W= gs:create(w ndow, S, [{map, true}]),

gs: create(button, W[{l abel , {text, "Buttonl"}}, {data, {ex5, bl, [
gs: create(button, W[{l abel , {text, "Button2"}}, {data, {ex5, b2, [

I oop() -
I oop()->
receive
{gs, _,click,{MF, A}, _} -> %any button pressed
appl y(M F, A),
I oop()
end.
b1l() ->
io:format ("Button 1 pressed!~n",[]).
b2() ->

io:format ("Button 2 pressed!~n",[]).

1.4.7 Experimenting with Events

11}.{y, 0}1),
11}, {y, 40}]),

A good way of learning how events work is to write a short demo program like the one shown below and test how

different events work.

14 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.5 Fonts

- modul e(ex6) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([start/0,init/0]).

start() ->
spawn(ex6,init,[]).
init() ->
S = gs:start(),
W = gs:create(w ndow, S, [{map, true}, {keypress, true},
{buttonpress,true}, {notion,true}]),
gs: create(button, W[{l abel , {text, "PressMe"}}, {enter,true},
{l eave, true}])
event _| oop().

event | oop() ->
receive
X ->
io:format ("Got event: ~w-n",[X]),
event _| oop()
end

1.5 Fonts

1.5.1 The Font Model

Text related objects can be handled withthefont option{ f ont , Font } . A Font isrepresented asatwo or threetuple:
e {Fanmily, Size}

 {Fanmly, Style,Size}

Examples of fonts are: {tines, 12}, {synbol, bold, 18}, {courier,[bold,italic], 6},
{screen, 12}.

The most important requirement with the font model is to ensure that there is always a "best possible" font present.
For example, if an application triesto usethefont{t i mes, 17} onacomputer system which does not have thisfont
available, the gs font model automatically substitutes{t i nes, 16} .

Note that GS requires that the following fonts are available if using an X-server display:
» fixed

e -*-courier-*

e -*times*

e -*-helvetica*

e -*-symbol-*

e "-*-new century schoolbook-"

e -*-screen-*

To find out which font is actually chosen by the gs, use the option { choose_font, Font }. For example, the
following situation might occur:

1> <input>G=gs:start().</input>
{1, <0. 20. 0>}

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 15

1.5 Fonts

2><i nput >gs: read(G, {choose_font, {tines, 38}}). </i nput >
{times,[], 38}

3> <input >gs: read(G {choose_font,{screen,italic,6}}).</input>
{courier,italic, 6}

4>

When programming with fonts, it is often necessary to find the size of a string which uses a specific font.
{font_wh, Font} returns the width and height of any string and any font. The following example illustrates its
usage:

Font Demo =]
Hi! {times, 19}
Hi! {screen,156}
Hi! {helvetica,bold 21 ||

1 oyppon, 1}

Hi! {times,[bold,italic],33}

=+ omumaer ay

Figure 5.1: Font Examples

- modul e(ex15) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/3 $ ').

-export([start/0,init/0]).
start() -> spawn(ex15, init, []).

init() ->
| =gs:start(),
W n=gs: cr eat e(wi ndow, |,
[{wi dth, 400}, {hei ght, 250},
{title, "Font Denp"}, {nap, true}]),
E = gs:create(canvas, canl, Wn,
[{x, 0}, {y, O}, {wi dth, 400}, {hei ght, 250}]),
Fonts = [{tines, 19}, {screen, 16}, { hel veti ca, bol d, 21},
{synbol , 12}, {ti mes, [bol d,italic], 33}, {courier,6}],
show_f ont s_i n_boxes(Fonts, 0),
receive
{gs, _I|d,destroy, Data, Arg} -> bye
end.

show fonts_i n_boxes([],_) -> done;
show fonts_i n_boxes([Font| Fonts],Y) ->
Txt =io_lib:format("H ! ~p",[Font]),
{Wdth, Hei ght} = gs:read(canl, {font_wh, {Font, Txt}}),
Y2=Y+Hei ght +2,
gs: create(rectangl e, canl, [{coords, [{0, Y}, {Wdth, Y2}]1}]),
gs: create(text, canl, [{font, Font}, {text, Txt},{coords,[{O, Y+1}]}]),

16 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.6 Default Values

show fonts_i n_boxes(Fonts, Y2+1).

1.6 Default Values

1.6.1 The Default Value Model

When anew object is created, a set of optionsis provided by the application. Options which are not explicitly given
are taken care of by the parent (the container object).

B=gs: create(button, Wn, [{x, 0}, {I| abel , {text, "press Me"}}]).

In the example shown above, the window provides default values for options like location and background color. If
an application cannot use the default values provided by GS, new ones can be configured. For example, the following
code creates ared button at location y=30.

gs: config(Wn,[{default,button,{y, 30}},
{defaul t, button, {font, {courier,18}}}]),
B=gs: create(button, Wn, [{x, 0}, {I| abel , {text,"press Me"}}]).

The syntax for the default option is {default, Cbjecttype, {Option, Def aul t Val ue}}, where
hj ect t ype isthe name of any GS object. The specia keywords al | or but t ons which denote button, radio
button, and check button can be used.

The semantics for the default option can be expressed as follows: If an object of kind Cbj ect t ype is created and
no value for Opt i on isgiven, then use Def aul t Val ue asthe value. Only options of { Key, Val ue} syntax can
be given a default values. Default values may be inherited in several steps. In the following example, the button will
show the text "Cancel".

gs: config(Wn, [{defaul t, button, {I abel, {text,"Cancel "}}}1),
F=gs:create(frame, Wn,[]),
B=gs: create(button, F,[]).

Default values are inherited so that changed default values only affect new objects, not existing objects.

Default values only have meaning when creating child objects, since objects which cannot have children cannot have
default options. An example is buttons.

The following example illustrates how default options can be used:

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 17

1.6 Default Values

Default Demo =] B3

™ - -1

Figure 6.1: Example of Default Options

- modul e(ex16) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/3 $ ').

-export([start/0,init/0]).
start() -> spawn(ex16, init, []).

init() ->
| =gs:start(),
W n=gs: cr eat e(wi ndow, I,
[{w dth, 200}, {hei ght, 200},
{title,"Default Dermp"}, {map, true}]),
gs: create(canvas, canl, Wn,
[{x,0},{y, O}, {w dth, 200}, {hei ght, 200},
{defaul t,text,{font, {courier, bold, 19}}},
{defaul t,text,{fg, blue}},
{defaul t,rectangle, {fill,red}}, {default, text, {text,"Pow "}},
{defaul t,oval,{fill,green}}]),
{A B, C = erlang: now),
random seed(A, B, C),
| oop() .

l'oop() ->
recei ve
{gs, _Id,destroy, Data, _Arg} -> bye
after 500 ->
XY = {random uni f or m(200) , random uni f or m(200) },
draw r andom uni f or m(3), XY),

I'oop()
end.

draw 1, XY) ->
gs: create(text, canl, [{coords, [XY]}]);
draw 2, XY) ->
XY2 = {random uni f or m(200), r andom uni f or m(200) },
gs: create(rectangl e, canl, [{coords, [XY, XY2] }]);
draw 3, XY) ->
XY2 = {random uni f or m(200), r andom uni f or m(200) },
gs: create(oval, canl, [{coords, [XY, XY2]}]).

18 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.7 The Packer

1.7 The Packer
1.7.1 The Packer

This section describes the geometry manager in GS.

When the user resizes awindow, the application normally has to resize and move the graphical objectsin the window
tofit its new size. This can be handled by a so called packer or geometry manager. In GS, the packer functionality is
aproperty of thef r ane object. A frame with the packer property may control the size and position of its children.

A packer frame organises its children according to a grid pattern of rows and columns. Each row or column has a
stretching property associated to it. Some columns may expand more than others and some may have afixed size. The
grid pattern isin itself invisible, but the objects contained by it snap to fit the grid.

The packer controlled by the following options:

Frame options:
{ packer _x, Packl i st} wherePackl i st islist() of PackOpti on, and
{packer _y, Packl i st} wherePackl i st islist() of PackOpti on.

PackOpti onis:

{stretch, Weight} whereWei ght isinteger() >0, or
{stretch, Wight, M nPixelSize, or}

{stretch, Wight, M nPixel Size, MxPixel Size}, or
{fixed, PixelSize}

A Wi ght isarelative number that specifies how much of the total space of the frame arow or column will get. If
the frame has three columns with the weights 2, 1, 3 it tells the geometry manager that the first column should have
2/6, the second 1/6 and the third 3/6 of the space.

Note that giving a minimum or maximum width of one or more columns will change the relation and the way the
spaceis divided.

Then the objects contained by the frame use the following options to position themselvesin the grid:
{ pack_x, Col unmm} where Col umm isinteger(), or
{pack_x, {Start Col um, EndCol umnm}}

and
{pack_y, r ow} wherer owisinteger(), or
{pack_y, {Startrow, Endr ow}}

or, the the following option is a convenient shorthand:
{pack_xy, { Col um, r ow} }

Consider the following example.

- modul e(ex17).
-copyright (" Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/1 $ ').

-export([start/0,init/0]).
start() -> spawn(ex17, init, []).
init() ->
WH = [{w dt h, 200}, { hei ght, 300}],
Wn = gs:w ndow(gs:start(),[{map,true}, {configure,true},

{title, "Packer Denmp"}| W),
gs: frame(packer, Wn, [{ packer _x, [{stretch, 1,50}, {stretch, 2, 50},

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 19

1.7 The Packer

{stretch, 1,50}]}
{packer _y, [{fixed, 30}, {stretch, 1}1}1),
gs: button(packer, [{l abel ,{text,"left"}}, {pack_xy,{1,1}}]),
gs: button(packer, [{l abel ,{text,"m ddl e"}}, {pack_xy,{2,1}}]),
gs: button(packer, [{l abel ,{text,"right"}}, {pack_xy,{3,1}}]),
gs: edi t or (packer, [{pack_xy, {{1, 3},2}},{vscroll,true}, {hscroll,true}]),
gs: confi g(packer, W), %refresh to initial size
I oop() .

loop() ->
receive
{gs, _|d,destroy, Data, Arg} -> bye
{gs, _Id,configure, Data,[WH _]} ->
gs: confi g(packer, [{w dth, W, {height,H]), % repack
l'oop();
O her ->
io:format("loop got: ~p~n",[Cther]),
I 'oop()
end.

It defines a frame with three columns where the second should be twice as wide as the other but no column should
be smaller than 50 pixels wide. The frame has two rows where the first has a fixed height of 30 pixels and the last
row is totally flexible. Three buttons are placed next to each other on the first row, and below them an editor. The
editor covers all three columns.

Packer Demo M=] B3
left middle right
L
£
i o

Figure 7.1: Frame with three columns

The picture below illustrates what happens when the window is resized.

Packer Demo =] 3
left middle right
L
4
i o

Figure 7.2: Resized Frame

20 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

To repack the objects, the size of the packer frame has to be set explicitly. Thisis done by using the height and width
options as usual. Since the packer frame controlsthe size of its children, using the standard x, y, width, height options,
packer frames may be nested recursively.

The packer isvery useful sinceit simplifiesthe programming. The programmer will not have to spend time fine tuning
X, ¥, width, height of each object, since these options are handled by the frame.

1.8 Built-In Objects

1.8.1 Overview

This section describes the built-in objects of the graphics interface. The following objects exist:

Window
An ordinary window.
Button
A simple press button.
Checkbutton
A button with a check-mark indicator.
Radiobutton
A button with an indicator that has an only-one-sel ected-at-a-time property.
Label
Shows atext or bitmap.
Frame
A plain container object. It is used for logical and visual grouping of objects.
Entry
A one-line object for entering text.
Listbox
A list of text strings.
Canvas
A drawing area which contains light-weight objects such as rectangle, line, etc.
Menu
A collection of objects for constructing pull-down and pop-up menus.
Grid
An object for showing tables. A kind of multi-column listbox.
Editor
A multi-line text editor.
Scale

To select avalue within arange.

Some objects can act as container objects. The following table describes these relationships:

Objects Valid Parents

window window, gs

buttons, canvas, editor, entry, frame, grid, label, listbox,

frame, window
menubar, scale

arc, image, line, oval, polygon, rectangle, text canvas

menubutton menubar, window, frame

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 21

1.8 Built-In Objects

gridline grid

menuitem menu

menubutton, menuitem (with {itemtype, cascade}),

menu window, frame (the last two are for pop-up menus)

Table 8.1: Relations Between Objects and Container Objects

1.8.2 Generic Options

Most objects have a common subset of options and will be referred to as generic options. They apply to most objects.

{Option,Value} Default Description

A beep will sound. Appliesto all

beep <unspec> objects.

Background color. Appliesto

{bg, Color} <unspec> objects which have a background
color.
{data, Term} i Always delivered with the event in

the datafield. Appliesto all objects.

Appliesto al container objects.
Specifies the default value for
an option for children of type
Objecttype.

{ default,Objecttype{ Key,Vaue} } <unspec>

Objects can be enabled or disabled.
A disabled object cannot be clicked
{enable, Bool} true on, and text cannot be entered.
Applies to buttons, menuitem, entry,
editor, scale.

Appliesto al text related objects and

{font, Font} <unspec> the grid.

Foreground color. Applies to objects

{fg, Color} <unspec> which have aforeground color.

Ensures that front-end and back-
flush <unspec> end are synchronized. Appliesto al
objects.

Set or remove keyboard focus to this
{'setfocus, Bool} <unspec> object. Applies to objects which can
receive keyboard events.

Table 8.2: Generic Options

22 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

The following options apply to objects which can have a frame as parent. Coordinates are rel ative to the parent.

{Option,Value} Default Description

{cursor, Cursor} parent The appearance of the mouse cursor.
{height, Int} <unspec> The height in pixels.

{pack_x, Column| <unspec> Packing position. See The Packer

{ StartColumn,EndColumn} } section.

{pack_y, row|{ Startrow,Endrow}} | <unspec> Packing position. See The Packer

section.
{pack_xy, { Column,row}} <unspec> Pacl_qng position. See The Packer
section.
{width, Int} <unspec> Thewidthin pixels.
The x coordinate within the parent
{X, Int} <unspec> objects framein pixels. O isto the
left.
{y, Int} <unspec> They coordinate in pixels. O is at the
top.
Table 8.3: Generic Options (Frame as Parent)
Config-Only Description
lower Lowers this object to the bottom in the visual hierarchy.
raise Lowers this object in the visual hierarchy.
Table 8.4: Generic Config-Only Options
The following table lists generic Read-Only options:
Read-Only Return Description
children [Objectldd, ..., ObjectldN] All children
{choose_font,Font} Font Return t_he font tha_t IS & tually used
if aparticular font is given.
Return the object id for this object.
id Objectld Useful if the object is a named
object.
{font_wh{ Font Text}} {Width Height} Return the size of atextin a

specified font. It returns the size of

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 23

1.8 Built-In Objects

the font that is actually chosen by
the back-end.

type Atom The type of this object.

parent Objectld The parent of this object.

Table 8.5: Generic Read-Only Options

Generic Event Options

The table below lists all generic event options:

{Option,Value} Default
{ buttonpress, Bool} false
{ buttonrelease, Bool} fase
{enter, Bool} false
{leave, Bool} false
{keypress, Bool} false
{motion, Bool} false

Table 8.6: Generic Event Options

1.8.3 Window

The basic object is the window object. It isthe most common container object. All graphical applications use at least
one (top-level) window.

A Window =]

Figure 8.1: Empty Window titled "A Window".

The following tables show all window specific options:

{Option,Value} Default Description

{bg, Color} <unspec> {R,G,B} or acolor name

24 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

Will generateaconf i gur eevent
{ configure,Bool} false when the window has been resized
gure, or moved. The Ar gsfield contains
[Width,Height,X,Y|]
Will generate adest r oyevent
when the window is destroyed
{destroy,Bool} true from the window manager. All GS
applications should handle this
event.
{iconname, String} <unspec>
{iconify, Bool} false
{map, Bool} fase Make it visible on the screen
Thetitle of the window. The default
{title, String} <unspec> isthe internal widget name whichis
platform specific.

Table 8.7: Window Options

Config-Only Description
raise Raise window on top of all other windows.
lower Lower window to background.

Table 8.8: Window Config-Only Options

The following example shows how to create a window and configure it to enable various events.

- modul e(ex7).
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export ([mk_w ndow 0]).

mk_wi ndow() ->
S= gs:start(),
W n= gs:create(w ndow, S, [{notion, true}, {nap,true}]),
gs: config(Wn,[{configure,true}, {keypress,true}]),
gs: config(Wn, [{buttonpress,true}]),
gs: config(Wn, [{buttonrel ease, true}]),
event _| oop(Wn).

event _| oop(Wn) ->
receive
{gs, Wn, notion,Data,[X,Y | Rest]} ->
%% nouse noved to position XY
io:format ("nmouse noved to X ~w Y:~wn",[X VY]);

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 25

1.8 Built-In Objects

{gs, Wn, configure,Data,[WH | Rest]} ->

%6 wi ndow was resized by user

io:format ("wi ndow resi zed W~w H ~wn",[WH]);
{gs, Wn, buttonpress,Data,[1,X, Y | Rest]} ->

%6 button 1 was pressed at |location X Y

io:format ("button 1 pressed X:~w Y:~w-n",[X Y]);
{gs, Wn, buttonrel ease,Data,[_, X, Y | Rest]} ->

%6 Any button (1-3) was rel eased over XY

io:format ("Any button released X ~w Y:~w-n",[X Y]);
{gs, Wn, keypress, Data,[a | Rest]} ->

%o key “a' was pressed in w ndow

io:format ("key a was pressed in wi ndow-n");
{gs, Wn, keypress, Data,[_,65,1 | Rest]} ->

%6 Key shift-a

io:format ("shift-a was pressed in w ndow-n");
{gs, Wn, keypress, Data,[c, _, ,1 | Rest]} ->

%% CTRL_C pressed

io:format ("CTRL_C was pressed in w ndow-n");
{gs, Wn, keypress, Data, ['Return' | Rest]} ->

%6 Return key pressed

io:format ("Return key was pressed in w ndow-n")
end,

event _| oop(Wn).

1.8.4 Button
Buttons M=l B3
~ RadioButtonl I CheckButtonl
+ RadioButtonz W CheckButtonz
4 RadioButton3 _l CheckButton3

@ CheckButtond

Button |

Figure 8.2: Radio Buttons, Check Buttons, and Ordinary Button

Buttons are the ssimplest and the most commonly used objects. Y ou press them and get a click event. The following
tables show the options for al button types.

{Option,Value} Default Description
ign, Align center ext alignment within the frame.
aign, Alig Text dig ithin the f
N . Justification is only valid when there
{justify, left | center | right} center are several lines of text.
, <unspec> ext or image to show.
{label, Label} T [sh
Check buttons and radio buttons.
{select, Bool} false true means that the button is

selected.

26 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

Underline character N to indicate a

{underline, Int} <unspec> keyboard accelerator.

Radio button: only one per group is
selected at one time. Check button:
All in the same group are selected
automatically.

{group, Atom} <unspec>

Radio buttons only. Groups radio

{value, Atom} <unspec> buttons together within a group.

Table 8.9: Options for all Button Types

Config-Only Description

flash Flash button

invoke Explicit button press.

toggle Check buttons only. Toggles select value.

Table 8.10: Config-Only Options for all Button types

Buttontype Event

normal {gs, itemld, click, Data, [Text| _]}

check {gs, itemld, click, Data, [Text, Group, Bool |]}
radio {gs, itemld, click, Data, [Text, Group, Vaue|]}

Table 8.11: >Events for all Button types

Buttons and check buttons are simple to understand, radio buttons are more difficult. Each radio button has a group
and avalue option. The group option is used to group together two or more radio buttons. Normally, each radio button
within a group has a unique value which means that only one radio button can be selected at atime. If two (or more)
radio buttons share the same value and one of them is selected, then both will be selected and all others are de-sel ected.
The following short example shows how to program radio button logic in a situation where two of them share the
same value.

- modul e(ex8) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([start/0]).
start() ->

gs:wi ndow(w n, gs:start(), {map, true}),
gs: radi obutton(rbl, win,[{l abel,{text,"rbl1"}}, {val ue, a},{y, 0}]),

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 27

1.8 Built-In Objects

gs: radi obutton(rb2, win, [{l abel , {text,"rb2"}}, {val ue, a}, {y, 30}]),
gs: radi obutton(rb3,wi n, [{l abel , {text,"rb3"}}, {val ue, b}, {y, 60}]),

rb_Il oop().

rb_l oop() ->
receive

{gs, Any_Rb, click,Data,[Text, Gp, a| Rest]} ->
io:format("either rbl or rb2 is on.~n",[]),

rb_Il oop();

{gs,rb3,click,Data,[Text, Gp, b | Rest]} ->
io:format("rb3 is selected.~n",[]),

rb_I| oop()

end.

wi

N ril
N rk2

% rb3

M [=] E3

Figure 8.3: Radio Button Group with Last Button Selected

The example shown creates three radio buttons which are members of the same group. The default behavior is that
all radio buttons created by the same process are members of the same group. Normally, only one in agroup may be
selected at the same time, but since we defined the value-option to have the same value for r b1 and r b2, they will
both be selected/de-sel ected simultaneously. The normal radio button group behavior is that al radio buttons within

the same group have unique default values.

1.8.5 Label
{Option,Value} Default Description

. . How thetext is aligned within the
{dign,Align} center frame.
{justify |eft|right|center} left How to justify several lines of text.
{label,Label} <unspec> Text or image to show.
{underline Int} <Unspec> Underline character N to indicate a

’ a keyboard accelerator.

Table 8.12: Label Options

A label is asimple text field which is used to display text to the user. It is possible to have severa lines of text by
inserting newline '\ ' characters between each line. The label object does not automatically adjust its size so that text

will fit inside. This has to be done manually, or the text may be clipped at the edges.

28 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

1.8.6 Frame

The frame object acts as a container for other objects. Its main use isto logically and visually group objects together.
Grouped objects can then be moved, displayed, or hidden in one single operation.

{Option,Value} Default Description
{bw,Int} <unspec> Border width

. Makes the frame pack its children.
{ipacker_x,PackList} <unspec> See the packer section.

. Makes the frame pack its children.
{ipacker_y,PackList} <unspec> See the packer section.

Table 8.13: Frame Options

It is possible to have frame objects within frame objects so that large hierarchical structures of objects can be created.

1.8.7 Entry

What’s your name?

0la samuelssor|

Ok Cancel

Figure 8.4: Label and Entry Objects for User Input

{Option,Value} Default Description
{justify, left|right|center} left Text justification in entry field.

. Use this option to initially set some
{text, String} <unspec> text, and to read the text.

Table 8.14: Entry Options

Entrys are used to prompt the user for text input.

Config-Only

Description

{delete, { From, To}}

Deletes the characters within index { From,To} .

{delete, last)

Deletes the last character.

{delete, Index}

Deletes the character at position Index.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 29

1.8 Built-In Objects

. . Inserts text at the specific character position. Index
{insert, {Index, String} } Starts from O.
{select, { From, To}} Selectsarange.
{select, clear} De-selects selected text.

Table 8.15: Entry Config-Only Options

A common usage of the entry object isto listen for the 'Return’ key event and then read the text field. The following
example shows a simple dialog which promptsthe user for aname and returnsthetuple { nane, Nane} whenaname
isentered, or cancel if the cancel button is pressed.

- modul e(ex9) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([start/0,init/1]).

start() ->
spawn(ex9, init, [self()]),
recei ve
{entry reply, Reply} -> Reply
end.
init(Pid) ->

S = gs:start(),
Wn = gs:create(w ndow, S,[{title,"Entry Denp"},

{wi dt h, 150}, { hei ght, 100}]),
gs: create(l abel , Wn, [{Il abel , {text,"Wiat's your nane?"}},
{wi dt h, 150}]),
gs:create(entry,entry, Wn, [{x, 10}, {y, 30}, {w dt h, 130},

{keypress,true}]),
gs: creat e(button, ok, Wn, [{w dt h, 45}, {y, 60}, {x, 10},
{l abel , {text,"Ck"}}1),
gs: creat e(button, cancel , Wn, [{w dth, 60}, {y, 60}, {x, 80},
{I abel , {text, "Cancel "}}]),
gs: confi g(Wn, {map, true}),
| oop(Pid).

| oop(Pid) ->
recei ve

{gs,entry, keypress, _,['Return'|_]} ->
Text =gs:read(entry, text),
Pid ! {entry reply, {name, Text}};

{gs, entry, keypress, , } -> %all other keypresses
| oop(Pi d);

{gs,ok,click, , } ->
Text =gs:read(entry, text),
Pid ! {entry reply, {name, Text}};

{gs, cancel ,click, ,_ } ->
Pid ! {entry reply, cancel};
X ->
io:format ("Got X=~w~n",[X]),
| oop(Pi d)

end.

30 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

The program draws the dialog and waits for the user to either press the return key or click one of the buttons. It then
reads the text option of the entry and returns the string to the client process.

1.8.8 Listbox

A listbox is a list of labels with optional scroll bars attached. The user selects one or more predefined alternative
entries. Y ou can add and remove entriesin the listbox. The first element in alistbox hasindex O.

{Option,Value} Default

Description

{hscrall, Booal | top | bottom} true

Horizontal scroll bar.

{items, [String, String ... String]} <unspec>

All items (entries) in the listbox.

{'scrollbg, Color} <unspec> Foreground color of scroll bar.

{scrollfg, Color} <unspec> Background color of scroll bar.
Controlsif it is possible to have

{'selectmode, single | multiple} single several items selected at the same
time.

{vscroll, Bool | left | right} true Vertical scroll bar.

Table 8.16: Listbox Options

Config-Only

Description

{add, {Index, String}}

Add an item at specified index.

{add, String}

Add an item last.

{change, {Index,String} }

Change oneitem.

clear

Delete dl items.

{del, Index | { From, To}}

Delete an item at specified index, or all from index
From toindex To.

{'see, Index}

Make the item at specified index visible.

{'selection, Index | { From,To} | clear}

Select anitem (highlight it). Clear erases the selection.

Table 8.17: Listbox Cinfig-only Options

Read-Only Return Description
Returns current selection. Al
selection ListOfStrings selected item indices will be
returned in alist.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 31

1.8 Built-In Objects

. The number of items (entries) in the
size Int :
listbox.
{get, Index} String Returnsitem at specified index.

Table 8.18: Listbox Read-Only Options

Event

{gs, ListBox, click, Data, [Index, Text,Bool |]}

{gs, ListBox, doubleclick, Data, [Index, Text,Bool |]}

Table 8.19: Listbox Events

Bool istrueif object is selected, false if de-selected.

Notethat cl i ck and doubl ecl i ck aretwo discrete events: if you have subscribed to both, you will receive both a
cl i ck eventand adoubl ecl i ck event when double-clicking on one item (since two rapid clickings are regarded
asbothacl i ck andadoubl ecl i ck). The subscription of doubl ecl i ck eventsdoesnot resultinthecl i ck
events being unsubscribed!

The following example shows a simple application which prompts the user for atext item. The user has the following
options:

* browsethe items and then double-click the required item

» typethe nameinto the entry field and then press the Return key

e select therequired item and then click the OK button.

wi I =] B3
Press Me

Figure 8.5: Simple Browser Dialog

- modul e(ex10) .
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([start/0, init/3]).

start() ->
start("Pick a fruit:",
[appl e, banana, |enobn, orange, strawberry,
mango, kiw , pear, cherry, pi neappl e, peach, apricot]).

start(Text,ltens) ->
spawn(ex10,init,[sel f(), Text,ltens]),
receive
{browser, Result} -> Result

32 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

end.

init(Pid, Text,ltenms) ->

S=gs:start(),
W n=gs: wi ndow(S, [{wi dt h, 250}, { hei ght, 270},
{title, "Browser"}]),
Lbl =gs: | abel (Wn, [{I abel , {text, Text}}, {w dth, 250}]),
Entry=gs: entry(Wn, [{y, 35}, {w dt h, 240}, {x, 5},
{keypress, true},
{setfocus,true}]),
Lb=gs: |i st box(Wn, [{x, 5}, {y, 65}, {wi dth, 160},
{hei ght, 195}, {vscrol | ,right},
{click,true}, {doubl eclick,true}]),
Ok=gs: button(Wn, [{] abel , {text,"OK"}},
{wi dt h, 40}, {x, 185}, {y, 175}1),
Cancel =gs: button(Wn, [{I| abel , {t ext, "Cancel "}},
{x, 175},{y, 225}, {wi dt h, 65}]),
gs: config(Lb,[{itens,|tens}]),
gs: confi g(Wn, {map, true}),
br owser _| oop(Pi d, Ok, Cancel , Entry, Lb).

br owser _| oop(Pi d, Ok, Cancel , Entry, Lb) ->

receive
{gs, X, click, _,_} ->
Txt =gs:read(Entry, text),
Pid ! {browser, {ok, Txt}};
{gs, Cancel ,click, _,_} ->
Pid ! {browser, cancel};
{gs, Entry, keypress, ,['Return'|_]} ->
Txt =gs:read(Entry, text),
Pid ! {browser, {ok, Txt}};
{gs, Entry, keypress, , } ->
br owser _| oop(Pi d, Ok, Cancel , Entry, Lb);
{gs,Lb,click, _,[ldx, Txt|_]} ->
gs: config(Entry, {text, Txt}),
br owser _| oop(Pi d, Ok, Cancel , Entry, Lb);
{gs, Lb, doubl eclick, ,[ldx, Txt|_]} ->
Pid ! {browser, {ok, Txt}};
{gs, _,destroy, , } ->
Pid ! {browser, cancel};
X ->
io:format ("Got X=~w~n",[X]),
br owser _| oop(Pi d, Ok, Cancel , Entry, Lb)
end.

1.8.9 Canvas

The canvas object is asimple drawing area. The user can draw graphical objects and move them around the drawing
area. The canvas also has optional scroll bars which can be used to scroll the drawing area. The graphical objects that
can be created on a canvas object are:

arc
image
line

ova
polygon
rectangle
text.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 33

1.8 Built-In Objects

These objects must have a canvas object as a parent, but they are otherwise similar to all other basic objects. The
following tables show the options which apply to canvas objects.

{Option,Value} Default Description

{bg, Color} <unspec> Color of the drawing area.
{hscroll, Bool | top | bottom} fase Horizontal scroll bar.
{'scrollbg, Color} <unspec> Foreground color of scroll bar.
{'scrollfg, Color} <unspec> Background color of scroll bar.

{scrollregion, {X1LY1X2Y2}} <unspec> The size of the drawing areato be

scrolled.
{vscroll, Bool | left | right} false Vertical scroll bar.
Table 8.20: Canvas Options
Read-Only Return Description
{hit, {X,Y}} list of Objectld Returns the canvas objects at X,Y.

Returns the canvas objects which are

{hit, [{X1,Y1} {X2,Y2}]} list of Objectld hit by the rectangle.

Table 8.21: Canvas Read-Only Options

Canvas objects have the same types of events as other objects. Thefollowing Config-Only options also apply to canvas
objects:

Config-Only Description

lower Lowers the object.

{move, {Dx, Dy}} Moves object relative to its current position.
raise Raises the object above all other objects.

Table 8.22: Canvas Config-Only Options

The following sections describe the graphical objects which can be drawn on a canvas object.

The Canvas Arc Object

The canvas arc object is defined within a rectangle and is drawn from a start angle to the extent angle. Origo isin
the center of the rectangle.

34 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

an arc M=l E3

D

Figure 8.6: Canvas Arc Object

gs: create(arc, Canvas, [{coords, [{10, 10}, {80, 80}]},{fill,yellow]).

{Option,Value} Default Description
{bw, Int} 1 Defines the width.
{coords, [{XLY1} {X2.Y2}]} \IIDVIetfrl“nr? arectangle to draw the arc
{ extent, Degrees}
{fg, Color}
{fill, Color|none} none Definesfill color of arc object.
{start, Degrees}
{style, arc} No line segments.
A single line segment connects the
{style, chord} two_end points of the perimeter
section.
Two lines are drawn between the
{style, piedlice} This Style center of the oval and each end of

the perimeter section.

Table 8.23: Canvas Arc Options

The Canvas Image Object

The canvas image object displays images and moves them around in a simple way. The currently supported image

formats are bitmap and gif.

4

an Image M=) B

Figure 8.7: Canvas Image Object

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 35

1.8 Built-In Objects

gs: creat e(i mage, Canvas, [{l oad_gif,"brick.gif"}]).

{Option,Value} Default Description
Anchor reference specified by
{'anchor, Anchor} nw (XYY} .
{bg, Color} <unspec> Background color. Pixel value 0.
) i A bitmap file which contains a bmp
{ bitmap, FileName} <unspec> bitmap.
{coords, [{X,Y}]} <unspec> Position on the canvas.
{fg, Color} <unspec> Foreground color. Pixel value 1.
{load_gif, FileName} <unspec> Loads a gif image.
Table 8.24: Canvas Image Object Options
The Canvas Line Object
Figure 8.8: Line Object Drawn on a Canvas
gs: create(line, Canvas,
[{coords, [{25, 25}, {50, 50}, {50, 40}, {85, 75}1},
{arrow, last},{wi dth, 2}]).
{Option,Value} Default Description

Draws arrows at the end points of

{arrow, both | none | first | last} none theline.

{coords, [{X1Y1} {X2.Y2}, .. A list of coordinates. The line will

(Xn.Yn} <unspec> Et; drawn between all pairsin the
{fg, Color} <unspec> The color of theline.
{'smooth, Bool} fase Smoothing with Bezier splines.

36 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

{'splinesteps, Int}

<unspec>

{width, Int}

The width of theline.

Table 8.25: Canvas Line Object Options

The Canvas Oval Object
An Oval =] E3

Figure 8.9: Oval Object Drawn on a Canvas

gs: creat e(oval , Canvas,

[{coords, [{25, 25}, {125, 75}]}, {fill, red}, {bw, 2}]).

{Option,Value} Default Description

{bw, Int} 1 Width.

{coords, [{XLY1} {X2.Y2}]} <unspec> ;Z‘;gdg?goggdalng'ewmm defines
{fg, Color}

{fill, Color|none} none Object fill color.

Table 8.26: Canvas Oval Object Options

The Canvas Polygon Object

»

Figure 8.10: Canvas Polygon Object

gs: cr eat e(pol ygon, Canvas,

[{coords, [{10, 10}, {50, 50}, {75,30}1}1).

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 37

1.8 Built-In Objects

{Option,Value} Default Description

{bw, Int} 1 Width.

(oot [DAYDOED | s Phe mey be any nmbisof ot
' in the polygon.

{fg, Color} black The color of the polygon outline.

{fill, Color|none} none

{'smooth, Bool} fase Smoothing with Bezier splines.

{'splinesteps, Int} <unspec>

Table 8.27: Canvas Polygon Object Options

The Canvas Rectangle Object

A Rectangle [Hi=] B3

Figure 8.11: Rectangle Object Created on a Canvas

gs: creat e(rect angl e, Canvas,

[{coords, [{30,30},{70,70}]1},{fill,cyan}, {bw 2}]).

{Option,Value} Default Description

{bw, Int} 1 The width of the border line.
{coords, [{ X1,Y1} {X2)Y2}]} <unspec> Defines rectangle coordinates.
{fg, Color} <unspec> The color of the border line.
{fill, Color|none} none Fill color of rectangle.

Table 8.28: Canvas Rectangle Object Options

38 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

The Canvas Text Object
A Text =] B3

Hello World!

Figure 8.12: Canvas Text Object

gs: create(text, C [{coords,[{50,50}]},
{font, {tines, 18}},

{fg, red},

{text,"Hello World!l"}]).

{Option,Value} Default Description
Anchor reference specified by
{'anchor, Anchor} nw (XYY,
{coords, [{X, Y}1} <unspec> Position in the canvas.
{fg, Color} <Unspec> Text color (background color isthe
9 P canvas color).
N . Tex justification. Only valid with
{justify, left | center | right} <unspec> several lines of text.
{text, String} <unspec> The text string to display.
The width in pixels. The text will
{width, Int} be wrapped into severa linesto fit

inside the width.

Table 8.29: Canvas Text Object Options

1.8.10 Menu

Menus consist of four object types:

e themenu bar

e themenu button
e themenu

e themenuitem.

Menu Bar

The menu bar isasimple object. It is placed at the top of the window and contains menu items. {x,y} or width cannot
be controlled since, by definition, the menu bar is placed at the top of the window.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 39

1.8 Built-In Objects

{Option,Value} Default Description

<only generic options>

Table 8.30: Menu Bar Options

Menu Button

The menu button displays a menu when pressed. The width of the menu button is automatically determined by the
size of the text.

{Option,Value} Default Description

{dign, Align} center Text alignment within the frame.

Justification is only valid when there

{justify, left | center | right} center are several lines of text.

{label {text, Text}} <unspec>

Placement on the menu bar. The
{side, left | right} <unspec> menu button created first will have
the left/right position.

Underline character N to indicate an

{underline, Int} <unspec> keyboard accelerator.

Table 8.31: Menu Button Options

Menu

The menu contains menu items, which are displayed vertically. Its width is automatically determined by the width
of the menu itemsit contains.

{Option,Value} Default Description
{selectcolor, Color} <Unspec> The indicator color of radio buttons
! =P and check buttons.

Table 8.32: Menu Options

Config-Only Description

Displays the menu as a pop-up menu at { X,Y}

{post_at,{X,Y}} (coordinate system of the parent).

Table 8.33: Menu Config-Only Options

40 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

Menu Item

The menu item is an object of its own. It can send events when the user selectsit.

{Option,Value} Default Description
{group, Atom} <unspec> For { type, radio|check} .
. The type of thisitem. Cannot be

{itemtype, type} normal reconfigured.

{label, {text, Text}} <unspec> Thetext of the item.

. Underline character N to indicate an

{underline, Int} <unspec> keyboard accelerator.

{value, Atom} <unspec>
Table 8.34: Menu Iltem Options
type: normal | separator | check | radio | cascade

itemtype Event

normal {gs, itemld, click, Data, [Text, Index |]}

check {gs, itemld, click, Data, [Text, Index, Group, Bool|]}
radio {gs, itemld, click, Data, [Text, Index, Group, Value|]}
Table 8.35: Menu ltem Events

Read-Only Return Description

Index in the menu. Starts counting

index Int from O.

Table 8.36: Menu Item Read-Only Options

Menu Demo
File Edit Help

Figure 8.13: Simple Menu

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 41

1.8 Built-In Objects

The following example shows a short demo of the gs menus:

- modul e(ex13).
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([start/0,init/0]).
start() -> spawn(ex13, init, []).
init() ->

I =gs:start(),

W n=gs: wi ndow(|, [{wi dth, 200}, {hei ght, 100},
{title, "menu"}, {map, true}]),

Bar = gs:create(nmenubar, Wn, []),

Fnb = gs: create(nmenubutton, Bar,
[{label,{text,"File"}}]),

Enb = gs:create(nmenubutton, Bar,

[{l abel, {text,"Edit"}}]),
Hb = gs: create(nmenubutton, Bar,
[{Ilabel ,{text,"Help"}},{side, right}]),

Frmu = gs:create(nenu, Fmb, []),
Emmu = gs:create(nenu, Emb, []),
Hmu = gs:create(nenu, Hrb, []),

gs: create(nenuitem | oad, Fmu,
[{l abel ,{text, "Load"}}]),
gs: create(nenuitem save, Fmu,
[{Il abel ,{text, "Save"}}]),
Exit = gs:create(nmenuitem Fmmu,
[{l abel, {text, "Exit"}}]),
Col or = gs:create(nmenuitem Emmu,
[{label,{text, "Color"}},
{itemtype, cascade}]),
Cmu = gs:create(nmenu, Color, [{disabledfg,gray}]),
gs: create(nenuitem Cmu, [{label, {text,"Red"}},
{data, {new color, red}},
{itenmtype, radio}, {group, grl}]),
gs: create(nmenuitem Cmu, [{label, {text,"Blue"}},
{data, {new_color, blue}},
{itentype, radio}, {group, grl}]),
gs: create(nmenui tem Cmu, [{l abel, {text,"Black"}},
{data, {new_ color, black}},
{itenmtype, radio}, {group, grl}]),
gs: create(nenuitem Hmu, [{label, {text,"You"}},
{itemype, check}]),
M = gs:create(nenuitem me, Hmu, [{label, {text, "M"}},
{itemype, check}]),
gs: create(nenuitem Hmu, [{itentype, separator}]),
gs: create(nenuitem Hmu, [{label, {text, "Oher"}},
{itemype, check},
{enabl e, fal se}]),
gs: create(nenuitem doit, Hmu, [{label, {text, "Doit!"}},
{data, {doit, Y, M}]),

Y

| oop(Exit, Wn).

|l oop(Exit, Wn) ->
receive
{gs, save, click, _Data, [Txt, Index | Rest]} ->
io:format ("Save~n");
{gs, load, click, _Data, [Txt, Index | Rest]} ->
i o:format ("Load~n");
{gs, Exit, click, _Data, [Txt, Index | Rest]} ->

42 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

io:format ("Exit~n"),
exit(normal);
{gs, _Muwultem click, {new.color, Color}, Args} ->
i o:format ("Change color to ~w. Args:~p~n",
[Col or, Args]),
gs:config(Wn, [{bg, Color}]);
{gs, doit, click, {doit, Yould, Meld}, Args} ->
Hel pMe = gs:read(Meld, select),
Hel pYou = gs:read(Yould, select),
io:format ("Doit. Hel pMe: ~w, Hel pYou: ~w, Args:~p~n",
[Hel pMe, Hel pYou, Args]);
QG her -> io:format("Qher: ~p~n",[& her])
end,
| oop(Exit, Wn).

1.8.11 Grid

The grid object is similar to the listbox object. The main differenceis that the grid is a multi-column object which is
used to display tables. If needed, the grid can send click events when a user presses the mouse button in atable cell.
Although the grid has a behavior which is similar to the listbox, the programming is somewhat different. The datain
atable cell isrepresented as apure gs object and can be treated as such. Thisobject is called agrid line. It islocated
at arow in the parent grid. If agrid lineisclicked, it sends an event to its owner.

Grid Line

{Option,Value} Default Description

{{bg, Column},Color} <unspec> The background color of acell.

{bg, { Column,Color}} <unspec> ng&ﬂ?négéébg

{bg, Color} <unspec> The background color of al cells.
{click, Bool} true Turns click events on/off.
{doubleclick, Bool} false Turns double-click events on/off.
{{fg, Column} ,Color} <unspec> The foreground color of acell.

{fg, { Column,Color}} <unspec> Equivaent to {{fg, Column} ,Color}
{fg,Color} <unspec> The foreground color of all célls.
{text, { Column, Text}} <unspec> Thetext in the cell.

{{text, Column}, Text} <unspec> Equivalent to {text,{ Column,Text}}.
{text, Text} <unspec> Thetext for al cdls.

{row, {row}} <unspec> 'tl)';ancr)ltf] (—Zrog’.i dMI :Jrita .not be occupied

Table 8.37: Grid Line Options

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 43

1.8 Built-In Objects

Event

{gs, GridLineld, click, Data, [Col, row, Text | _]}

{gs, GridLineld, doubleclick, Data, [Col, row, Text | _]}

Table 8.38: Gride Line Events

Grid
{Option,Value} Default Description
{font,Font} <unspec> A "global" grid font.
{hscroll, Bool [top|bottom} true Horizontal scroll bar.
{vscall, Bool|left|right} true Vertical scroll bar.
. The rows which are currently
{rows, {Minrow,Maxrow}} <unspec> displayed.
{columnwidths Defines the number of columns and
[WidthCol1 Wi'dth Col2 <Unspec> their widthsin coordinates. The size
WidthCol N}'} T a of the columns can be reconfigured,
but not the number of columns.
The color of the grid pattern and the
{fg, Color} <unspec> text.
{bg, Color} <unspec> The background color.
Table 8.39: Grid Options
Read-Only Return Description

{obj_at_row, row}

Object Jundefined

Thegrid line at row.

Table 8.40: Grid Read-Only Options

The rows and columns start counting at 1.

44 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

Grid Demo
HAME FHONE [N
Acdam 1234
Beata 4321
Thomas 1432
Band no7
King 112
Eva 4123
£
| |=

Figure 8.14: Simple Grid

The following simple example shows how to use the grid.

- modul e(ex12).
-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').
-vsn(' $Revision: /main/release/2 $ ').

-export([start/0,init/0]).
start() -> spawn(ex12, init, []).

init() ->
R=[{w ndow, [{wi dt h, 200}, { hei ght, 200}, {title, "grid"}, {map, true}],
{grid, [{x, 10}, {y, 10}, {hei ght, 180}, {wi dt h, 180}, { col unmmwi dt hs, [80, 60] },
{rows, {1, 20}}]
[{gridline, [{text, {1, "NAVE"}}, {text, {2, "PHONE"}},
{font, {screen, bol d, 12}}, {row, 1}, {click, fal se}]},

{gridline, [{text, {1, "Adant'}}, {text, {2,"1234"}}, {row, 2}]},
{gridline, [{text, {1, "Beata"}}, {text,{2,"4321"}},{row, 3}1},
{gridline, [{text, {1, "Thomas"}}, {text,{2,"1432"}},{row, 4}]},

{gridline, [{text,{1,"Bond"}}, {text,{2,"007"}}, {row, 5}1},
{gridline, [{text,{1,"King"}}, {text,{2,"112"}},{row, 6}]},
{gridline, [{text, {1, "Eva"}}, {text,{2,"4123"}},{row, 7}1}1}}1,
gs:create_tree(gs:start(),R),
| oop() .

l'oop() ->
receive
{gs, _Wn, destroy, Data, _Args} -> bye
{gs, _Gidline,click,_Data,[Col, Row, Text|_]} ->
io:format ("Click at col:~p row ~p text:~p~n",[Col, Row, Text]),

I oop();
Msg ->
i o:format ("Got ~p~n",[Msg]),
| oop()
end.

1.8.12 Editor

The editor object is asimpletext editor.

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 45

1.8 Built-In Objects

{Option,Value} Default Description

{hscroll, Boal | top | bottom} false Horizontal scroll bar.

{insertpos,{row,Col}} <unspec> The position of the cursor.

{insertpos,'end’} <unspec> The position of the cursor.

{justify, left| right| center} left Text justification.

{'scrollbg, Color} <unspec> Background color of scroll bar.

{'scrollfg, Color} <unspec> Foreground color of scroll bar.

{'selection, { Fromindex,Tolndex}} | <unspec> g:ﬁ;t range that i currently

{vscroll, Bool | left | right} false Vertical scroll bar.

{vscrollpos, row} <unspec> Th_e top most visible row in the
editor.

{wrap, nonejchar | word} none 'lf_l|J(|)|W towrap text when the lineis

Table 8.41: Editor Options

Config-Only Description

clear Clears the editor.

{del, { Fromindex, Tolndex}}} Deletes text.

{fg, {{ FromIndex,Tolndex} ,Color}} Sets the foreground color of arange of text.

{load, FileName} Read FileName into the editor.

{insert, {Index, Text}} I nserts new text.

{overwrite, {Index, Text}} Writes new text at index.

{save, FileName} Writes editor contents to file.

Table 8.42: Editor Config-Only Options

Read-Only Return Description

Trereg o roci v

46 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

The width of the editor window

char_width Int measured in characters.

{fgIndex} Int The foreground color of the text at
Index.

{ get,{ Fromindex, Tolndex}} Text The text between the indices.

size Int The number of rowsin the editor.

Table 8.43: Editor Read-Only Options

Index: 'end'|insert|{row Col}|{row |ineend}

Editor Demo

editor

Clear | W Enable Insert Time |

I [=] 3
Quit

Edit this text! Al
Anders DahTin. ..
Hr:Min:5ec iz now 14:56:1
hla bla
Hr:Min:Sec is now 14:56:34
£

Figure 8.15: Simple Editor

- modul e(ex14).

-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').

-vsn(' $Revi si on: /main/rel ease/ 2
-export([start/0,init/0]).
start() -> spawn(ex14, init, []).

init() ->

Y = [{y, 0}, {height, 30}, {w dth, 90}],

$).

R=[{wi ndow, [{width, 400}, {height,

[{editor,editor, [{x, 0}, {y,

{button, clear, [{label, {text,

{button, time, [{label, {text, "Insert Tine"}}, {x, 200} |

300},

"Clear"}}, {x, 0} |
{checkbutton, enabl e, [{| abel , {text, "Enabl e"}}, {sel ect, fal se}, {x, 100}| Y] },

{title,"editor"},{map, true}],
35}, {wi dt h, 300}, { hei ght, 250},
{insert,{"end ,"Edit this text!"}},{vscroll,right}]},

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 47

1.8 Built-In Objects

{button, quit, [{label, {text, Y11},
gs:create_tree(gs:start(),R),
gs: config(editor, {enable,fal se}),

I oop() .

"Quit"}}, {x, 300} |

loop() ->
receive
{gs, clear, _, _, _
io:format ("cleal
Enabl e = gs:read(editor
gs: config(editor, {enabl e
gs: config(editor,clear),
gs: config(editor, {enable, Enable});
enable, _, _, [_Txt, _Gp, Enable|l_]} ->
i o:format ("Enabl e: ~w-n", [Enable]),
gs: config(editor,{enabl e, Enable});
time, _, _, _} ->
Ti meStr

} ->

r editor~n"),
enabl e) ,
true}),

{gs,

{gs,

tuple_to list(time())),
~s~n", [TinmeStr]),
enabl e) ,
true}),
{insert,
Enabl e}) ;

io:format ("I nsert Time:
Enabl e = gs:read(editor,
gs: config(editor, {enabl e,
gs: config(editor, {insert,
gs: config(editor, {enabl e,
quit, _, _, _} ->
exit(normal);
Q her ->
io:format ("Ct her: ~w~n",[C her])

TimeStr}}),

{gs,

end,
I oop() .

1.8.13 Scale
A scale object is used to select avalue within a specified range.

i_o_Iib:fornat("Hr:Mn:Sec is now ~w. ~w. ~w~n",

{Option,Value} Default

Description

{orient, vertical | horizontal} horizontal

The orientation of the scale.

{pos, Int} <unspec>

The current value of the scale
objects within the range.

{range, {Min, Max}} <unspec>

The value range.

{'showvalue, Bool} true

Turns showing of scale value on/off.

{text, String} <unspec>

If specified, alabel will be attached
to the scale.

Table 8.44: Scale Object Options

Event

{gs, Scale, click, Data, [Vaue|]}

Table 8.45: Scale Object Options

48 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

1.8 Built-In Objects

The following example prompts a user to specify an RGB-value for the background color of awindow.

Color Deimo

2

Figure 8.16: Scale Objects for Selecting RGB Values for a Window

-nmodul e(ex11).

-copyright (' Copyright (c) 1991-97 Ericsson Tel ecom AB').

-vsn(' $Revi si on:

/main/rel ease/3 $ ').

-export([start/0,init/0]).

start() ->

spawn(ex1l,init,[]).

init() ->

| oop(WR, G B)

I= gs:start(),
W= gs:wi ndow(|, [{title, "Col or Denpn"},
{wi dt h, 300}, { hei ght, 195}]),
B=gs: button(W/[{I abel , {i mage, "di e_i con"}}, {x, 271}, {y, 166},
{wi dt h, 30}1),
gs: config(B, [{bg, yell ow}, {fg, hot pi nk1},{data, quit}]),
gs: scal e(W[{text,"Red"},{y, 0}, {range, {0, 255} },
{orient, horizontal},
{hei ght, 65}, {dat a, red}, {pos, 42}]),
gs: scal e(W[{text,"Blue"},{y, 65}, {range, {0, 255} },
{orient, horizontal},
{hei ght, 65}, {dat a, bl ue}, {pos, 42}]),
gs: scal e(W([{text,"Geen"},{y, 130}, {range, {0, 255}},
{orient, horizontal},
{hei ght, 65}, {dat a, green}, {pos, 42}]),
gs: config(W{map, true}),
| oop(WO, 0, 0).

->
gs: config(W{bg, {R G B}}),
recei ve
{gs, _,click,red,[New R _]} ->
| oop(W New_R, G, B);
{gs,_,click,green,[New d]} ->
| oop(W R, New_G, B);
{gs,_,click,blue,[New B| _]} ->
| 0op(WR, G, New_B);
{gs, _,click,quit,_} ->
true;
W destroy, ,_} ->
true

{gs,

end.

Ericsson AB. All Rights Reserved

.. Graphics System (GS) | 49

1.8 Built-In Objects

2 Reference Manual

The Graphics System application, GS is a library of routines for writing graphical user interfaces. Programs written
using GS work on al Erlang platforms and do not depend upon the underlying windowing system.

50 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

gs

gs

Erlang module

Warning:

GS is not recommended for use in new applications. |nstead we recommend WX for applications that need a
graphical user interface.

GS is not maintained and we plan to deprecate and remove it from the distribution as soon as possible, maybe
already in the next major release (R15).

The Graphics System, GS, is easy to learn and designed to be portable to many different platforms.

Inthe description below, thetypegsobj () denotesareferenceto agraphical object created with GS. Such areference
is either a GS object identifier or the name of the object (an atom), if such a name exists. The functions all return the
specified valuesor { er r or, Reason} if an error occurs.

Please refer to the GS User's Guide for a description of the different object types and possible options.

Exports

config(GSQbj, Options) -> ok

Types:
GSOBj = gsobj ()
Options = [Option] | Option

Option = {Key, Val ue}
Configures a graphical object according to the specified options.

create(Obj Type, Parent) -> Cbjld
creat e(Obj Type, Parent, Options) -> ojld
create(oj Type, Nane, Parent, OQptions) -> Objld
Types:

bj Type = atom()

Parent = gsobj ()

Name = atom()

Options = [Option] | Option

Option = {Key, Val ue}

Creates anew graphical object of the specified type as a child to the specified parent object. The object is configured
according to the options and its identifier is returned. If no options are provided, default option values are used.

If anameis provided, this name can be used to reference the object instead of the object identifier. The nameislocal
to the process which creates the object.

The following object types exist: Wi ndow | button | radiobutton | checkbutton | [|abel |
frane | entry | listbox | canvas | arc | image | line | oval | polygon | rectangle
| text | nenubar | menubutton | nmenu | menuitem| grid | gridline| editor | scale

Ericsson AB. All Rights Reserved.: Graphics System (GS) | 51

gs

create tree(Parent, Tree) -> ok
Types.
Parent = gsobj ()
Tree = [Qbj ect]
hj ect = {wj Type, Options} | {Obj Type, Opti ons, Tree} |
{ Qbj Type, Nane, Opti ons, Tree}
Creates a hierarchy of graphical objects.

destroy(GShj) -> void()
Types:
GSCbj = gsobj ()
Destroys a graphical object and all its children.

bj Type(Parent)
hj Type(Parent, Options)
bj Type(Name, Parent, Options)

These functions are shorthand equivalents of cr eat e/ 2, cr eat e/ 3, and cr eat e/ 4, respectively.

read(GSQbj, Key) -> Val ue

Types:
GShj = gsobj ()
Key = atom()

Value = term)
Returns the value of an option key for the specified graphical object.

start() -> Objld
Starts GS, unlessit is already started, and returns its object identifier.

stop() -> void()

Stops GS and closes all windows. This function is not the opposite of st art/ 0 asit will cause all applications to
lose their GS objects.

52 | Ericsson AB. All Rights Reserved.: Graphics System (GS)

	Graphics System (GS)
	GS User's Guide
	GS - The Graphics System
	Introduction
	Basic Architecture of GS

	Interface Functions
	Overview
	A First Example
	Creating Objects
	Ownership
	Naming Objects

	Options
	The Option Concept
	The Option Tables
	Config-Only Options
	Read-Only Options
	Data Types

	Events
	Event Messages
	Generic Events
	The Buttonpress and Buttonrelease Events
	The Enter and Leave Events
	The Focus Event
	The Keypress Event
	The Motion Event

	Object Specific Events
	Matching Events Against Object Identifiers
	Matching Events Against Object Names
	Matching Events Against the Data Field
	Experimenting with Events

	Fonts
	The Font Model

	Default Values
	The Default Value Model

	The Packer
	The Packer

	Built-In Objects
	Overview
	Generic Options
	Generic Event Options

	Window
	Button
	Label
	Frame
	Entry
	Listbox
	Canvas
	The Canvas Arc Object
	The Canvas Image Object
	The Canvas Line Object
	The Canvas Oval Object
	The Canvas Polygon Object
	The Canvas Rectangle Object
	The Canvas Text Object

	Menu
	Menu Bar
	Menu Button
	Menu
	Menu Item
	Menu Demo

	Grid
	Grid Line
	Grid
	Grid Demo

	Editor
	Editor Demo

	Scale

	Reference Manual
	gs
	config/2
	create/2
	create/3
	create/4
	create_tree/2
	destroy/1
	ObjType/1
	ObjType/2
	ObjType/3
	read/2
	start/0
	stop/0

