FreeWRL library interface

Michel Briand

2011-02-12

Contents

1 FreeWRL library specification
1.1 Currentsituation e
1.1.1 Excerpt from libFreeWRL.h
1.1.2 What’s used in the Linux front-end
1.2 What todo to improve the situation
1.2.1 Naming conventiono vt v ittt e e e e
1.2.2 0 NameSpace v v v v v i e e e e e e e e e e e e e e e e
1.2.3 Graphic system initializationo oL
1.2.4 Bvents e e
1.2.5 OpenGL binding e
1.2.6 An unique function to get/set libFreeWRL variables

1 FreeWRL library specification

1.1 Current situation
1.1.1 Excerpt from libFreeWRL.h

I stripped comments and platform specific code from 1ibFreeWRL. h:

const char xlibFreeWRL_get_version () ;
typedef struct freewrl_ params {

} freewrl_params_t;

extern freewrl_params_t fw_params;

bool initFreeWRL (freewrl_ params_t xparams);
void startFreeWRL (const char =xurl);

void closeFreeWRL();

void terminateFreeWRL () ;

int ConsoleMessage (const char xfmt, ...);

A O L AW W W N

void create_EAI();

void create_MIDIEAI();

void doQuit ();

bool Anchor_ReplaceWorld();

#define VIEWER_NONE 0

#define VIEWER_EXAMINE 1

#define VIEWER_WALK 2

#define VIEWER_EXFLY 3

#define VIEWER_FLY 4

#define VIEWER_YAWPITCHZOOM 5

void set_viewer_type (const int type);
void setGeometry_ from_cmdline (const char xgstring);
void setSnapFile (const charx file);

void setSnapTmp (const char* file);

void setEaiVerbose () ;

void setScreenDist (const char xoptArg);
void setStereoParameter (const char =*optArg);
void setShutter (void);

void setEyeDist (const char xoptArg);
void setAnaglyphParameter (const char *optArg);
void setSideBySide (void) ;

void setStereoBufferStyle (int);

void initStereoDefaults (void);

void setLineWidth (float lwidth);

void setSnapGif();

void setPrintShot ();

#define RUNNINGASPLUGIN (isBrowserPlugin)
extern char *BrowserFullPath;

extern int _fw_pipe, _fw_FD;

extern int _fw_browser_plugin;

extern int isBrowserPlugin;

extern uintptr_t _fw_instance;

extern char xkeypress_string;

void askForRefreshOK() ;

int checkRefresh();

void resetRefresh();

1.1.2 What’s used in the Linux front-end

I gathered the functions really used in the front-end code:

$ nm .libs/freewrl | sed -n '/ U /p’ | sed —-e "s/[\t]+U //’ | grep —-v GLIBC
ConsoleMessage

doQuit

initFreeWRL
initStereoDefaults
libFreeWRL_get_version
setAnaglyphParameter
setEaiVerbose

setEyeDist
setGeometry_from_cmdline
setLineWidth
setScreenDist

setShutter
setSideBySide
setSnapFile
setSnapGif
setSnapTmp
setStereoParameter
startFreeWRL

Doing the same for data structures and global variables:

$ nm .libs/freewrl | sed -n '/ B /p’ |
_fw_browser_plugin

_fw_instance

_fw_pipe

isBrowserPlugin

keypress_string

params

Looking (quickly) into the code, I've found:

in src/bin/main.c

freewrl_ params_t *params = NULL;

1.2 What to do to improve the situation

1.2.1 Naming convention

We have to decide about an enforced naming convention.

Not to say that

gnu_or_open_source_convention

is better than

MicrosoftOrSoCalledPolishNotation

That’s not my intent.

But to make all the FreeWRL code homogeneous.

Personnaly I feel the first more readeable. But feel free to comment / propose.

1.2.2 Namespace

sed

—-e

s/ x|

All symbols that are visible outside must be declare in 1 ibFreeWRL. h.

All platform specific cases should be handle through glue code.

* Data types

\t1*B //'

grep

-v GLIBC

All data types that can be used from outside (thus declared in 1 ibFreeWRL . h) must be consistently named:

1.2.3

typedef struct { } fwl_params_t;
extern int fwl_is_browser_plugin;
extern char xfwl_keypress_string;

instead of:

typedef struct freewrl_params { } freewrl_ params_t;
extern int isBrowserPlugin;
extern char xkeypress_string;

Functions
All 1ibFreeWRL functions that can be called from outside (thus declared in 1ibFreeWRL.h) must be
consistently named:

void fwl_init ();
void fwl_quit();

instead of:

bool initFreeWRL (freewrl_ params_t xparams);
void doQuit ();

MACROs
All macros that can be used from outside (thus declared in 1 ibFreeWRL. h) must be consistently named:

#define FWL_VIEWER_WALK 2
#define FWL_IS_BROWSER_PLUGIN (fwl_is_browser_plugin)

instead of:

#define VIEWER_WALK 2
#define RUNNINGASPLUGIN (isBrowserPlugin)

Graphic system initialization

Current situation
Correct me if I’m wrong.

On Linux the front-end calls the library which initialize itself the X11 display and the GLX context. Thus
the front-end does not have the control here.

On Mac the front-end initialize the Aqua display and the AGL context.

On Windows the situation is somewhat similar to Linux (see fwWindow32.c).
Let’s call the graphical system initialization and variables the context.

A more flexible method

A method to make all platforms use the same codebase for the context.

Beside the fwl_params_t structure that has to be extensively used we ought to create another data type
for context initialization. Let’s call it fwl_context_t for the sake of simplicity.

This data type shall be anonymous, that is generic. Then, each platform will have a specific implementation
of this type. L.e. a fwl_context_x11_t, fwl_context_aqua_t, fwl_context_win_t,...

This type will have two use cases.

The first is when the front-end initializes itself the context. I.e. when it initializes the confext in a way that
fits its specific needs. The front-end do that, then fills in the FreeWRL context with actual values for the
library to access them when this is needed.

The second use case is when the front-end delegate the graphical context initialization to the library. Through
this data structure, the front-end can access the context variables if it needs.

— Example
Linux GLX context and X11 window identifier in the specific fwl_context_x11_t:

typedef struct {

GLXContext ctx;
Window win;

} fwl_context_x11_t;
Windows WGL context and Win32 window identifier in the specfic fwl_context_win_t:

typedef struct {

HGLRC ctx;
HWND win;

} fwl_context_x11_¢t;

1.2.4 Events

* Current situation
All events, coming through a specific graphical system, must be translated into a common, generic event.
Because the current situation is a mess. Each platform has its specificities about event. This prevent us to
improve the user experience. This will be a concern for iPhone and Android. ..

Example of the current situation with the event generated when the window geometry changes. You can see
a lot of differences. ..

Linux

switch (event.type) {
case ConfigureNotify:
setScreenDim (event.xconfigure.width, event.xconfigure.height);
break;

Windows

switch(msg) {

case WM_SIZE:
GetClientRect (hWnd, &rect);
screenWidth = rect.right; /xused in mainloop render_pre setup_project
screenHeight = rect.bottom;
resize_GL(rect.right, rect.bottom);
setScreenDim(rect.right, rect.bottom);
break;

Mac
Where is this ? In the front-end obviously. Then the front-end pass events to the library through the function
handle_aqua().
* How to improve
Create a unique definition for events of all sorts. Let’s call it fwl_event_t for the sake of simplicity.
Create a function to translate an <whatever platform> eventintoa fwl_event_t.
Create a function to eat an event. L.e. to act on the event.
Create a system of callbacks.

Then, two cases are possible:

— the library runs the event loop (it has created the context). Default callbacks are programmed to be
called for each interresting events. The list of default callbacks defines a viewer behavior or an actor.
Le. walk and fly are two different actors.

— the front-end is the master (it initialized the context and controls the event loop). It programs callbacks
for all the events it wants to eat itself. Then pass the event to the library. Which translates the event,
and then to act upon it. The callbacks are called by the library actor active at this time.

1.2.5 OpenGL binding

A great job was accomplished when a lot of OpenGL calls where replaced by macros. That way a compile time
selection of the rendering capabilities is possible. If this is possible, the job has to be finished: i.e. for all OpenGL
calls.

Basically we can see OpenGL-ES as a subset of OpenGL. But for FreeWRL to work correctly OpenGL-ES requires
the use of VBO.

1.2.6 An unique function to get/set libFreeWRL variables

* Purpose

— all variables visible from outside the library that need an accessor (to trap changes, update other vari-
ables, ...)

— all variables exposed to scripting language or external processes (SAI/EAI) that need an accessor

(check type, check value, ...)

e Variable list

— window (type is platform specific)

— OpenGL window (type is platform specific)

— GLX/AGL/WGL context (type is platform specific)
— width

— height

— fullscreen (switch)

— eai (switch)

— verbose (switch)

— collision (switch)

— starting url (world base)

— viewer mode

— snap (switch)

— snap directory

— snap file pattern

— EAI verbose (switch)
— screen dist

— stereo (switch)

— shutter glass (switch)
— eye dist

— anaglyph

— side by side (switch)
— stereo buffer mode (switch)
— line width

— snap gif (not used?)

print shot (can’t understand this?)

browser full path (need rework)
— pipe and all plugin related variables (I rewriting this)
— keypressgiring (need rework)

— ask for refresh, refresh switch or status (need rework)

* Implementation

— anew include file could be created with the list of variables (it will be included in libFreeWRL.h when
this step is finished)

— anew source file could be created with the unique accessor function

	FreeWRL library specification
	Current situation
	Excerpt from libFreeWRL.h
	What's used in the Linux front-end

	What to do to improve the situation
	Naming convention
	Namespace
	Graphic system initialization
	Events
	OpenGL binding
	An unique function to get/set libFreeWRL variables

