| v

ERLANG

crypto

Copyright © 1999-2011 Ericsson AB. All Rights Reserved.
crypto 2.0.4

October 19 2011

Copyright © 1999-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

October 19 2011

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. Al rights reserved.

Redi stri bution and use in source and binary forms, with or w thout
nmodi fication, are permtted provided that the follow ng conditions
are net:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the foll owi ng disclainer in
the docunentation and/or other materials provided with the
di stribution.

3. Al advertising materials nentioning features or use of this
sof tware nust display the foll ow ng acknow edgnent :
"Thi s product includes software devel oped by the OpenSSL Proj ect
for use in the OpenSSL Tool kit. (http://ww. openssl.org/)"

4. The nanes "OpenSSL Tool kit" and "OpenSSL Project" nust not be used to
endorse or pronote products derived fromthis software wi thout
prior witten permi ssion. For witten perm ssion, please contact
openssl - cor e@penssl . or g.

5. Products derived fromthis software may not be called "OpenSSL"
nor may "QOpenSSL" appear in their nanes w thout prior witten
perm ssi on of the OpenSSL Proj ect.

6. Redistributions of any form what soever nust retain the foll ow ng
acknow edgnent :
"Thi s product includes software devel oped by the OpenSSL Proj ect
for use in the OpenSSL Tool kit (http://ww. openssl.org/)"

* %k ok ok ok ok kR R ok 3k ok ok ok Rk 3k 3k ok ok ok % kR 3k ok ok ok % %k 3k ok ok Ok *

THI S SOFTWARE | S PROVI DED BY THE QpenSSL PROJECT ""AS |S'' AND ANY

2 | Ericsson AB. All Rights Reserved.: crypto

1.1 Licenses

EXPRESSED OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPOSE ARE DI SCLAI MED. I N NO EVENT SHALL THE OpenSSL PRQJIECT OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT

NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;

LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)

HONEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT,
STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE)

ARI SING I N ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED
OF THE PGSSIBI LI TY OF SUCH DAMAGE.

Thi s product includes cryptographic software witten by Eric Young
(eay@ryptsoft.com). This product includes software witten by Tim
Hudson (tjh@ryptsoft.com.

ok ok ok k% % 3k ok ok ok F X %k ok ok Ok

1.1.2 SSleay License

Copyright (C 1995-1998 Eric Young (eay@ryptsoft.comn
Al'l rights reserved.

Thi s package is an SSL inplenmentation witten
by Eric Young (eay@ryptsoft.conj.
The inplementation was witten so as to conformw th Netscapes SSL.

This library is free for comrercial and non-conmmerci al use as |ong as
the following conditions are aheared to. The follow ng conditions
apply to all code found in this distribution, be it the RC4, RSA

| hash, DES, etc., code; not just the SSL code. The SSL docunentation
included with this distribution is covered by the same copyright terns
except that the holder is TimHudson (tjh@ryptsoft.com.

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be renoved.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the formof a textual nmessage at program startup or

in docunentation (online or textual) provided with the package.

Redi stri bution and use in source and binary forns, with or wthout

nodi fication, are permtted provided that the follow ng conditions

are net:

1. Redistributions of source code nust retain the copyright
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunent ati on and/or other materials provided with the distribution.

3. Al advertising materials mentioning features or use of this software
nmust di splay the follow ng acknow edgenent:
"Thi s product includes cryptographic software witten by
Eri c Young (eay@ryptsoft.com"
The word 'cryptographic' can be left out if the rouines fromthe library
bei ng used are not cryptographic related :-).

4. |If you include any Wndows specific code (or a derivative thereof) from
the apps directory (application code) you nust include an acknow edgenent :
"Thi s product includes software witten by Ti m Hudson (tjh@ryptsoft.com"

TH S SOFTWARE | S PROVI DED BY ERIC YOUNG ""AS |S'' AND
ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE

ok ok k% Rk ok ok ok k% Rk ok ok ok ok kR 3k ok ok ok k% %k ok ok ok k% %k 3k ok Ok F ¥ F

Ericsson AB. All Rights Reserved.: crypto | 3

11

Licenses

ok ok ok k% % 3k ok ok kX X % ok

/

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE
ARE DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
FOR ANY DI RECT, | NDI RECT, | NClI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
DAMAGES (| NCLUDI NG BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
OR SERVI CES; LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON)
HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
LI ABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY
QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PGSSI Bl LI TY OF
SUCH DAMAGE.

The licence and distribution terns for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot sinply be
copi ed and put under another distribution |icence

[including the GNU Public Licence.]

4 | Ericsson AB. All Rights Reserved.: crypto

1.1 Licenses

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

Ericsson AB. All Rights Reserved.: crypto | 5

crypto

crypto
Application

The purpose of the Crypto application is to provide message digest and DES encryption for SMNPv3. It provides
computation of message digests MD5 and SHA, and CBC-DES encryption and decryption.

Configuration

The following environment configuration parameters are defined for the Crypto application. Refer to application(3)
for more information about configuration parameters.

debug = true | false <optional >
Causes debug information to be written to standard error or standard output. Default isf al se.

OpenSSL libraries

The current implementation of the Erlang Crypto application is based on the OpenSS_ package version 0.9.7 or higher.
There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

The same URL also contains links to some compiled binaries and libraries of OpenSSL (see the Rel at ed/
Bi nari es menu) of which the Shining Light ProductionsWin32 and OpenSSL pagesare of interest for the Win32
user.

For some Unix flavours there are binary packages available on the net.
If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL source release and compileit.
Y ou then have to compile and install thelibrary | i becr ypt 0. so (Unix), or thelibrary | i beay32. dl | (Win32).

For Unix Thecr ypt o_dr v dynamic driver isdelivered linked to OpenSSL librariesin/ usr /| ocal /| i b, but the
default dynamic linking will also accept librariesin/ 1 i band/ usr/ i b.

If that is not applicable to the particular Unix operating system used, the example Makef i | e in the Crypto pri v/
obj directory, should be used as a basis for relinking the final version of the port program.

For W n32 it isonly required that the library can be found from the PATH environment variable, or that they reside
in the appropriate SYSTEM32 directory; hence no particular relinking is need. Hence no example Makefi | e for
Win32 is provided.

SEE ALSO
application(3)

6 | Ericsson AB. All Rights Reserved.: crypto

href
href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.

References:

md4: The MD4 Message Digest Algorithm (RFC 1320)

md5: The MD5 Message Digest Algorithm (RFC 1321)

sha: Secure Hash Standard (FIPS 180-2)

hmac: Keyed-Hashing for Message Authentication (RFC 2104)

des: Data Encryption Standard (FIPS 46-3)

aes. Advanced Encryption Standard (AES) (FIPS 197)

ech, cbc, cfb, ofb, ctr: Recommendation for Block Cipher Modes of Operation (NIST SP 800-38A).
rsa. Recommendation for Block Cipher Modes of Operation (NIST 800-38A)

dss: Digital Signature Standard (FIPS 186-2)

The above publications can be found at NI ST publications, at IETF.

Types

byte() =0 ... 255

ioelen() = byte() | binary() | iolist()
iolist() = [ioelem)]

Mpi nt () = <<Bytelen: 32/integer-big, Bytes:BytelLen/binary>>

Exports

start() -> ok

Starts the crypto server.

stop() -> ok

Stops the crypto server.

nfo() -> [aton()]

Provides the available crypto functions in terms of alist of atoms.

nfo_lib() -> [{Nane, Ver Num Ver Str}]

Types:

Nane = binary()
Ver Num = i nteger ()
VerStr = binary()

Provides the name and version of the libraries used by crypto.

Ericsson AB. All Rights Reserved.: crypto | 7

href
href

crypto

Narre is the name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info_lib().
[{<<"OpenSSL">>, 9469983, <<" QpenSSL 0.9.8a 11 Cct 2005">>}]

nd4(Data) -> D gest
Types:
Data = iolist() | binary()
Di gest = binary()
Computes an MD4 message digest from Dat a, where the length of the digest is 128 bits (16 bytes).

nd4_init() -> Context
Types:
Context = binary()
Creates an MD4 context, to be used in subsequent callsto md4_updat e/ 2.

nmd4_updat e(Context, Data) -> NewContext
Types:

Data = iolist() | binary()

Cont ext = NewContext = binary()

Updates an MD4 Cont ext with Dat a, and returns a NewCont ext .

nd4_final (Context) -> Digest
Types:
Context = Digest = binary()
Finishes the update of an MD4 Cont ext and returns the computed MD4 message digest.

nd5(Data) -> Digest
Types:
Data = iolist() | binary()
Di gest = binary()
Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes).

md5_init() -> Context
Types:
Context = binary()
Creates an M D5 context, to be used in subsequent callsto nd5_updat e/ 2.

nd5_updat e(Cont ext, Data) -> NewCont ext

Types:
Data = iolist() | binary()

8 | Ericsson AB. All Rights Reserved.: crypto

crypto

Cont ext = NewContext = binary()
Updates an MD5 Cont ext with Dat a, and returns a NewCont ext .

md5_final (Context) -> Digest
Types:
Context = Digest = binary()
Finishes the update of an MD5 Cont ext and returns the computed MD5 message digest.

sha(Data) -> Digest
Types:
Data = iolist() | binary()
Di gest = binary()
Computes an SHA message digest from Dat a, where the length of the digest is 160 bits (20 bytes).

sha_init() -> Context
Types:
Cont ext = binary()
Creates an SHA context, to be used in subsequent callsto sha_updat e/ 2.

sha_updat e(Cont ext, Data) -> NewCont ext
Types:

Data = iolist() | binary()

Cont ext = NewContext = binary()

Updates an SHA Cont ext with Dat a, and returns a NewCont ext .

sha_final (Context) -> Digest
Types:
Cont ext = Digest = binary()
Finishes the update of an SHA Cont ext and returns the computed SHA message digest.

nd5 _mac(Key, Data) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

Computes an MD5 MAC message authentification code from Key and Dat a, where the the length of the Mac is 128
bits (16 bytes).

nmd5_mac_96(Key, Data) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

Computes an MD5 MAC message authentification code from Key and Dat a, where the length of the Mac is 96 bits
(12 bytes).

Ericsson AB. All Rights Reserved.: crypto | 9

crypto

hrmac_i nit (Type, Key) -> Context
Types.
Type = sha | md5 | ripendl60
Key = iolist() | binary()
Context = binary()

Initializes the context for streaming HMAC operations. Ty pe determines which hash function to use in the HMAC
operation. Key isthe authentication key. The key can be any length.

hrmac_updat e(Cont ext, Data) -> NewCont ext
Types:
Cont ext = NewContext = binary()
Data = iolist() | binary()
Updates the HMAC represented by Cont ext using the given Dat a. Cont ext must have been generated using an

HMAC init function (such as hmac_init). Dat a can be any length. NewCont ext must be passed into the next call
tohnmac_updat e.

hmac_fi nal (Context) -> Mac
Types:
Context = Mac = binary()

Finalizes the HMAC operation referenced by Cont ext . The size of the resultant MAC is determined by the type of
hash function used to generate it.

hmac_fi nal _n(Cont ext, HashLen) -> Mac

Types:
Context = Mac = binary()
HashLen = non_neg i nteger ()

Finalizes the HMAC operation referenced by Cont ext . HashLen must be greater than zero. Mac will be abinary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

sha_nmac(Key, Data) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

Computes an SHA MAC message authentification code from Key and Dat a, where the length of the Mac is 160 bits
(20 bytes).

sha_nac_96(Key, Data) -> Mac

Types.
Key = Data = iolist() | binary()
Mac = binary()

Computes an SHA MAC message authentification code from Key and Dat a, where the length of the Mac is 96 bits
(12 bytes).

10 | Ericsson AB. All Rights Reserved.: crypto

crypto

des_chc_encrypt (Key, |Vec, Text) -> Ci pher
Types.

Key = Text = iolist() | binary()

I Vec = Gipher = binary()

Encrypts Text according to DESin CBC mode. Text must be a multiple of 64 bits (8 bytes). Key isthe DES key,
and | Vec isan arbitrary initiaizing vector. The lengths of Key and | Vec must be 64 bits (8 bytes).

des_cbc_decrypt (Key, |Vec, Cipher) -> Text
Types:
Key = Cipher = iolist() | binary()
| Vec = Text = binary()
Decrypts G pher according to DESin CBC mode. Key isthe DESkey, and | Vec isan arbitrary initializing vector.

Key and | Vec must have the same values as those used when encrypting. G pher must be a multiple of 64 bits (8
bytes). The lengths of Key and | Vec must be 64 bits (8 bytes).

des_chc_ivec(Data) -> | Vec

Types.
Data = iolist() | binary()
I Vec = binary()

Returnsthe | Vec to be used in anext iteration of des_cbc_[encrypt | decrypt] . Dat a isthe encrypted data
from the previous iteration step.

des3_cbc_encrypt (Keyl, Key2, Key3, |Vec, Text) -> G pher
Types:
Keyl =Key2 = Key3 Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text according to DES3in CBC mode. Text must be amultiple of 64 bits (8 bytes). Key 1, Key?2, Key 3,

arethe DES keys, and | Vec isan arbitrary initializing vector. The lengths of each of Key 1, Key2, Key3 and | Vec
must be 64 bits (8 bytes).

des3_cbc_decrypt (Keyl, Key2, Key3, |Vec, C pher) -> Text

Types:
Keyl = Key2 = Key3 = Cipher = iolist() | binary()
| Vec = Text = binary()

Decrypts Ci pher according to DES3 in CBC mode. Key 1, Key2, Key3 arethe DESkey, and | Vec isan arbitrary
initializing vector. Key1, Key2, Key3 and | Vec must and | Vec must have the same values as those used when
encrypting. Ci pher must be a multiple of 64 bits (8 bytes). The lengths of Key1, Key2, Key3, and | Vec must
be 64 bits (8 bytes).

des_ecb_encrypt (Key, Text) -> Ci pher
Types.
Key = Text = iolist() | binary()
Ci pher = binary()

Ericsson AB. All Rights Reserved.: crypto | 11

crypto

Encrypts Text according to DES in ECB mode. Key is the DES key. The lengths of Key and Text must be 64
bits (8 bytes).

des_ecb_decrypt (Key, G pher) -> Text
Types:
Key = Cipher = iolist() | binary()
Text = binary()

Decrypts Ci pher according to DES in ECB mode. Key isthe DES key. The lengths of Key and Ci pher must be
64 bits (8 bytes).

bl owfi sh_ecb_encrypt (Key, Text) -> Ci pher
Types:
Key = Text = iolist() | binary()
Ci pher = binary()
Encrypts the first 64 bits of Text using Blowfish in ECB mode. Key is the Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

bl owfi sh_ecb_decrypt (Key, Text) -> Ci pher
Types:
Key = Text = iolist() | binary()
Ci pher = binary()
Decryptsthefirst 64 bits of Text using Blowfish in ECB mode. Key isthe Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

bl owfi sh_cbc_encrypt (Key, |Vec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

| Vec = Cipher = binary()

Encrypts Text using Blowfish in CBC mode. Key isthe Blowfish key, and | Vec isan arbitrary initializing vector.
Thelength of | Vec must be 64 bits (8 bytes). The length of Text must be a multiple of 64 bits (8 bytes).

bl owfi sh_cbc_decrypt (Key, |Vec, Text) -> Ci pher
Types:

Key = Text = iolist() | binary()

| Vec = Ci pher = binary()

Decrypts Text using Blowfish in CBC mode. Key isthe Blowfish key, and | Vec is an arbitrary initializing vector.
Thelength of | Vec must be 64 bits (8 bytes). The length of Text must be a multiple 64 bits (8 bytes).

bl owfi sh_cfb64_encrypt (Key, |Vec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

| Vec = Cipher = binary()

Encrypts Text using Blowfishin CFB mode with 64 bit feedback. Key isthe Blowfish key, and | Vec isan arbitrary
initializing vector. The length of | Vec must be 64 hits (8 bytes).

12 | Ericsson AB. All Rights Reserved.: crypto

crypto

bl owfi sh_cfb64_decrypt (Key, |Vec, Text) -> G pher
Types:
Key = Text = iolist() | binary()
I Vec = Gipher = binary()
Decrypts Text using Blowfish in CFB mode with 64 bit feedback. Key isthe Blowfish key, and | Vec isan arbitrary
initializing vector. The length of | Vec must be 64 bits (8 bytes).

bl owfi sh_of b64_encrypt (Key, |Vec, Text) -> G pher
Types:
Key = Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text using Blowfishin OFB mode with 64 bit feedback. Key isthe Blowfish key, and | Vec isan arbitrary
initializing vector. The length of | Vec must be 64 bits (8 bytes).

aes_cfb_128 encrypt(Key, |Vec, Text) -> Ci pher
aes_chc_128 encrypt (Key, |Vec, Text) -> G pher
Types:
Key = Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text according to AES in Cipher Feedback mode (CFB) or Cipher Block Chaining mode (CBC). Text

must be amultiple of 128 bits (16 bytes). Key isthe AESkey, and | Vec isan arbitrary initializing vector. The lengths
of Key and | Vec must be 128 hits (16 bytes).

aes_cfb_128 decrypt (Key, |Vec, C pher) -> Text
aes_cbc_128 decrypt (Key, |Vec, Cipher) -> Text
Types:
Key = Cipher = iolist() | binary()
| Vec = Text = binary()
Decrypts Ci pher according to Cipher Feedback Mode (CFB) or Cipher Block Chaining mode (CBC). Key is the
AESkey, and | Vec isan arbitrary initializing vector. Key and | Vec must have the same values as those used when

encrypting. Ci pher must be a multiple of 128 bits (16 bytes). The lengths of Key and | Vec must be 128 bits (16
bytes).

aes_chc_ivec(Data) -> | Vec

Types.
Data = iolist() | binary()
| Vec = binary()

Returns the | Vec to be used in a next iteration of aes_cbc_* [encrypt| decrypt]. Dat a is the encrypted
data from the previous iteration step.

aes_ctr_encrypt (Key, |Vec, Text) -> C pher
Types:

Key = Text = iolist() | binary()

I Vec = Cipher = binary()

Ericsson AB. All Rights Reserved.: crypto | 13

crypto

Encrypts Text according to AES in Counter mode (CTR). Text can be any number of bytes. Key isthe AES key
and must be either 128, 192 or 256 bitslong. | Vec isan arbitrary initializing vector of 128 bits (16 bytes).

aes_ctr_decrypt (Key, |Vec, G pher) -> Text
Types:

Key = Cipher = iolist() | binary()

| Vec = Text = binary()

Decrypts Ci pher according to AESin Counter mode (CTR). Ci pher can be any number of bytes. Key isthe AES
key and must be either 128, 192 or 256 bitslong. | Vec isan arbitrary initializing vector of 128 bits (16 bytes).

aes ctr_stream.init(Key, IVec) -> State

Types:
State = { K, I, E, C}
Key = K = iolist()
IVec = | = E = binary()

C = integer()

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must
be either 128, 192, or 256 btslong. | Vec isan arbitrary initializing vector of 128 bits (16 bytes). This stateisfor use
with aes ctr_stream encrypt and aes _ctr_stream _decrypt.

aes_ctr_streamencrypt(State, Text) -> { NewState, Ci pher}
Types:
Text = iolist() | binary()
C pher = binary()
Encrypts Text according to AESin Counter mode (CTR). Thisfunction can be used to encrypt a stream of text using
a series of calls instead of requiring all text to be in memory. Text can be any number of bytes. State is initialized

using aes ctr_stream init. NewSt at e isthe new streaming encryption state that must be passed to the next call to
aes_ctr_stream encrypt.C pher isthe encrypted cipher text.

aes_ctr_streamdecrypt(State, G pher) -> { NewState, Text }
Types:
Cipher = iolist() | binary()
Text = binary()
Decrypts Ci pher according to AES in Counter mode (CTR). This function can be used to decrypt a stream of
ciphertext using a series of calls instead of requiring al ciphertext to be in memory. Ci pher can be any number of

bytes. State is initialized using aes ctr_stream init. NewSt at e is the new streaming encryption state that must be
passed to the next call toaes_ctr_stream encrypt. Text isthedecrypted data.

erlint(Mint) -> N
mpi nt (N) -> Mpint
Types:
Mpi nt = binary()
N = integer()
Convert abinary multi-precisioninteger Mpi nt toand from an erlang big integer. A multi-precision integer isabinary
withthefollowing form: <<Byt eLen: 32/ i nt eger, Byt es: Byt eLen/ bi nar y>>wherebothByt eLen and

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

Byt es are big-endian. Mpints are used in some of the functionsin cr ypt o and are not translated in the API for
performance reasons.

rand_bytes(N) -> binary()
Types:
N = i nteger()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the cr ypt o library pseudo-
random number generator.

strong_rand_bytes(N) -> binary()
Types:
N = integer()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng

seeded and periodically mixed with operating system provided entropy. By default thisisthe RAND byt es method
from OpenSSL.

May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness”.

rand_uni form(Lo, H) -> N

Types:
Lo, H, N = Mint | integer()
Mpi nt = bi nary()

Generatearandomnumber N, Lo =< N < Hi . Usesthecr ypt o library pseudo-random number generator. The
arguments (and result) can be either erlang integers or binary multi-precision integers. Hi must be larger than Lo.

strong_rand_npint (N, Top, Bottom -> Mint
Types:
N = non_neg_i nteger ()
Top =-1] 0| 1
Bottom=0 | 1
Mpi nt = bi nary()
Generate an N bit random number using OpenSSL's cryptographicaly strong pseudo random number generator
BN rand.

The parameter Top places constraints on the most significant bits of the generated number. If Top is 1, then the two
most significant bitswill be set to 1, if Top is0, the most significant bit will be 1, and if Top is-1 then no constraints
are applied and thus the generated number may be less than N bits long.

If Bot t omis 1, then the generated number is constrained to be odd.
May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness’.

nmod_exp(N, P, M -> Result
Types:
N, P, M Result = Mint
Mpi nt = bi nary()
This function performs the exponentiationN ~ P nod M using thecr ypt o library.

Ericsson AB. All Rights Reserved.: crypto | 15

crypto

rsa_sign(bData, Key) -> Signhature
rsa_sign(Di gest Type, Data, Key) -> Signature
Types:
Data = Mint
Key = [E, N, D
E, N D= Mint
Where E is the public exponent, Nis public modulus and D is the private exponent.
Di gest Type = nd5 | sha
The default Di gest Type issha
Mpi nt = bi nary()
Si gnature = binary()

CaculatesaDi gest Type digest of the Dat a and creates a RSA signature with the private key Key of the digest.

rsa_verify(Data, Signature, Key) -> Verified
rsa_verify(Di gestType, Data, Signature, Key) -> Verified
Types.

Verified = bool ean()

Data, Signature = Mint

Key = [E N

E, N = Mint

Where E is the public exponent and N is public modulus.

Di gest Type = nd5 | sha

The default Di gest Type issha

Mpi nt = bi nary()
CdculatesaDi gest Type digest of theDat a and verifiesthat the digest matchesthe RSA signatureusingthesigner's
public key Key.

rsa_public_encrypt (Pl ai nText, PublicKey, Padding) -> Chipher Text

Types.
Pl ai nText = binary()
PublicKey = [E, N|
E, N = Mint

Where E is the public exponent and N is public modulus.

Paddi ng = rsa_pkcsl padding | rsa_pkcsl_oaep_padding | rsa_no_paddi ng

Chi pher Text = binary()
Encrypts the Pl ai nText (usually a session key) using the Publ i cKey and returns the cipher. The Paddi ng
decides what padding mode is used, r sa_pkcs1_paddi ng is PKCS #1 v1.5 currently the most used mode and
rsa_pkcsl_oaep_paddi ng is EME-OAEP as defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty
encoding parameter. This mode is recommended for al new applications. The size of the Msg must be less than
byte_size(N)-11ifrsa_pkcsl paddi ngisused,byte_si ze(N)-41lifrsa_pkcsl_oaep_paddi ng
isusedand byt e_si ze(N) if rsa_no_paddi ng isused. Where byte size(N) isthe size part of an Mpi nt - 1.

rsa_private_decrypt (Chi pher Text, PrivateKey, Padding) -> PlainText
Types:

16 | Ericsson AB. All Rights Reserved.: crypto

crypto

Chi pher Text = bi nary()
PrivateKey = [E, N, D
E, N, D= Mint
Where E is the public exponent, Nis public modulus and D is the private exponent.
Paddi ng = rsa_pkcsl padding | rsa_pkcsl oaep_padding | rsa_no_paddi ng
Pl ai nText = binary()
Decrypts the Chi pher Text (usually a session key encrypted with rsa_public_encrypt/3) using the Pr i vat eKey

and returns the message. The Paddi ng is the padding mode that was used to encrypt the data, see
rsa_public_encrypt/3.

rsa_private_encrypt (Pl ai nText, PrivateKey, Padding) -> Chipher Text
Types:

Pl ai nText = binary()

PrivateKey = [E, N, D

E, N D= Mint

Where E is the public exponent, Nis public modulus and D is the private exponent.

Paddi ng = rsa_pkcsl_padding | rsa_no_paddi ng

Chi pher Text = bi nary()
Encryptsthe Pl ai nText usingthePr i vat eKey and returnsthe cipher. The Paddi ng decideswhat padding mode
isused, rsa_pkcsl paddi ng is PKCS #1 v1.5 currently the most used mode. The size of the Msg must be less
thanbyt e _si ze(N)- 11ifrsa_pkcsl paddi ngisused,andbyt e _si ze(N) ifrsa_no_paddi ngisused.
Where byte size(N) isthe size part of an Mpi nt - 1.

rsa_public_decrypt (Chi pher Text, PublicKey, Padding) -> PlainText
Types:

Chi pher Text = bi nary()
PublicKey = [E, N
E, N = Mint

Where E is the public exponent and N is public modulus
Paddi ng = rsa_pkcsl_padding | rsa_no_paddi ng
Pl ai nText = binary()

Decrypts the Chi pher Text (encrypted with rsa_private encrypt/3) using the Pri vat eKey and returns the
message. The Paddi ng isthe padding mode that was used to encrypt the data, seersa_private_encrypt/3.

dss_sign(Data, Key) -> Signature
dss_sign(Di gest Type, Data, Key) -> Signature
Types:
Di gest Type = sha | none (default is sha)
Data = Moint | ShaDi gest
Key = [P, Q G X
P, Q G X = Mint
Where P, Qand Gare the dss parameters and X is the private key.
ShaDi gest = binary() with Iength 20 bytes
Si gnature = binary()

Ericsson AB. All Rights Reserved.: crypto | 17

crypto

Creates a DSS signature with the private key Key of a digest. If Di gest Type is 'shd, the digest is calculated as
SHAZ1 of Dat a. If Di gest Type is'non€e, Dat a isthe precalculated SHA1 digest.

dss_verify(Data, Signature, Key) -> Verified
dss_verify(Di gest Type, Data, Signature, Key) -> Verified
Types.

Verified = bool ean()

Di gest Type = sha | none

Data = Moint | ShaDi gest

Si gnature = Mi nt

Key = [P, Q G Y]

P, Q G Y = Mint

Where P, Qand Gare the dss parameters and Y is the public key.

ShabDi gest = binary() with ength 20 bytes

Verifies that a digest matches the DSS signature using the public key Key. If Di gest Type is'sha, the digest is
calculated as SHAL1 of Dat a. If Di gest Type is'non€, Dat a isthe precalculated SHA1 digest.

rc4_encrypt (Key, Data) -> Result
Types.
Key, Data = iolist() | binary()
Result = binary()

Encrypts the data with RC4 symmetric stream encryption. Since it is symmetric, the same function is used for
decryption.

dh_gener at e_key(DHPar ans) -> {PublicKey, Pri vat eKey}
dh_generate_key(PrivateKey, DHParans) -> {PublicKey, Privat eKey}

Types:
DHParameters = [P, {F
P, G = Mint

Where P is the shared prime number and Gis the shared generator.
Publ i cKey, PrivateKey = Mint ()

Generates a Diffie-Hellman Publ i cKey and Pr i vat eKey (if not given).

dh_comput e_key(O her sPubl i cKey, M/Privat eKey, DHParamns) -> SharedSecr et

Types:
DHPar aneters = [P, G
P, G = Mint

Where P is the shared prime number and Gis the shared generator.
O her sPubl i cKey, MPrivateKey = Mpint()
Shar edSecret = binary()

Computes the shared secret from the private key and the other party's public key.

exor (Datal, Data2) -> Result
Types:

18 | Ericsson AB. All Rights Reserved.: crypto

crypto

Datal, Data2 = iolist() | binary()
Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

DES in CBC mode

The Data Encryption Standard (DES) defines an algorithm for encrypting and decrypting an 8 byte quantity using an
8 byte key (actually only 56 bits of the key is used).

When it comes to encrypting and decrypting blocks that are multiples of 8 bytes various modes are defined (NIST SP
800-38A). One of those modes is the Cipher Block Chaining (CBC) mode, where the encryption of an 8 byte segment
depend not only of the contents of the segment itself, but also on the result of encrypting the previous segment: the
encryption of the previous segment becomes the initializing vector of the encryption of the current segment.

Thus the encryption of every segment depends on the encryption key (which is secret) and the encryption of the
previous segment, except the first segment which has to be provided with an initial initializing vector. That vector
could be chosen at random, or be a counter of some kind. It does not have to be secret.

Thefollowing exampleis drawn from the old FIPS 81 standard (replaced by NIST SP 800-38A), where both the plain
text and the resulting cipher text is settled. The following code fragment returns “true'.

Key = <<16#01, 16#23, 16#45, 16#67, 16#89, 16#ab, 16#cd, 16#ef >>,
| Vec = <<16#12, 16#34, 16#56, 16#78, 16#90, 16#ab, 16#cd, 16#ef >>,
P="Nowis the tinme for all "
C = crypto: des_cbc_encrypt (Key, |Vec, P),

% Wi ch is the sane as

Pl ="Nowis t", P2 ="hetime ", P3 ="for all "

Cl = crypto: des_cbc_encrypt (Key, |Vec, P1),

C2 = crypto: des_cbc_encrypt (Key, Ci1, P2),

C3 = crypto: des_cbc_encrypt (Key, C2, P3),

C = <<Cl/bi nary, C2/binary, C3/binary>>,

C = <<l16#eb, 16#c7, 16#cd, 16#de, 16#87, 16#2b, 16#f 2, 16#7c,

16#43, 16#e9, 16#34, 16#00, 16#8c, 16#38, 16#9c, 16#0f ,
16#68, 16#37, 16#88, 16#49, 16#9a, 16#7c, 16#05, 16#f 6>>,
<<"Now is the tine for all ">> ==
crypto: des_chc_decrypt (Key, |Vec, C).

The following is true for the DES CBC mode. For all decompositionsP1 ++ P2 = P of aplain text message P
(where the length of all quantities are multiples of 8 bytes), the encryption Cof Pisequal toC1l ++ C2,whereCl is
obtained by encrypting P1 with Key and theinitializing vector | Vec, and where C2 isobtained by encrypting P2 with
Key andtheinitializing vector | ast 8(C1) , wherel ast (Bi nary) denotesthelast 8 bytesof thebinary Bi nary.

Similarly, for all decompositionsC1 ++ C2 = C of acipher text message C (where the length of all quantities
are multiples of 8 bytes), the decryption P of Cisequal to P1 ++ P2, where P1 isobtained by decrypting C1 with
Key and theinitializing vector | Vec, and where P2 is obtained by decrypting C2 with Key and theinitializing vector
| ast 8(Cl) ,wherel ast 8(Bi nary) isasabove.

For DES3 (which uses three 64 bit keys) the situation is the same.

Ericsson AB. All Rights Reserved.: crypto | 19

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	Reference Manual
	crypto
	crypto
	start/0
	stop/0
	info/0
	info_lib/0
	md4/1
	md4_init/0
	md4_update/2
	md4_final/1
	md5/1
	md5_init/0
	md5_update/2
	md5_final/1
	sha/1
	sha_init/0
	sha_update/2
	sha_final/1
	md5_mac/2
	md5_mac_96/2
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	sha_mac/2
	sha_mac_96/2
	des_cbc_encrypt/3
	des_cbc_decrypt/3
	des_cbc_ivec/1
	des3_cbc_encrypt/5
	des3_cbc_decrypt/5
	des_ecb_encrypt/2
	des_ecb_decrypt/2
	blowfish_ecb_encrypt/2
	blowfish_ecb_decrypt/2
	blowfish_cbc_encrypt/3
	blowfish_cbc_decrypt/3
	blowfish_cfb64_encrypt/3
	blowfish_cfb64_decrypt/3
	blowfish_ofb64_encrypt/3
	aes_cfb_128_encrypt/3
	aes_cbc_128_encrypt/3
	aes_cfb_128_decrypt/3
	aes_cbc_128_decrypt/3
	aes_cbc_ivec/1
	aes_ctr_encrypt/3
	aes_ctr_decrypt/3
	aes_ctr_stream_init/2
	aes_ctr_stream_encrypt/2
	aes_ctr_stream_decrypt/2
	erlint/1
	mpint/1
	rand_bytes/1
	strong_rand_bytes/1
	rand_uniform/2
	strong_rand_mpint/3
	mod_exp/3
	rsa_sign/2
	rsa_sign/3
	rsa_verify/3
	rsa_verify/4
	rsa_public_encrypt/3
	rsa_private_decrypt/3
	rsa_private_encrypt/3
	rsa_public_decrypt/3
	dss_sign/2
	dss_sign/3
	dss_verify/3
	dss_verify/4
	rc4_encrypt/2
	dh_generate_key/1
	dh_generate_key/2
	dh_compute_key/3
	exor/2

