WFMath  0.3.12
segment.h
00001 // segment.h (A line segment)
00002 //
00003 //  The WorldForge Project
00004 //  Copyright (C) 2000, 2001  The WorldForge Project
00005 //
00006 //  This program is free software; you can redistribute it and/or modify
00007 //  it under the terms of the GNU General Public License as published by
00008 //  the Free Software Foundation; either version 2 of the License, or
00009 //  (at your option) any later version.
00010 //
00011 //  This program is distributed in the hope that it will be useful,
00012 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 //  GNU General Public License for more details.
00015 //
00016 //  You should have received a copy of the GNU General Public License
00017 //  along with this program; if not, write to the Free Software
00018 //  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
00019 //
00020 //  For information about WorldForge and its authors, please contact
00021 //  the Worldforge Web Site at http://www.worldforge.org.
00022 //
00023 
00024 // Author: Ron Steinke
00025 
00026 #ifndef WFMATH_SEGMENT_H
00027 #define WFMATH_SEGMENT_H
00028 
00029 #include <wfmath/point.h>
00030 #include <wfmath/intersect_decls.h>
00031 
00032 namespace WFMath {
00033 
00034 template<int dim>
00035 std::ostream& operator<<(std::ostream& os, const Segment<dim>& s);
00036 template<int dim>
00037 std::istream& operator>>(std::istream& is, Segment<dim>& s);
00038 
00040 
00044 template<int dim = 3>
00045 class Segment
00046 {
00047  public:
00049   Segment() :m_p1(), m_p2() {}
00051   Segment(const Point<dim>& p1, const Point<dim>& p2) : m_p1(p1), m_p2(p2) {}
00053   Segment(const Segment& s) : m_p1(s.m_p1), m_p2(s.m_p2) {}
00054 
00055   ~Segment() {}
00056 
00057   friend std::ostream& operator<< <dim>(std::ostream& os, const Segment& s);
00058   friend std::istream& operator>> <dim>(std::istream& is, Segment& s);
00059 
00060   Segment& operator=(const Segment& s)
00061         {m_p1 = s.m_p1; m_p2 = s.m_p2; return *this;}
00062 
00063   bool isEqualTo(const Segment& s, double epsilon = WFMATH_EPSILON) const;
00064 
00065   bool operator==(const Segment& b) const       {return isEqualTo(b);}
00066   bool operator!=(const Segment& b) const       {return !isEqualTo(b);}
00067 
00068   bool isValid() const {return m_p1.isValid() && m_p2.isValid();}
00069 
00070   // Descriptive characteristics
00071 
00072   int numCorners() const {return 2;}
00073   Point<dim> getCorner(int i) const {return i ? m_p2 : m_p1;}
00074   Point<dim> getCenter() const {return Midpoint(m_p1, m_p2);}
00075 
00077   const Point<dim>& endpoint(const int i) const {return i ? m_p2 : m_p1;}
00079   Point<dim>& endpoint(const int i)             {return i ? m_p2 : m_p1;}
00080 
00081   // Movement functions
00082 
00083   Segment& shift(const Vector<dim>& v)
00084         {m_p1 += v; m_p2 += v; return *this;}
00085   Segment& moveCornerTo(const Point<dim>& p, int corner);
00086   Segment& moveCenterTo(const Point<dim>& p)
00087         {return shift(p - getCenter());}
00088 
00089   Segment& rotateCorner(const RotMatrix<dim>& m, int corner);
00090   Segment& rotateCenter(const RotMatrix<dim>& m)
00091         {rotatePoint(m, getCenter()); return *this;}
00092   Segment<dim>& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
00093         {m_p1.rotate(m, p); m_p2.rotate(m, p); return *this;}
00094 
00095   // 3D rotation functions
00096   Segment& rotateCorner(const Quaternion& q, int corner);
00097   Segment& rotateCenter(const Quaternion& q);
00098   Segment& rotatePoint(const Quaternion& q, const Point<dim>& p);
00099 
00100   // Intersection functions
00101 
00102   AxisBox<dim> boundingBox() const {return AxisBox<dim>(m_p1, m_p2);}
00103   Ball<dim> boundingSphere() const
00104         {return Ball<dim>(getCenter(), Distance(m_p1, m_p2) / 2);}
00105   Ball<dim> boundingSphereSloppy() const
00106         {return Ball<dim>(getCenter(), SloppyDistance(m_p1, m_p2) / 2);}
00107 
00108   Segment toParentCoords(const Point<dim>& origin,
00109       const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
00110         {return Segment(m_p1.toParentCoords(origin, rotation),
00111                 m_p2.toParentCoords(origin, rotation));}
00112   Segment toParentCoords(const AxisBox<dim>& coords) const
00113         {return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));}
00114   Segment toParentCoords(const RotBox<dim>& coords) const
00115         {return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));}
00116 
00117   // toLocal is just like toParent, expect we reverse the order of
00118   // translation and rotation and use the opposite sense of the rotation
00119   // matrix
00120 
00121   Segment toLocalCoords(const Point<dim>& origin,
00122       const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
00123         {return Segment(m_p1.toLocalCoords(origin, rotation),
00124                 m_p2.toLocalCoords(origin, rotation));}
00125   Segment toLocalCoords(const AxisBox<dim>& coords) const
00126         {return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));}
00127   Segment toLocalCoords(const RotBox<dim>& coords) const
00128         {return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));}
00129 
00130   // 3D only
00131   Segment toParentCoords(const Point<dim>& origin,
00132                          const Quaternion& rotation) const;
00133   Segment toLocalCoords(const Point<dim>& origin,
00134                         const Quaternion& rotation) const;
00135 
00136   friend bool Intersect<dim>(const Segment& s, const Point<dim>& p, bool proper);
00137   friend bool Contains<dim>(const Point<dim>& p, const Segment& s, bool proper);
00138 
00139   friend bool Intersect<dim>(const Segment& s, const AxisBox<dim>& b, bool proper);
00140   friend bool Contains<dim>(const AxisBox<dim>& b, const Segment& s, bool proper);
00141 
00142   friend bool Intersect<dim>(const Segment& s, const Ball<dim>& b, bool proper);
00143   friend bool Contains<dim>(const Ball<dim>& b, const Segment& s, bool proper);
00144 
00145   friend bool Intersect<dim>(const Segment& s1, const Segment& s2, bool proper);
00146   friend bool Contains<dim>(const Segment& s1, const Segment& s2, bool proper);
00147 
00148   friend bool Intersect<dim>(const RotBox<dim>& r, const Segment& s, bool proper);
00149   friend bool Contains<dim>(const RotBox<dim>& r, const Segment& s, bool proper);
00150   friend bool Contains<dim>(const Segment& s, const RotBox<dim>& r, bool proper);
00151 
00152   friend bool Intersect<dim>(const Polygon<dim>& r, const Segment& s, bool proper);
00153   friend bool Contains<dim>(const Polygon<dim>& p, const Segment& s, bool proper);
00154   friend bool Contains<dim>(const Segment& s, const Polygon<dim>& p, bool proper);
00155 
00156  private:
00157 
00158   Point<dim> m_p1, m_p2;
00159 };
00160 
00161 } // namespace WFMath
00162 
00163 #endif  // WFMATH_SEGMENT_H