Field3D
|
#include <FieldInterp.h>
Public Types | |
typedef boost::intrusive_ptr < CubicFieldInterp > | Ptr |
typedef boost::intrusive_ptr < CubicFieldInterp > | Ptr |
Public Member Functions | |
virtual Data_T | sample (const Field< Data_T > &data, const V3d &vsP) const |
virtual Data_T | sample (const Field< Data_T > &data, const V3d &vsP) const |
Definition at line 111 of file FieldInterp.h.
typedef boost::intrusive_ptr<CubicFieldInterp> CubicFieldInterp< Data_T >::Ptr |
Reimplemented from FieldInterp< Data_T >.
Definition at line 114 of file FieldInterp.h.
typedef boost::intrusive_ptr<CubicFieldInterp> CubicFieldInterp< Data_T >::Ptr |
Reimplemented from FieldInterp< Data_T >.
Definition at line 114 of file FieldInterp.h.
Data_T CubicFieldInterp< Data_T >::sample | ( | const Field< Data_T > & | data, |
const V3d & | vsP | ||
) | const [virtual] |
Implements FieldInterp< Data_T >.
Definition at line 328 of file FieldInterp.h.
References FieldRes::dataWindow(), monotonicCubicInterpolant(), and Field< Data_T >::value().
{ // Voxel centers are at .5 coordinates // NOTE: Don't use contToDisc for this, we're looking for sample // point locations, not coordinate shifts. V3d clampedVsP(std::max(0.5, vsP.x), std::max(0.5, vsP.y), std::max(0.5, vsP.z)); FIELD3D_VEC3_T<double> p(clampedVsP - FIELD3D_VEC3_T<double>(0.5)); // Lower left corner V3i c(static_cast<int>(floor(p.x)), static_cast<int>(floor(p.y)), static_cast<int>(floor(p.z))); // Fractions FIELD3D_VEC3_T<double> t(p - static_cast<FIELD3D_VEC3_T<double> >(c)); const Box3i &dataWindow = data.dataWindow(); // Clamp the coordinates int im, jm, km; im = std::max(dataWindow.min.x, std::min(c.x, dataWindow.max.x)); jm = std::max(dataWindow.min.y, std::min(c.y, dataWindow.max.y)); km = std::max(dataWindow.min.z, std::min(c.z, dataWindow.max.z)); int im_1, jm_1, km_1; im_1 = std::max(dataWindow.min.x, std::min(im - 1, dataWindow.max.x)); jm_1 = std::max(dataWindow.min.y, std::min(jm - 1, dataWindow.max.y)); km_1 = std::max(dataWindow.min.z, std::min(km - 1, dataWindow.max.z)); int im1, jm1, km1; im1 = std::max(dataWindow.min.x, std::min(im + 1, dataWindow.max.x)); jm1 = std::max(dataWindow.min.y, std::min(jm + 1, dataWindow.max.y)); km1 = std::max(dataWindow.min.z, std::min(km + 1, dataWindow.max.z)); int im2, jm2, km2; im2 = std::max(dataWindow.min.x, std::min(im + 2, dataWindow.max.x)); jm2 = std::max(dataWindow.min.y, std::min(jm + 2, dataWindow.max.y)); km2 = std::max(dataWindow.min.z, std::min(km + 2, dataWindow.max.z)); // interpolate 16 lines in z: Data_T z11 = monotonicCubicInterpolant(data.value(im_1, jm_1, km_1), data.value(im_1, jm_1, km), data.value(im_1, jm_1, km1), data.value(im_1, jm_1, km2), t.z); Data_T z12 = monotonicCubicInterpolant(data.value(im_1, jm, km_1), data.value(im_1, jm, km), data.value(im_1, jm, km1), data.value(im_1, jm, km2), t.z); Data_T z13 = monotonicCubicInterpolant(data.value(im_1, jm1, km_1), data.value(im_1, jm1, km), data.value(im_1, jm1, km1), data.value(im_1, jm1, km2), t.z); Data_T z14 = monotonicCubicInterpolant(data.value(im_1, jm2, km_1), data.value(im_1, jm2, km), data.value(im_1, jm2, km1), data.value(im_1, jm2, km2), t.z); Data_T z21 = monotonicCubicInterpolant(data.value(im, jm_1, km_1), data.value(im, jm_1, km), data.value(im, jm_1, km1), data.value(im, jm_1, km2), t.z); Data_T z22 = monotonicCubicInterpolant(data.value(im, jm, km_1), data.value(im, jm, km), data.value(im, jm, km1), data.value(im, jm, km2), t.z); Data_T z23 = monotonicCubicInterpolant(data.value(im, jm1, km_1), data.value(im, jm1, km), data.value(im, jm1, km1), data.value(im, jm1, km2), t.z); Data_T z24 = monotonicCubicInterpolant(data.value(im, jm2, km_1), data.value(im, jm2, km), data.value(im, jm2, km1), data.value(im, jm2, km2), t.z); Data_T z31 = monotonicCubicInterpolant(data.value(im1, jm_1, km_1), data.value(im1, jm_1, km), data.value(im1, jm_1, km1), data.value(im1, jm_1, km2), t.z); Data_T z32 = monotonicCubicInterpolant(data.value(im1, jm, km_1), data.value(im1, jm, km), data.value(im1, jm, km1), data.value(im1, jm, km2), t.z); Data_T z33 = monotonicCubicInterpolant(data.value(im1, jm1, km_1), data.value(im1, jm1, km), data.value(im1, jm1, km1), data.value(im1, jm1, km2), t.z); Data_T z34 = monotonicCubicInterpolant(data.value(im1, jm2, km_1), data.value(im1, jm2, km), data.value(im1, jm2, km1), data.value(im1, jm2, km2), t.z); Data_T z41 = monotonicCubicInterpolant(data.value(im2, jm_1, km_1), data.value(im2, jm_1, km), data.value(im2, jm_1, km1), data.value(im2, jm_1, km2), t.z); Data_T z42 = monotonicCubicInterpolant(data.value(im2, jm, km_1), data.value(im2, jm, km), data.value(im2, jm, km1), data.value(im2, jm, km2), t.z); Data_T z43 = monotonicCubicInterpolant(data.value(im2, jm1, km_1), data.value(im2, jm1, km), data.value(im2, jm1, km1), data.value(im2, jm1, km2), t.z); Data_T z44 = monotonicCubicInterpolant(data.value(im2, jm2, km_1), data.value(im2, jm2, km), data.value(im2, jm2, km1), data.value(im2, jm2, km2), t.z); Data_T y1 = monotonicCubicInterpolant(z11, z12, z13, z14, t.y); Data_T y2 = monotonicCubicInterpolant(z21, z22, z23, z24, t.y); Data_T y3 = monotonicCubicInterpolant(z31, z32, z33, z34, t.y); Data_T y4 = monotonicCubicInterpolant(z41, z42, z43, z44, t.y); Data_T z0 = monotonicCubicInterpolant(y1, y2, y3, y4, t.x); return z0; }
virtual Data_T CubicFieldInterp< Data_T >::sample | ( | const Field< Data_T > & | data, |
const V3d & | vsP | ||
) | const [virtual] |
Implements FieldInterp< Data_T >.