| v

ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2013 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 5.9.3.1
March 5 2013

Copyright © 1997-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 5 2013

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.1 Match specifications in Erlang

1 ERTS User's Guide

The Erlang Runtime System Application ERTS.

1.1 Match specifications in Erlang

A "match specification” (match_spec) isan Erlang term describing a small "program” that will try to match something
(either the parameters to a function as used in the er | ang: trace_patt ern/ 2 BIF, or the objects in an ETS
table.). The match_spec in many waysworks like asmall function in Erlang, but isinterpreted/compiled by the Erlang
runtime system to something much more efficient than calling an Erlang function. The match_specisalso very limited
compared to the expressiveness of real Erlang functions.

Match specificationsaregiventotheBlIFer | ang: t race_pat t er n/ 2 to execute matching of function arguments
as well as to define some actions to be taken when the match succeeds (the Mat chBody part). Match specifications
can also be used in ETS, to specify objects to be returned from an et s: sel ect/ 2 call (or other select calls). The
semantics and restrictions differ slightly when using match specifications for tracing and in ETS, the differences are
defined in a separate paragraph below.

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match specifications
are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of exceptions. An exception
(e.g., badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, will generate immediate failure,
while an exception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.1.1 Grammar

A match_spec used in tracing can be described in thisinformal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable |' '

« MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

 BoolFunction::=is_atom|is_float |is_integer |is_list|is_nunber |is_pid]is_port |
is_referencel|is_tuple|is_binary|is function]|is_record]|is_seq trace|'and |
"or' |'"not' |'xor' |andal so|orel se

» ConditionExpression ::= ExprMatchVariable | { GuardFunction} |{ GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

e TermConstruct = {{}} [{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | NonCompositeTerm |
Constant

e NonCompositeTerm ::=term() (not list or tuple)
* Constant ::={const , term()}

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |node |round |size|t] |[trunc|' +
["-"|"*" ["div' |"rem |'"band" |'bor' |"bxor' ["bnot' |'"bsl" |"bsr' |'>" |'>="|'<" |
=< M= == == = | sel f |get _tew

e MatchBody ::=[ActionTerm]

e ActionTerm ::= ConditionExpression | ActionCall

e ActionCdl ::= {ActionFunction} | { ActionFunction, ActionTerm, ...}

e ActionFunction::=set _seq_t oken |get _seq_t oken |nmessage |return_trace |
exception_trace |process_dunp |enabl e_trace |di sable_trace|trace |display|
caller |set_tcw]|silent

A match_spec used in ets can be described in this informal grammar:

e MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' _' [{ MatchHeadPart, ... }

e MatchHeadPart ::= term() | MatchVariable|"' _'

e MatchVariable ::= '$<number>'

e MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=is_atom|is_float |is_integer |is_list]|is_nunber |is pid]|is_port |
is referencel|is_tuple|is binary|is function]|is_record]|is_seq trace]|'and' |

"or' |'"not' |'xor' |andal so|orel se
* ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |* $_' |' $$'

e TermConstruct = {{}} |{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | NonCompositeTerm |
Constant

e NonCompositeTerm ::=term() (not list or tuple)

e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |node |round |si ze|t] |[trunc |’ +
["-"|"*" |"div' |"rem |'band' |'bor' |'bxor' |"bnot' |"bsl' |"bsr' |'>" |'">="|'"<" |
=< IP=rE == == = | sel f o |get _tew

MatchBody ::=[ConditionExpression, ...]

1.1.2 Function descriptions

Functions allowed in all types of match specifications
The different functions allowed in mat ch_spec work like this:

is atom, is float, is_integer, is list, is number, is pid, is port, is reference, is tuple, is_binary, is function: Like
the corresponding guard testsin Erlang, returnt r ue or f al se.

is record: Takes an additional parameter, which SHALL be the result of record_info(size,
<record_type>),likein{is _record, '$1', rectype, record info(size, rectype)}.

'not": Negates its single argument (anything other than f al se givesf al se).

‘and: Returnst r ue if al its arguments (variable length argument list) evaluateto t r ue, else f al se. Evaluation
order is undefined.

‘or': Returnstrue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

1.1 Match specifications in Erlang

andalso: Like' and' , but quits evaluating its arguments as soon as one argument evaluates to something else than
true. Arguments are evaluated | eft to right.

orelse: Like' or ', but quits evaluating as soon as one of its arguments evaluatesto t r ue. Arguments are eval uated
left to right.

'xor': Only two arguments, of which one has to be true and the other false to returnt r ue; otherwise' xor' returns
false.

abs, element, hd, length, node, round, size, tl, trunc, '+', '-', *', 'div, 'rem’, 'band’, 'bor’, 'bxor', 'bnot', 'bdl’, 'bsr’,
S>>t et e, =t =)= = sdf: Work as the corresponding Erlang bif's (or operators). In case of
bad arguments, the result depends on the context. In the Mat chCondi t i ons part of the expression, the test fails
immediately (like in an Erlang guard), but in the Mat chBody, exceptions are implicitly caught and the call results
intheatom' EXI T' .

Functions allowed only for tracing
is seq trace: Returnst r ue if asequential trace token is set for the current process, otherwise f al se.

set_seq token: Workslikeseq_trace: set _t oken/ 2, butreturnst r ue onsuccessand' EXI T' on error or bad
argument. Only allowed in the Mat chBody part and only allowed when tracing.

get_seq token: Works just like seq_t race: get _t oken/ 0, and is only allowed in the Mat chBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one additional message
in the body; subsequent calls will replace the appended message. As aspecia case, { message, fal se} disables
sending of trace messages (‘call' and 'return_to") for this function call, just like if the match_spec had not matched,
which can be useful if only the side effects of the Mat chBody are desired. Another special case is { nessage,
t rue} which sets the default behavior, as if the function had no match_spec, trace message is sent with no extra
information (if no other callsto message are placed before{ nessage, true},itisinfacta"noop").

Takes one argument, the message. Returnst r ue and can only be used in the Mat chBody part and when tracing.

return_trace: Causes ar et ur n_f r omtrace message to be sent upon return from the current function. Takes no
arguments, returnst r ue and can only be used inthe Mat chBody part when tracing. If the processtraceflagsi | ent
isactivether et ur n_f r omtrace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if a match
spec executing this function is used on a perpetual server process, it may only be active for a limited time, or the
emulator will eventually use all memory in the host machine and crash. If thismatch_spec function is inhibited using
thesi | ent processtrace flag tail recursiveness till remains.

exception_trace: Same asreturn_trace, plus; if the traced function exits due to an exception, anexcept i on_from
trace message is generated, whether the exception is caught or not.

process_dump: Returns some textual information about the current process as a binary. Takes no arguments and is
only alowed in the Mat chBody part when tracing.

enable_trace: With one parameter this function turns on tracing like the Erlang cal er | ang: trace(sel f (),
true, [P2]),whereP2 isthe parameter to enabl e_t r ace. With two parameters, the first parameter should
be either a process identifier or the registered name of a process. In this case tracing is turned on for the designated
processin the sameway asinthe Erlang call er | ang: trace(P1, true, [P2]),wherePlisthefirstand P2
is the second argument. The process P1 gets its trace messages sent to the same tracer as the process executing the
statement uses. P1 can not be one of theatomsal | , newor exi st i ng (unless, of course, they are registered names).
P2 cannotbecpu_tinmestanpnor{tracer, }.Returnstr ue and may only be used in the Mat chBody part
when tracing.

disable trace: With one parameter this function disables tracing like the Erlang call er | ang: t race(sel f (),
fal se, [P2]),whereP2 istheparametertodi sabl e_t r ace. Withtwo parametersit workslike the Erlang call

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

erlang:trace(Pl, false, [P2]),wherePl can be either aprocessidentifier or aregistered name and is
given asthefirst argument to the match_spec function. P2 cannot becpu_t i mest anp nor{tracer, _}.Returns
t r ue and may only be used in the Mat chBody part when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively all changes are applied
atomically. The trace flags are the sasme as for er | ang: t race/ 3 not including cpu_t i mest anp but including
{tracer, _}.If atracer isspecified in both lists, thetracer in the enablelist takes precedence. If no tracer is specified
the same tracer asthe process executing the match spec is used. With three parametersto thisfunction thefirst iseither
aprocessidentifier or the registered name of a process to set trace flags on, the second isthe disable list, and the third
isthe enablelist. Returnst r ue if any trace property was changed for the trace target processor f al se if not. It may
only be used in the Mat chBody part when tracing.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undef i ned if the calling
function cannot be determined. May only be used in the Mat chBody part when tracing.

Notethat if a"technically built in function" (i.e. afunction not written in Erlang) istraced, thecal | er functionwill
sometimes return the atom undef i ned. The calling Erlang function is not available during such calls.

display: For debugging purposes only; displaysthe single argument as an Erlang term on stdout, which is seldom what
iswanted. Returnst r ue and may only be used in the Mat chBody part when tracing.

get tcw: Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace _control _word).

The trace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can be
tested and set both from within trace match specifications and with BIFs. This call is only alowed when tracing.

set tcw: Takes one unsigned integer argument, sets the value of the node's trace control
word to the value of the argument and returns the previous value. The same is done by
erl ang: system fl ag(trace_control _word, Value). It is only alowed to use set _t cw in the
Mat chBody part when tracing.

silent: Takes one argument. If the argument ist r ue, the call trace message mode for the current process is set to
silent for this call and all subsequent, i.e call trace messages are inhibited even if { nessage, true} iscaledin
the Mat chBody part for atraced function.

This mode can aso be activated with the si | ent flagtoer| ang: trace/ 3.

If the argument is f al se, the call trace message mode for the current process is set to normal (non-silent) for this
call and all subsequent.

If the argument is neither t r ue nor f al se, the call trace message mode is unaffected.

Notethat all "function calls" haveto betuples, even if they take no arguments. Thevaueof sel f istheatom() sel f,
but the value of { sel f } isthe pid() of the current process.

1.1.3 Variables and literals

Variablestaketheform' $<nunber >' where<nunber > isan integer between 0 (zero) and 100000000 (1e+8), the
behavior if the number is outside these limitsis undefined. In the Mat chHead part, the special variable' " matches
anything, and never gets bound (like _ in Erlang). In the Mat chCondi ti on/ Mat chBody parts, no unbound
variablesareallowed, why' ' isinterpreted asitself (an atom). Variables can only be bound inthe Mat chHead part.
In the Mat chBody and Mat chCondi t i on parts, only variables bound previously may be used. As a special case,
inthe Mat chCondi t i on/ Mat chBody parts, the variable' $_' expands to the whole expression which matched
the Mat chHead (i.e., the whole parameter list to the possibly traced function or the whole matching object in the ets
table) and thevariable' $$' expandstoalist of thevaluesof all boundvariablesinorder (i.e.[' $1',"' $2', ...]).

In the Mat chHead part, al literas (except the variables noted above) are interpreted as is. In the
Mat chCondi ti on/ Mat chBody parts, however, the interpretation is in some ways different. Literals in the

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.1 Match specifications in Erlang

Mat chCondi ti on/ Mat chBody can either be written asis, which works for all literals except tuples, or by using
the special form { const, T}, where T isany Erlang term. For tuple literals in the match_spec, one can aso use
double tuple parentheses, i.e., construct them as a tuple of arity one containing a single tuple, which is the one to be
constructed. The "double tuple parenthesis' syntax is useful to construct tuples from already bound variables, like in
{{'$1', [a,b,'$2']}}.Someexamples may be needed:

Expression Variable bindings Result

{{'$1,$2}} '$1'=3a,'$2'=b {ab}

{congt, {'$1', '$2'}} doesn't matter {'$1', '$2}

a doesn't matter a

3 $1'=]] [l

[$1] $1=]] (1]

[{{a}}] doesn't matter [{a}]

42 doesn't matter 42

"hello" doesn't matter "hello”

$1 doesn't matter 419) (the ASCII value for the character

Table 1.1: Literals in the MatchCondition/MatchBody parts of a match_spec

1.1.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message should be sent,
goes asfollows:

For each tuplein the Mat chExpr essi on list and while no match has succeeded:

e Match the Mat chHead part against the arguments to the function, binding the' $<nunber >' variables
(much likeinet s: mat ch/ 2). If the Mat chHead cannot match the arguments, the match fails.
* Evauateeach Mat chCondi ti on (whereonly ' $<nunber >' variables previously bound in the
Mat chHead can occur) and expect it to return the atom t r ue. As soon as a condition does not evaluate to
t r ue, thematch fails. If any BIF call generates an exception, aso fail.
« « [fthematch_spec isexecuting when tracing:
Evaluate each Act i onTer min the same way asthe Mat chCondi t i ons, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.
» If the match_spec is executed when selecting objects from an ETStable;
Evaluate the expressions in order and return the value of the last expression (typically thereis only one
expression in this context)

1.1.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return value. Usually the Mat chBody contains one single
Condi ti onExpr essi on which defines the return value without having any side effects. Calls with side effects
are not allowed in the ETS context.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

When tracing there is no return value to produce, the match specification either matches or doesn't. The effect when
the expression matches is a trace message rather then a returned term. The Act i onTer nis are executed as in an
imperative language, i.e. for their side effects. Functions with side effects are also allowed when tracing.

In ETS the match head isat upl e() (or asingle match variable) whileitisalist (or asingle match variable) when
tracing.

1.1.6 Examples

Match an argument list of three where the first and third arguments are equal:

"e1, 81,

L, ts1, T,
{ >, "$1', 3}1,
]

Match an argument list of three, where thethird argument isatuple containing argument one and two or alist beginning
with argumentoneandtwo (i.e.[a, b,[a, b, c]] or[a, b, {a, b}]):

[{["$1", "$2', "$3'],

[{orel se,
{1==", "$3', {{"$1' '$2'}}},
{"and',
{'=2=", "$1', {hd, '$3'}},
{'==", "$2'", {hd, {tl, "$3'}}}}}],

[1}]

The above problem may also be solved like this:

[{[$1, "$20, {"$1', "$2}], [1. [1}.
{rrs1, "s20, ["s$1, "$20 | '_'1]1, [], [1}]

Match two arguments where the first is a tuple beginning with alist which in turn begins with the second argument
timestwo (i. e. [{[4.X].y}.2] or [{[8], Y, Z} ,4])

[{[s, "$2'],[{"==, {"*', 2, "$2'}, {hd, {element, 1, '$1'}}}],
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message, else
let the trace message be as is, but set the sequential trace token label to 4711.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.2 How to interpret the Erlang crash dumps

[{['s1, "s1', "$1'],
[{is_nunmber, "'$1'}],
[{message, {process_dunp}}]},

{" ', [1, [{set_seq_token, label, 4711}]}]

Ascan be noted above, the parameter list can be matched against asingleMat chVar i abl eoran' _' . Toreplacethe
whole parameter list with asingle variable is aspecial case. In al other casesthe Mat chHead hasto be a proper list.

Match all objects in an ets table where the first element is the atom 'strider' and the tuple arity is 3 and return the
whole object.

[{{strider," "," '}
[1,
['$_"1}]

Match all objectsin an ets table with arity > 1 and the first element is 'gandalf’, return element 2.

[{ $1,
[{'==", gandal f, {elenent, 1, "$1'}},{'>=",{size, '$1'}, 2}],
[{el ement, 2, $1'}]}]

In the above example, if the first element had been the key, it's much more efficient to match that key in the
Mat chHead part than in the Mat chCondi t i ons part. The search space of the tables is restricted with regards to
the Mat chHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either ‘'merry’ or 'pippin’, return the whole objects.

({{" " merry,” '},
L1,
['$_'1},
", pippin*_"},
L1,
["$_'1}]

Thefunctionet s: t est _ns/ 2 can be useful for testing complicated ets matches.

1.2 How to interpret the Erlang crash dumps

This document describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

Important: For OTP release ROC the Erlang crash dump has had a major facelift. This means that the information in
this document will not be directly applicable for older dumps. However, if you use the Crashdump Viewer tool on
older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out by the
environment variable (whatever that means on the current operating system) ERL_CRASH_DUMP. For acrash dump
to be written, there has to be awritable file system mounted.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 How to interpret the Erlang crash dumps

Crash dumps are written mainly for one of two reasons. either the builtin function er | ang: hal t/ 1 is called
explicitly with astring argument from running Erlang code, or el se the runtime system has detected an error that cannot
be handled. The most usual reason that the system can't handle the error is that the cause is external limitations, such
as running out of memory. A crash dump due to an internal error may be caused by the system reaching limitsin the
emulator itself (like the number of atoms in the system, or too many simultaneous ets tables). Usually the emulator
or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump correctly
isimportant.

The erlang crash dump is areadable text file, but it might not be very easy to read. Using the Crashdump Viewer tool
inthe obser ver application will simplify the task. Thisisan HTML based tool for browsing Erlang crash dumps.

1.2.1 General information

The first part of the dump shows the creation time for the dump, a slogan indicating the reason for the dump, the
system version, of the node from which the dump originates, the compile time of the emulator running the originating
node and the number of atoms in the atom table.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Sogan: <reason> (the word "slogan" has historical
roots). If the system is halted by the BIF er | ang: hal t / 1, the slogan is the string parameter passed to the BIF,
otherwiseit isadescription generated by theemulator or the (Erlang) kernel. Normally the message should be enough to
understand the problem, but neverthel ess some messages are described here. Note however that the suggested reasons
for the crash are only suggestions. The exact reasons for the errors may vary depending on the local applications and
the underlying operating system.

e "<A>:Cannot alocate <N> bytes of memory (of type"<T>")." - The system has run out of memory. <A>is
the allocator that failed to allocate memory, <N> is the number of bytes that <A> tried to allocate, and <T>
is the memory block type that the memory was needed for. The most common case is that a process stores
huge amounts of data. In this case <T> is most often heap, ol d_heap, heap_f r ag, or bi nar y. For more
information on allocators see erts_alloc(3).

e "<A>: Cannot reallocate <N> bytes of memory (of type"<T>")." - Same as above with the exception that
memory was being reallocated instead of being allocated when the system ran out of memory.

e "Unexpected op code N" - Error in compiled code, beamfile damaged or error in the compiler.

e "Module Name undefined”" | "Function Name undefined" | "No function Name:Name/1" | "No function
Name:start/2" - The kernel/stdlib applications are damaged or the start script is damaged.

e "Driver_select called with too large file descriptor N' - The number of file descriptors for sockets exceed 1024
(Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024, but only 1024 sockets/
pipes can be used simultaneously by Erlang (due to limitations in the Unix sel ect call). The number of open
regular filesis not affected by this.

* "Received SIGUSR1" - The SIGUSR1 signal was sent to the Erlang machine (Unix only).

« "Kernel pid terminated (Who) (Exit-reason)" - The kernel supervisor has detected afailure, usually that the
application_controll er hasshut down(Wo =application_controll er,Wy =shut down).
The application controller may have shut down for a number of reasons, the most usual being that the node
name of the distributed Erlang node is already in use. A complete supervisor tree "crash” (i.e., the top
supervisors have exited) will give about the same result. This message comes from the Erlang code and not
from the virtual machineitself. It is always due to some kind of failure in an application, either within OTP or a
"user-written" one. Looking at the error log for your application is probably the first step to take.

e "Init terminating in do_boot ()" - The primitive Erlang boot sequence was terminated, most probably because
the boot script has errors or cannot be read. Thisis usually a configuration error - the system may have been
started with afaulty - boot parameter or with a boot script from the wrong version of OTP.

e "Could not start kernel pid (Who) ()" - One of the kernel processes could not start. Thisis probably dueto
faulty arguments (like errorsin a- conf i g argument) or faulty configuration files. Check that al filesarein

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.2 How to interpret the Erlang crash dumps

their correct location and that the configuration files (if any) are not damaged. Usually there are al so messages
written to the controlling terminal and/or the error log explaining what's wrong.

Other errors than the ones mentioned above may occur, astheer | ang: hal t / 1 BIF may generate any message. If
the message is not generated by the BIF and does not occur in the list above, it may be due to an error in the emulator.
There may however be unusual messages that | haven't mentioned, that still are connected to an application failure.
There is alot more information available, so more thorough reading of the crash dump may reveal the crash reason.
The size of processes, the number of ets tables and the Erlang data on each process stack can be useful for tracking
down the problem.

Number of atoms

Thenumber of atomsin the system at thetime of the crash is shown as Atoms. <number>. Someten thousandsatomsis
perfectly normal, but more could indicatethat the BIFer | ang: | i st _t o_at oni 1 isusedto dynamically generate
alot of different atoms, which is never a good idea.

1.2.2 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang: memory().

1.2.3 Internal table information

Thetags =hash_table:<table name> and =index_table:<table name> presentsinternal tables. These are mostly of
interest for runtime system developers.

1.2.4 Allocated areas

Under the tag =allocated_areas you will find information similar to what you can obtain on a living node with
erlang:system info(allocated areas).

1.2.5 Allocator

Under the tag =allocator:<A> you will find various information about alocator <A>. The information is similar
to what you can obtain on a living node with erlang: system info({allocator, <A>}). For more information see the
documentation of erlang:system info({allocator, <A>}), and the erts_alloc(3) documentation.

1.2.6 Process information

The Erlang crashdump contains alisting of each living Erlang process in the system. The process information for one
process may look like this (line numbers have been added):

The following fields can exist for a process:
=proc:<pid>
Heading, states the process identifier
Sate
The state of the process. This can be one of the following:

e Scheduled - The process was scheduled to run but not currently running (“in the run queue”).
e Waiting - The process was waiting for something (inr ecei ve).

e Running - The process was currently running. If the BIF er | ang: hal t / 1 was called, this was the
process caling it.

e Exiting - The process was on its way to exit.

e Garhing - Thisisbad luck, the process was garbage collecting when the crash dump was written, the rest
of theinformation for this processis limited.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 How to interpret the Erlang crash dumps

e Suspended - The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it
istrying to write to a busy port.

Registered name
The registered name of the process, if any.

Spawned as
The entry point of the process, i.e., what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call
The current function of the process. These fields will not always exist.

Spawned by
The parent of the process, i.e. the process which executed spawn or spawn_| i nk.

Sarted
The date and time when the process was started.

Message queue length
The number of messages in the process message queue.

Number of heap fragments
The number of allocated heap fragments.

Heap fragment data
Size of fragmented heap data. Thisis data either created by messages being sent to the process or by the Erlang
BIFs. This amount depends on so many things that thisfield is utterly uninteresting.

Link list
Processid's of processes linked to this one. May also contain ports. If process monitoring is used, thisfield also
tellsin which direction the monitoring isin effect, i.e., alink being "to" aprocesstells you that the "current"
process was monitoring the other and alink "from" a process tells you that the other process was monitoring
the current one.

Reductions
The number of reductions consumed by the process.

Sack+heap
The size of the stack and heap (they share memory segment)

OldHeap
The size of the "old heap". The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new dataitems and one for the data that have survived two garbage
collections. The assumption (which is almost always correct) is that data that survive two garbage collections
can be "tenured" to a heap more seldom garbage collected, as they will live for along period. Thisisaquite
usual technique in virtual machines. The sum of the heaps and stack together constitute most of the process's
alocated memory.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

Sack
If the system uses shared heap, the fields Sack+heap, OldHeap, Heap unused and OldHeap unused do not
exist. Instead this field presents the size of the process' stack.

Program counter
The current instruction pointer. Thisis only interesting for runtime system developers. The function into which
the program counter points is the current function of the process.

CP
The continuation pointer, i.e. the return address for the current call. Usually useless for other than runtime
system developers. This may be followed by the function into which the CP points, which is the function
calling the current function.

Arity
The number of live argument registers. The argument registers, if any are live, will follow. These may contain
the arguments of the function if they are not yet moved to the stack.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

1.2 How to interpret the Erlang crash dumps

See also the section about process data.

1.2.7 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

1.2.8 ETS tables

This section contains information about all the ETS tablesin the system. The following fields are interesting for each
table:

=ets:<owner>
Heading, states the owner of the table (a process identifier)
Table
Theidentifier for the table. If thetableisananed_t abl e, thisisthe name.
Name
The name of the table, regardless of whether itisanamed_t abl e or not.
Buckets
Thisoccursif thetableisahash table, i.e. if itisnot an or der ed_set .
Ordered set (AVL tree), Elements
Thisoccursonly if thetableisan or der ed_set . (The number of elements is the same as the number of
objectsin the table.)
Objects
The number of objectsin thetable
Words
The number of words (usually 4 bytes/word) allocated to datain the table.

1.2.9 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exists for each timer:

=timer:<owner>
Heading, states the owner of the timer (a process identifier) i.e. the process to receive the message when the
timer expires.
Message
The message to be sent.
Time left
Number of milliseconds left until the message would have been sent.

1.2.10 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>
The name of the node

no_distribution
Thiswill only occur if the node was not distributed.

=visible_node: < channel>
Heading for avisible nodes, i.e. an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node: < channel>
Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the "-
hidden" flag. States the channel number for the node.

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 How to interpret the Erlang crash dumps

=not_connected: <channel>
Heading for a node which is has been connected to the crashed node earlier. References (i.e. process or port
identifiers) to the not connected node existed at the time of the crash. exist. States the channel number for the
node.
Name
The name of the remote node.
Controller
The port which controls the communication with the remote node.
Creation
An integer (1-3) which together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>
Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote_proc>
The remote process was monitoring the local process at the time of the crash.
Remote link: <local_proc> <remote_proc>
A link existed between the local process and the remote process at the time of the crash.

1.2.11 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is summarized.
There is one field for "Current code” which is code that is the current latest version of the modules. There is also a
field for "Old code" which is code where there exists a newer version in the system, but the old version is not yet
purged. The memory usageisin bytes.

All loaded modules are then listed. The following fields exist:

=mod: <module_name>
Heading, and the name of the module.
Current size
Memory usage for the loaded code in bytes
Old size
Memory usage for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info
Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.
Old compilation info
Compilation information (options) for the old code, if any. Thisfield is decoded when looked at by the
Crashdump Viewer tool.

1.2.12 Fun information
In this section, al funs arelisted. The following fields exist for each fun:

=fun

Heading
Module

The name of the module where the fun was defined.
Unig, Index

Identifiers

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.3 How to implement an alternative carrier for the Erlang distribution

Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.2.13 Process Data

For each process there will be at least one =proc_stack and one =proc_heap tag followed by the raw memory
information for the stack and heap of the process.

For each process there will also be a =proc_messages tag if the process message queue is non-empty and a
=proc_dictionary tag if the process' dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou will then be able to see the stack
dump, the message queue (if any) and the dictionary (if any).

The stack dump isadump of the Erlang process stack. Most of the live data (i.e., variables currently in use) are placed
on the stack; thus this can be quite interesting. One has to "guess' what's what, but as the information is symbolic,
thorough reading of this information can be very useful. As an example we can find the state variable of the Erlang
primitive loader on line (5) in the example below:

(1) 3cac44 Return addr Ox13BF58 (<term nate process nornally>)

(2) y(0) ["/view siri_r10_dev/cl earcase/otp/erts/lib/kernel/ebin","/viewsiri_r10_dev/

(3) clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1.0>

(5) vy(2) {state, [], none, #Fun<er| _pri m | oader. 6. 7085890>, undef i ned, #Fun<er| _pri m | oader. 7. 9000327>, #Fun<er| _
(6) vy(3) infinity

When interpreting the datafor aprocess, it is helpful to know that anonymous function objects (funs) are given aname
constructed from the name of the function in which they are created, and a number (starting with 0) indicating the
number of that fun within that function.

1.2.14 Atoms

Now all the atomsin the system are written. Thisisonly interesting if one suspects that dynamic generation of atoms
could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.2.15 Disclaimer

Theformat of the crash dump evolves between releases of OTP. Some information here may not apply to your version.
A description as thiswill never be complete; it is meant as an explanation of the crash dump in general and as a help
when trying to find application errors, not as a complete specification.

1.3 How to implement an alternative carrier for the Erlang distribution

Thisdocument describes how one canimplement onesown carrier protocol for the Erlang distribution. Thedistribution
is normally carried by the TCP/IP protocol. What's explained here is the method for replacing TCP/IP with another
protocol.

The document is a step by step explanation of theuds_di st example application (seated in the kernel applications
exanpl es directory). Theuds_di st application implements distribution over Unix domain sockets and is written

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

for the Sun Solaris 2 operating environment. The mechanisms are however general and appliesto any operating system
Erlang runs on. The reason the C code is not made portable, is simply readability.

Note:

This document was written along time ago. Most of it is still valid, but some things have changed since it was
first written. Most notably the driver interface. There have been some updates to the documentation of the driver
presented in this documentation, but more could be done and are planned for the future. The reader is encouraged
to also read the erl_driver, and the driver_entry documentation.

1.3.1 Introduction

To implement a new carrier for the Erlang distribution, one must first make the protocol available to the Erlang
machine, which involves writing an Erlang driver. There is no way one can use a port program, there has to be an
Erlang driver. Erlang drivers can either be statically linked to the emulator, which can be an alternative when using
the open source distribution of Erlang, or dynamically loaded into the Erlang machines address space, which is the
only aternative if aprecompiled version of Erlang isto be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions called by the
Erlang emulator when data is sent to the driver or the driver has any data available on afile descriptor. As the driver
call-back routines execute in the main thread of the Erlang machine, the call-back functions can perform no blocking
activity whatsoever. The call-backs should only set up file descriptors for waiting and/or read/write available data.
All /O has to be non blocking. Driver call-backs are however executed in sequence, why a global state can safely
be updated within the routines.

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. Thisinterface can then be used by the distribution module which will cover the
details of the protocol from thenet _ker nel . The easiest pathisto mimicthei net andi net _t cp interfaces, but
alot of functionality in those modules need not be implemented. In the example application, only a few of the usual
interfaces are implemented, and they are much simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well defined call-backs, much like agen_ser ver (thereis
no compiler support for checking the call-backs though). The details of finding other nodes (i.e. talking to epmd or
something similar), creating alisten port (or similar), connecting to other nodes and performing the handshakes/cookie
verification are all implemented by this module. There is however a utility module, di st _ut i |, that will do most
of the hard work of handling handshakes, cookies, timers and ticking. Using di st _ut i | makes implementing a
distribution module much easier and that's what we are doing in the example application.

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all of the system is running, but in areal system the distribution
should start very early, why aboot-script and some command line parameters are necessary. Thislast step also implies
that the Erlang code in the interface and distribution modules is written in such away that it can be run in the startup
phase. Most notably there can be no callsto the appl i cat i on module or to any modules not loaded at boot-time
(i.e.only ker nel , st dl i b and the application itself can be used).

1.3.2 The driver

Although Erlang driversin general may be beyond the scope of thisdocument, abrief introduction seemsto bein place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for some specia
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.3 How to implement an alternative carrier for the Erlang distribution

O. An Erlang driver can be dynamically linked (or 1oaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the drivers in OTP are however statically linked to the runtime system, but that's more an
optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header fileer | _dri ver. h
(there is al'so an deprecated version called dr i ver . h, don't use that one.) seated in Erlang's include directory (and
in $ERL_TOP/erts’emul ator/beam in the source code distribution). Refer to that file for function prototypes etc.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation has to be non blocking and all possible situations should
be accounted for in the driver. A non stable driver will affect and/or crash the whole Erlang runtime system, which
is seldom what's wanted.

The emulator callsthe driver in the following situations:

* Whenthedriver isloaded. This call-back has to have a special name and will inform the emulator of what call-
backs should be used by returning apointer to aEr | Dr vEnt r y struct, which should be properly filled in (see
below).

e When aport to the driver is opened (by aopen_por t cal from Erlang). This routine should set up internal
data structures and return an opaque data entity of the type Er | Dr vDat a, which is a data-type large enough to
hold a pointer. The pointer returned by this function will be the first argument to all other call-backs concerning
this particular port. It is usually called the port handle. The emulator only stores the handle and does never try
to interpret it, why it can be virtually anything (well anything not larger than a pointer that is) and can point to
anything if it isapointer. Usually this pointer will refer to a structure holding information about the particular
port, asi t doesin our example.

* When an Erlang process sends data to the port. The datawill arrive as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This call-back returns nothing to the caller, answers are sent to the caller
asmessages (using aroutinecaled dr i ver _out put availableto al drivers). Thereisaso away totalk ina
synchronous way to drivers, described below. There can be an additional call-back function for handling data
that is fragmented (sent in adeep io-list). That interface will get the datain aform suitable for Unix wri t ev
rather than in a single buffer. There is no need for a distribution driver to implement such a call-back, so we
wont.

« When afiledescriptor issignaled for input. This call-back is called when the emulator detects input on
afile descriptor which the driver has marked for monitoring by using the interfacedr i ver _sel ect .
The mechanism of driver select makesit possible to read non blocking from file descriptors by calling
driver _sel ect whenreading is needed and then do the actual reading in this call-back (when reading is
actually possible). Thetypical scenarioisthat dri ver _sel ect iscaled when an Erlang process orders a
read operation, and that this routine sends the answer when datais available on the file descriptor.

* When afile descriptor is signaled for output. This call-back is called in asimilar way as the previous, but when
writing to afile descriptor is possible. The usual scenario isthat Erlang orders writing on afile descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this call-back is called an the
driver can try to send the output. There may of course be queuing involved in such operations, and there are
some convenient queue routines available to the driver writer to use in such situations.

Whenaportis closed, either by an Erlang process or by the driver calling one of thedri ver fai |l ure_XXX
routines. This routine should clean up everything connected to one particular port. Note that when other call-
backscall adri ver fail ure_XXXroutine, this routine will be immediately called and the call-back routine
issuing the error can make no more use of the data structures for the port, as this routine surely has freed al
associated data and closed al file descriptors. If the queue utility available to driver writes is used, this routine
will however not be called until the queue is empty.

e Whenan Erlang process callser | ang: port _contr ol / 3, which isasynchronous interface to drivers. The
control interface is used to set driver options, change states of ports etc. We'll use this interface quite alot in our
example.

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

e When atimer expires. The driver can set timerswith the functiondri ver _set _ti ner. When such timers
expire, a specific call-back function is called. We will not use timersin our example.

e When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver's data structures

The driver used for Erlang distribution should implement areliable, order maintaining, variable length packet oriented
protocol. All error correction, re-sending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big endian 32 bit integer (as Unix domain sockets only can be used
between processes on the same machine, we actually don't need to code the integer in some special endianess, but I'll
do it anyway because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don't need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static ErIDrvEntry
structure.

(1) #include <stdio.h>

(2) #include <stdlib.h>

(3) #include <string.h>

(4) #include <unistd. h>

(5) #include <errno. h>

(6) #include <sys/types. h>
(7) #include <sys/stat.h>

(8) #include <sys/socket.h>
(9) #include <sys/un.h>
(10) #include <fcntl.h>

(11) #define HAVE_U O H
(12) #include "erl _driver.h"

(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds_start(Erl DrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handl e)
(18) static void uds_command(Erl DrvData handl e, char *buff, int bufflen)
(19) static void uds_input (ErlDrvData handl e, ErlDrvEvent event)
(20) static void uds_output (Erl DrvData handl e, ErlDrvEvent event);
(21) static void uds_finish(void);
€

(22) static int uds_control (Erl DrvData handl e, unsigned int conmand
(23) char* buf, int count, char** res, int res_size);

(24) /* The driver entry */
(25) static ErlDrvEntry uds_driver_entry = {

(26) NULL, [* init, NNA*/

(27) uds_start, /* start, called when port is opened */
(28) uds_st op, /* stop, called when port is closed */
(29) uds_conmand, /* output, called when erlang has sent */
(30) uds_i nput, /* ready_i nput, called when input

(31) descriptor ready */

(32) uds_out put, /* ready_output, called when out put
(33) descriptor ready */

(34) "uds_drv", /* char *driver_name, the argunent

(35) to open_port */

(36) uds_fi ni sh, /* finish, called when unl oaded */

(37) NULL, /* void * that is not used (BC) */

(38) uds_control , /* control, port_control callback */
(39) NULL, /* timeout, called on timeouts */

(40) NULL, /* outputv, vector output interface */

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.3 How to implement an alternative carrier for the Erlang distribution

(41) NULL, /* ready_async cal |l back */

(42) NULL, /* flush cal |l back */

(43) NULL, /* call callback */

(44) NULL, /* event call back */

(45) ERL_DRV_EXTENDED_MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED _MAJOR VERSION, /* Mjor version nunber */

(47) ERL_DRV_EXTENDED M NOR_VERSION, /* M nor version nunber */

(48) ERL_DRV_FLAG SOFT_BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */

(51) NULL, /* process_exit callback */

(52) NULL /* stop_sel ect callback */

(53) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for Solaris, we
know that the header ui 0. h exists, why we can define the preprocessor variable HAVE_UI O_H before we include
erl _driver. hatline12. Thedefinition of HAVE_Ul O Hwill makethe /O vectorsused in Erlang's driver queues
to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared ("forward declarations") on line 16 to 23.

The driver structure is similar for statically linked in drivers and dynamically loaded. However some of the fields
should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field (the i ni t function
pointer) isalways|eft blank in adynamically loaded driver, which can be seen on line 26. The NULL online 37 should
always bethere, thefield isno longer used and isretained for backward compatibility. We use no timersin thisdriver,
why no call-back for timers is needed. The out put v field (line 40) can be used to implement an interface similar
to Unix wr i t ev for output. The Erlang runtime system could previously not use out put v for the distribution, but
since erts version 5.7.2 it can. Since this driver was written before erts version 5.7.2 it does not use the out put v
callback. Using the out put v callback is preferred since it reduces copying of data. (We will however use scatter/
gather I/O internally in the driver).

As of erts version 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present at line 48. As of ertsversion 5.7.4 the ERL_DRV_FLAG_SOFT_BUSY flag
is required for drivers that are to be used by the distribution. The soft busy flag implies that the driver is capable of
handling calls to the out put and out put v callbacks even though it has marked itself as busy. This has always
been a regquirement on drivers used by the distribution, but there have previously not been any capability information
available about this. For more information see set_busy port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still function in the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. This can be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein paralel.
When instances safely can execute in parallel it is safe to enable instance specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG_USE PORT_LOCKING as adriver flag. Thisis|eft as an exercise for the reader.

Our defined call-backs thus are:

e uds start, which shall initiate data for a port. We wont create any actual sockets here, just initialize data
structures.

e uds stop, the function called when a port is closed.

e uds_command, which will handle messages from Erlang. The messages can either be plain datato be sent or
more subtle instructions to the driver. We will use this function mostly for data pumping.

e uds input, thisisthe call-back which is called when we have something to read from a socket.
e uds output, thisisthe function called when we can write to a socket.

e uds finish, whichis called when the driver is unloaded. A distribution driver will actually (or hopefully) never
be unloaded, but we include this for completeness. Being able to clean up after oneself is always a good thing.

e uds control, theer | ang: port _control /2 call-back, which will be used alot in thisimplementation.

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

The portsimplemented by thisdriver will operate in two major modes, whichi will call the command and data modes.
In command mode, only passive reading and writing (like gen_tcp:recv/gen_tcp:send) can be done, and this is the
mode the port will bein during the distribution handshake. When the connection is up, the port will be switched to data
mode and all datawill be immediately read and passed further to the Erlang emulator. In data mode, no data arriving
to the uds_command will be interpreted, but just packaged and sent out on the socket. The uds_control call-back will
do the switching between those two modes.

Whilethenet _ker nel informsdifferent subsystemsthat the connection iscoming up, the port should accept datato
send, but not receive any data, to avoid that data arrives from another node before every kernel subsystem is prepared
to handleit. We have athird mode for this intermediate stage, lets call it the intermediate mode.

Lets define an enum for the different types of ports we have:

1) typedef enum {

(

(2 port TypeUnknown, /* An uninitialized port */

(3) port Typeli st ener, /* A listening port/socket */

(4 port TypeAccept or, /* An internedi ate stage when accepting

(5) on a listen port */

(6) port TypeConnect or, /* An internedi ate stage when connecting */
(7 port TypeConmand, /* A connected open port in command node */
(8) port Typel nternedi ate, /* A connected open port in special

(9 hal f active node */

(10) port TypeDat a /* A connectec open port in data node */

(11) } PortType;

Letslook at the different types:

« portTypeUnknown - The type a port has when it's opened, but not actually bound to any file descriptor.

e portTypeListener - A port that is connected to alisten socket. This port will not do especially much, there will
be no data pumping done on this socket, but there will be read data available when oneis trying to do an accept
on the port.

* portTypeAcceptor - Thisisaport that isto represent the result of an accept operation. It is created when one
wants to accept from a listen socket, and it will be converted to a portTypeCommand when the accept succeeds.

* portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the request for a connect
operation and that the socket is really connected to an accepting ditto in the other end. As soon as the sockets
are connected, the port will switch type to portTypeCommand.

e portTypeCommand - A connected socket (or accepted socket if you want) that isin the command mode
mentioned earlier.

* portTypelntermediate - The intermediate stage for a connected socket. There should be no processing of input
for this socket.

e portTypeData - The mode where datais pumped through the port and the uds_command routine will regard
every call as acall where sending iswanted. In this mode all input available will be read and sent to Erlang as
soon asit arrives on the socket, much like in the active mode of agen_t cp socket.

Now letslook at the state we'll need for our ports. One can note that not al fields are used for al types of ports and
that one could save some space by using unions, but that would clutter the code with multiple indirections, soi simply
use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
(2) typedef unsigned int Wrd,;

3) typedef struct uds_data {
4) int fd; /* File descriptor */
5) Erl DrvPort port; /* The port identifier */

—_~

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.3 How to implement an alternative carrier for the Erlang distribution

(6
(7
(8
(9
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

int |ockfd; /* The file descriptor for a lock file in
case of |isten sockets */
Byte creation; /* The creation serial derived fromthe
| ockfile */
Port Type type; /* Type of port */
char *nane; /* Short name of socket for unlink */
Word sent; /* Bytes sent */
Word received; /* Bytes received */
struct uds_data *partner; /* The partner in an accept/listen pair */
struct uds_data *next; /* Next structure in list */
/* The input buffer and its data */
int buffer_size; /* The al |l ocated size of the input buffer */
int buffer_pos; /* Current position in input buffer */
i nt header_pos; /* \Where the current header is in the
i nput buffer */
Byte *buffer; /* The actual input buffer */

(22) } UdsDat a;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as aunion of structures, but the multipleindirectionsin the code
to access afield in such a structure will clutter the code to much for an example.

Let'slook at the fields in our structure:

« fd- Thefile descriptor of the socket associated with the port.

* port - The port identifier for the port which this structure corresponds to. It is needed for most dr i ver _ XXX
calls from the driver back to the emulator.

» lockfd - If the socket is alisten socket, we use a separate (regular) file for two purposes:

We want alocking mechanism that gives no race conditions, so that we can be sure of if another Erlang
node uses the listen socket name we require or if the file is only left there from a previous (crashed)

session.

We storethe creation serial number inthefile. The creation isanumber that should change between different
instances of different Erlang emulators with the same name, so that process identifiers from one emulator
won't be valid when sent to a new emulator with the same distribution name. The creation can be between 0
and 3 (two bits) and is stored in every process identifier sent to another node.

In asystem with TCP based distribution, this datais kept in the Erlang port mapper daemon (epnd), which
is contacted when a distributed node starts. The lock-file and a convention for the UDS listen socket's name
will remove the need for eprd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.

e creation - The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1)
rem 4. This creation value is also written back into the lock-file, so that the next invocation of the emulator will
found our value in thefile.

» type- The current type/state of the port, which can be one of the values declared above.

e name - The name of the socket file (the path prefix removed), which allows for deletion (unl i nk) when the
socket is closed.

e sent - How many bytes that have been sent over the socket. This may wrap, but that's no problem for
the distribution, as the only thing that interests the Erlang distribution is if this value has changed (the
Erlang net_kernel ticker uses this value by calling the driver to fetch it, which is done through the
erl ang: port _control routine).

» received - How many bytes that are read (received) from the socket, used in similar waysassent .

e partner - A pointer to another port structure, which is either the listen port from which this port is accepting a
connection or the other way around. The "partner relation” is always bidirectional.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

e next - Pointer to next structurein alinked list of al port structures. Thislist is used when accepting connections
and when the driver is unloaded.

« buffer_size, buffer_pos, header pos, buffer - datafor input buffering. Refer to the source code (in the kernel/
examples directory) for details about the input buffering. That certainly goes beyond the scope of this
document.

Selected parts of the distribution driver implementation

The distribution driversimplementation is not completely covered in thistext, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver call-back routines can befound intheer | _dri ver . h header file.

The driver initialization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavours of systems). Thisis the only routine that has to have a well defined name. All other
call-backs are reached through the driver structure. The macro to use is named DRI VER_| NI T and takes the driver
name as parameter.

(1) /* Beginning of linked |list of ports */
(2) static UdsData *first_dat a;

(3) DRIVER | N T(uds_drv)

(4 {

(5) first_data = NULL;

(6) return &uds_driver_entry;
(7}

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine will be
caledwhener| _ddl | : 1 oad_dri ver iscaled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In our case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_comand routine.

(1) static ErlDrvData uds_start (Erl DrvPort port, char *buff)
(2 {

(3) UdsDat a *ud;

(4

(5 ud = ALLOC(si zeof (UdsDat a)) ;
(6) ud->fd = -1;

(7 ud- >l ockfd = -1;

(8) ud- >creation = 0;

(9 ud- >port = port;

(10) ud- >t ype = port TypeUnknown;
(112) ud- >name = NULL;

(12) ud- >buf fer_size = 0;

(13) ud- >buf f er _pos = 0;

(14) ud- >header _pos = O;

(15) ud- >buf fer = NULL;

(16) ud- >sent = 0;

(17) ud- >recei ved = 0;

(18) ud- >partner = NULL;

(19) ud->next = first_data;

(20) first_data = ud,;

(21)

(22) return((Erl DrvData) ud);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.3 How to implement an alternative carrier for the Erlang distribution

(23) }

Every dataitem isinitialized, so that no problems will arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

The uds_conmand routine is the routine called when an Erlang process sends data to the port. All asynchronous
commands when the port is in command mode as well as the sending of all data when the port is in data mode is
handled in this9s routine. Let's have alook at it:

(1) static void uds_comuand(Erl DrvData handl e, char *buff, int bufflen)

(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4) if (ud->type == portTypeData || ud->type == port Typelnternedi ate) {
(5 DEBUGF((" Passi ve do_send %", bufflen));

(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */
(7 return;

(8) }

(9 if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type != port TypeUnknown) {

(15) driver_failure_posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds_conmand_| i st en(ud, buf f, buffl en);

(19) return;

(20) case 'A:

(21) if (ud->type != port TypeUnknown) {

(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_conmand_accept (ud, buf f, buffl en);

(26) return;

(27) case 'C:

(28) if (ud->type != port TypeUnknown) {

(29) driver_failure_posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_conmmand_connect (ud, buff, bufflen);

(33) return;

(34) case 'S :

(35) if (ud->type != port TypeCommand) {

(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;

(38) }

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case 'R :

(42) if (ud->type != port TypeCommand) {

(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;

(45) }

(46) do_recv(ud);

(47) return;

(48) defaul t:

(49) return;

(50) }

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

(51) }

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which is a pointer to
the internal port structure, the data buffer and the length of the data buffer. The buffer is the data sent from Erlang (a
list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a, $b, $c] to the port, the buf f | en variable will be 3 ant the buf f variable will
contain{'a',"'b',"'c'} (nonull termination). Usually the first byte is used as an opcode, which isthe casein our
driver to (at least when the port isin command mode). The opcodes are defined as:

e 'L'<socketname>: Create and listen on socket with the given name.

* 'Alistennumber as 32 bit bigendian>: Accept from the listen socket identified by the given identification
number. The identification number is retrieved with the uds_control routine.

e 'C'<socketname>: Connect to the socket named <socketname>.

e 'S<data>: Send the data <data> on the connected/accepted socket (in command mode). The sending is acked
when the data has | eft this process.

* 'R Receive one packet of data.

One may wonder what is meant by "one packet of data" in the'R' command. This driver always sends data packeted
with a4 byte header containing a big endian 32 bit integer that represents the length of the datain the packet. Thereis
no need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. One may
wonder why the header word is coded explicitly in big endian when an UDS socket is local to the host. The answer
simply isthat | see it as a good practice when writing a distribution driver, as distribution in practice usualy cross
the host boundaries.

Online4-8 wehandlethe case wheretheport isin dataor intermediate mode, the rest of the routine handlesthe different
commands. We see (first on line 15) that theroutine usesthedr i ver _fai | ur e_posi x() routineto report errors.
One important thing to remember isthat the failure routines make acall to our uds_st op routine, which will remove
theinternal port data. The handle (and the casted handle ud) istherefore invalid pointers after adri ver _fail ure
call and we should immediately return. The runtime system will send exit signalsto all linked processes.

Theuds_input routine gets called when dataisavailableon afiledescriptor previously passedtothedr i ver _sel ect
routine. Typicaly this happens when aread command is issued and no datais available. Lets look at thedo_r ecv
routine:

1) static void do_recv(UdsData *ud)

(

(2){

(3) int res;

(4 char *i buf;

(5) for(;;) {

(6) if ((res = buffered_read_package(ud, & buf)) < 0) {

7 if (res == NORVAL_READ FAI LURE) {

(8) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9 } else {

(10) driver_failure_eof (ud->port);

(11) }

(12) return;

(13) }

(14) /* Got a package */

(15) if (ud->type == port TypeCommand) {

(16) ibuf[-1] = 'R ; /* There is always roomfor a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver_output (ud->port,ibuf - 1, res + 1);

(20) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(21) return;

(22) } else {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.3 How to implement an alternative carrier for the Erlang distribution

(23) ibuf[-1] = DI ST_MAG C_RECV_TAG [/* XXX */

(24) driver_output (ud->port,ibuf - 1, res + 1);

(25) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(26) }

(27) }

(28) }

The routine tries to read data until a packet is read or the buf f er ed_r ead_package routine returns a
NORMAL_READ_FAI LURE (aninternally defined constant for the module that means that the read operation resulted
in an EWOUL DBLOCK). If the port isin command mode, the reading stops when one package isread, but if it isin data
mode, the reading continues until the socket buffer is empty (read failure). If no more data can be read and more is
wanted (always the case when socket is in data mode) driver_select is called to make the uds_i nput call-back be
called when more datais available for reading.

When the port isin data mode, all data is sent to Erlang in a format that suits the distribution, in fact the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data should be tagged with asingle
byte of 100. Thats what the macro DI ST_MAQ C_RECV_TAGi s defined to. The tagging of datain the distribution
will possibly change in the future.

The uds_i nput routine will handle other input events (like nonblocking accept), but most importantly handle
data arriving at the socket by callingdo_r ecv:

(1) static void uds_input(ErlDrvData handl e, ErlDrvEvent event)

(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4 if (ud->type == port TypelListener) {

(5) UdsData *ad = ud->part ner;

(6) struct sockaddr _un peer;

(7 int pl = sizeof(struct sockaddr _un);

(8) int fd;

(9 if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno != EWOULDBLOCK) {

(112) driver_failure_posix(ud->port, errno);
(12) return;

(13) }

(14) return;

(15) }

(16) SET_NONBLOCKI NG(f d) ;

(17) ad->fd = fd;

(18) ad->partner = NULL;

(19) ad->type = port TypeComand;

(20) ud- >partner = NULL;

(21) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(22) driver_out put (ad->port, "Aok", 3);

(23) return;

(24) }

(25) do_recv(ud);

(26) }

Theimportant line hereisthelast linein the function, thedo_r ead routineis called to handle new input. The rest of
the function handles input on alisten socket, which means that there should be possible to do an accept on the socket,
which is also recognized as aread event.

The output mechanisms are similar to the input. Letsfirst look at thedo_send routine:

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2 {

(3) char header[4];

(4) int witten;

(5 Sysl Ovec iov[2];

(6) Erl | Ovec eio;

(7 Erl DrvBinary *binv[] = {NULL, NULL};

(8) put _packet | engt h(header, bufflen);

(9 iov[0].iov_base = (char *) header;

(10) iov[0].iov_len = 4

(11) iov[1].iov_base = buff;

(12) iov[1].iov_|len = bufflen;

(13) eio.iov = iov;

(14) ei 0. bi nv = binv;

(15) ei 0.vsize = 2;

(16) eio.size = bufflen + 4;

(17) witten = 0;

(18) if (driver_sizeq(ud->port) == 0) {

(19) if ((witten = witev(ud->fd, iov, 2)) == eio.size) {
(20) ud- >sent += written;

(21) if (ud->type == port TypeCommand) {
(22) driver_out put (ud->port, "Sok", 3);
(23) }

(24) return;

(25) } elseif (witten < 0) {

(26) if (errno != EWOULDBLOCK) {

(27) driver_failure_eof (ud->port);
(28) return;

(29) } else {

(30) witten = 0;

(31) }

(32) } else {

(33) ud- >sent += written;

(34) }

(35) /* Enqueue renmining */

(36) }

(37) driver_enqv(ud->port, &eio, witten);

(38) send_out _queue(ud);

(39) }

Thisdriver usesthewr i t ev system call to send data onto the socket. A combination of writev and the driver output
gueuesis very convenient. An ErllOVec structure contains a SyslOVec (which is equivalent to thest r uct i ovec
structure defined in ui 0. h. The ErllOVec also contains an array of ErlDrvBinary pointers, of the same length asthe
number of buffers in the I/O vector itself. One can use this to allocate the binaries for the queue "manually” in the
driver, but we'll just fill the binary array with NULL values (line 7) , which will make the runtime system allocate its
own bufferswhen wecall dri ver _enqgv (line 37).

The routine builds an 1/0 vector containing the header bytes and the buffer (the opcode has been removed and the
buffer length decreased by the output routine). If the queue is empty, we'll write the data directly to the socket (or at
least try to). If any datais|eft, it is stored in the queue and then we try to send the queue (line 38). An ack is sent when
the message is delivered completely (line 22). The send_out _queue will send acks if the sending is completed
there. If the port isin command mode, the Erlang code serializes the send operations so that only one packet can be
waiting for delivery at atime. Therefore the ack can be sent simply whenever the queue is empty.

A short look at the send_out _queue routine:

(1) static int send_out_queue(UdsData *ud)
(2 {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.3 How to implement an alternative carrier for the Erlang distribution

3) for(;;) {

(

(4) int vlen;

(5) Sysl Ovec *tnp = driver_peekqg(ud->port, &vlen);
(6) int wote;

(7 if (tnp == NULL) {

(8) driver_sel ect(ud->port, (ErlDrvEvent) ud->fd, DO WRI TE, 0);
(9 if (ud->type == port TypeCommand) {

(10) driver_out put (ud->port, "Sok", 3);
(11) }

(12) return O;

(13) }

(14) if (vien > 10 VECTOR MAX) {

(15) vl en = | O VECTOR_MAX;

(16) }

(17) if ((wote = witev(ud->fd, tnp, vien)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRI TE, 1);

(21) return O;

(22) } else {

(23) driver_failure_eof (ud->port);

(24) return -1;

(25) }

(26) }

(27) driver_deq(ud->port, wote);

(28) ud- >sent += wrote;

(29) }

(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an SyslOVec). If the l/O
vector istolong (I0_VECTOR_MAX isdefined to 16), the vector length isdecreased (line 15), otherwisethewr i t ev
(line17) call will fail. Writing istried and anything written isdequeued (line 27). If thewritefailswith EWOUL DBL OCK
(note that all sockets are in nonblocking mode), dri ver _sel ect iscalled to make the uds_out put routine be
called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.
Theroutine above are called from the uds__out put routine, which looks like this:

(1) static void uds_output(ErlDrvData handl e, ErlDrvEvent event)
(2 {

(3 UdsData *ud = (UdsData *) handl e;

(4 if (ud->type == port TypeConnector) {

(5) ud- >t ype = port TypeComrand;

(6) driver_sel ect(ud->port, (ErlDrvEvent) ud->fd, DO WRI TE, 0);
(7 driver_out put (ud->port, "Cok", 3);

(8) return;

(9) }

(10) send_out _queue(ud);

(11) }

Theroutineissimple, it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin aconnected state it simply sends the output queue, thisroutineiscalled
when there is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface caled when Erlang calls
erl ang: port_control /3. Thisisthe only interface that can control the driver when it isin data mode and it
may be called with the following opcodes:

e 'C'" Set port in command mode.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

'I': Set port in intermediate mode.
'D": Set port in data mode.

'N': Get identification number for listen port, this identification number is used in an accept command to the
driver, it is returned as a big endian 32 bit integer, which happensto be the file identifier for the listen socket.

'S Get gtatistics, which is the number of bytes received, the number of bytes sent and the number of bytes
pending in the output queue. This datais used when the distribution checks that a connection is alive (ticking).
The statisticsis returned as 3 32 bit big endian integers.

T": Send atick message, which is a packet of length 0. Ticking is done when the port isin data mode, so the
command for sending data cannot be used (besides it ignores zero length packages in command mode). This
isused by theticker to send dummy data when no other traffic is present. Note that it isimportant that the
interface for sending ticksis not blocking. Thisimplementation useser | ang: port _cont r ol / 3 which
does not block the caller. If er | ang: port _command isused, useer | ang: port _conmand/ 3 and pass
[force] asoption list; otherwise, the caller can be blocked indefinitely on abusy port and prevent the system
from taking down a connection that is not functioning.

'R': Get creation number of listen socket, which is used to dig out the number stored in the lock file to
differentiate between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer is the provided one is
to small. Hereisthe code for uds_control :

1) static int uds_control (Erl DrvData handl e, unsigned int comrand,
2) char* buf, int count, char** res, int res_size)

3) {

4) /* Local macro to ensure |arge enough buffer. */

5) #defi ne ENSURE(N) \
6) do { \
7) if (res_size < N { \
8) *res = ALLOC(N); \
9) } \
10) } while(0)
(112) UdsData *ud = (UdsData *) handl e;
(12) switch (command) {
(13) case 'S :
(14) {
(15) ENSURE(13) ;
(16) **res = 0;
(17) put _packet I ength((*res) + 1, ud->received);
(18) put _packet | ength((*res) + 5, ud->sent);
(19) put _packet | ength((*res) + 9, driver_sizeq(ud->port));
(20) return 13;
(21) }
(22) case 'C:
(23) if (ud->type < portTypeConmand) {
(24) return report_control _error(res, res_size, "einval");
(25) }
(26) ud- >t ype = port TypeComrand;
(27) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, O0);
(28) ENSURE(1) ;
(29) **res = 0;
(30) return 1;
(31) case 'I|':
(32) if (ud->type < portTypeConmand) {
(33) return report_control _error(res, res_size, "einval");
(34) }
(35) ud- >t ype = port Typel nt er nedi at e;
(36) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, O0);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.3 How to implement an alternative carrier for the Erlang distribution

(37) ENSURE(1) ;

(38) **res = 0;

(39) return 1;

(40) case 'D:

(41) if (ud->type < port TypeCommand) {

(42) return report_control _error(res, res_size, "einval");
(43) }

(44) ud- >t ype = port TypeDat a;

(45) do_recv(ud);

(46) ENSURE(1) ;

(47) **res = 0;

(48) return 1;

(49) case 'N:

(50) if (ud->type != portTypeListener) {

(51) return report_control _error(res, res_size, "einval");
(52) }

(53) ENSURE(5) ;

(54) (*res)[0] = O;

(55) put _packet length((*res) + 1, ud->fd);

(56) return 5;

(57) case 'T': [* tick */

(58) if (ud->type != portTypeData) {

(59) return report_control _error(res, res_size, "einval");
(60) }

(61) do_send(ud,"", 0);

(62) ENSURE(1) ;

(63) **res = 0;

(64) return 1;

(65) case 'R :

(66) if (ud->type != portTypeListener) {

(67) return report_control _error(res, res_size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = O;

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) defaul t:

(74) return report_control _error(res, res_size, "einval");
(75) }

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We switch on the
command and take actions, there is not much to say about this routine. Worth noting is that we always has read select
active on a port in data mode (achieved by calling do_r ecv on line 45), but turn off read selection in intermediate
and command modes (line 27 and 36).

Therest of the driver ismore or less UDS specific and not of general interest.

1.3.3 Putting it all together

Totest thedistribution, onecanusethenet _ker nel : st art/ 1 function, whichisuseful asit startsthe distribution
on a running system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takes a
list as its single argument. The lists first element should be the node name (without the " @hostname™) as an atom,
and the second (and last) element should be one of the atoms shor t nanes or | ongnanes. In the example case
shor t nanes ispreferred.

For net kernel to find out which distribution module to use, the command line argument - pr ot o_di st isused. The
argument is followed by one or more distribution module names, with the "_dist" suffix removed, i.e. uds_dist as a
distribution moduleis specified as- pr ot o_di st uds.

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 The Abstract Format

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option - no_epnd, which
will make Erlang skip the epmd startup, both as a OS process and as an Erlang ditto.

The path to the directory where the distribution modul es reside must be known at boot, which can either be achieved by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol (in the uds_dist protocoal, it's only the uds_dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an - sname <nane> flag is present at the
command line, here follows two examples:

$ erl -pa $ERL_TOP/|i b/ kernel / exanpl es/ uds_di st/ ebin -proto_dist uds -no_epnd
Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with *"G

1> net _kernel : start ([bi ng, shortnanes]).
{ ok, <0. 30. 0>}

(bi ng@ador) 2>

$ erl -pa $ERL_TOP/Ii b/ kernel / exanpl es/ uds_di st/ ebin -proto_dist uds \
-no_epmd -sname bong
Erl ang (BEAM emnul ator version 5.0

Eshell V5.0 (abort with ~"Q
(bong@ador) 1>

One can utilize the ERL_FLAGS environment variable to store the complicated parametersin:

$ ERL_FLAGS=-pa $ERL_TOP/ | i b/ ker nel / exanpl es/ uds_di st/ ebin \
-proto_dist uds -no_epnd

$ export ERL_FLAGS

$ erl -snane bang

Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with ~QG
(bang@ador) 1>

The ERL_FLAGS should preferably not include the name of the node.

1.4 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract format. Functionsdealing with such parsetreesareconpi | e: for s/ [1, 2]
and functionsin the modulesepp, erl _eval ,erl _lint,erl _pp,erl_parse,andi 0. They areaso used as
input and output for parse transforms (see the module conpi | e).

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(CO) .

Theword LI NE below representsaninteger, and denotesthe number of thelinein the sourcefilewherethe construction
occurred. Several instances of LI NE in the same construction may denote different lines.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.4 The Abstract Format

Since operators are not termsin their own right, when operators are mentioned bel ow, the representation of an operator
should be taken to be the atom with a printname consisting of the same characters as the operator.

1.4.1 Module declarations and forms
A module declaration consists of a sequence of forms that are either function declarations or attributes.

e |f Disamodule declaration consisting of theformsF_1, ..., F_k,thenRep(D) =[Rep(F_1), ...,
Rep(F_k)].
e If Fisan attribute - nodul e(Mod) , then Rep(F) ={at t ri but e, LI NE, nodul e, Mbd}.

e |If Fisanattribute- export ([Fun_1/A 1, ..., Fun_k/A Kk]),thenRep(F) =
{attribute, LI NE, export,[{Fun_1,A 1}, ..., {Fun_k, A k}1}.

e If Fisanattribute-i nport (Mod, [Fun_1/A 1, ..., Fun_k/ A k]),thenRep(F) =
{attribute, LINE, inport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}1}}.

« If Fisanattribute- conpi | e(Opti ons) , then Rep(F) ={attri bute, LI NE, conpi |l e, Opti ons}.
e |IfFisanattribute-file(File, Line),thenRep(F)={attribute, LINE file,{File, Line}}.

» If Fisarecord declaration-record(Name, {V_1, ..., V_k}),thenRep(F)=

{attribute, LINE, record, {Nane, [Rep(V_1), ..., Rep(V_k)]}}.ForRep(V), seebelow.
e If Fisawildattribute- A(T) ,thenRep(F) ={attri bute, LI NE, A T}.
 If FisafunctiondeclarationNanme Fc_1 ; ... ; Name Fc_k,whereeach Fc_i isafunction clause

with a pattern sequence of the same length Ari t y, then Rep(F) ={f uncti on, LI NE, Nane, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

Record fields

Each field in arecord declaration may have an optional explicit default initializer expression

« IfVisAthenRep(V)={record_field, LI NE Rep(A)}.

e IfVisA = E thenRep(V)={record_field,LINE Rep(A), Rep(E)}.

Representation of parse errors and end of file

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
erl _par se andepp) may containtuples{ error, E} and{war ni ng, W, denoting syntactically incorrect forms
and warnings, and { eof , LI NE} , denoting an end of stream encountered before a complete form had been parsed.

1.4.2 Atomic literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

e If L isaninteger or character literal, then Rep(L) ={i nt eger, LI NE, L}.

o IfLisafloat literal, then Rep(L) ={f | oat, LI NE, L}.

e |If Lisastring literal consisting of the charactersC 1, ..., C k, thenRep(L) ={stri ng, LI NE,
[C1, ..., CK]}.

o If Lisanatom literal, then Rep(L) = { at om LI NE, L}.

Notethat negative integer and float literals do not occur as such; they are parsed as an application of the unary negation
operator.

1.4.3 Patterns

If Ps is a sequence of patterns P_1, ..., P_k,then Rep(Ps) =[Rep(P_1), ..., Rep(P_k)]. Such
sequences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 The Abstract Format

If Pisan atomic literal L, then Rep(P) = Rep(L).

If Pisacompound patternP_1 = P_2,then Rep(P) ={ mat ch, LI NE, Rep(P_1), Rep(P_2)}.

If Pisavariable pattern V, then Rep(P) ={ var, LI NE, A}, where A is an atom with a printname consisting of
the same charactersas V.

If Pisauniversal pattern _, then Rep(P) ={var, LINE, ' _'}.

If Pisatuplepattern{P_1, ..., P_k},thenRep(P)={tuple, LINE [Rep(P_1), ...,
Rep(P_k)1}.

If Pisanil pattern[], then Rep(P) ={ ni | , LI NE} .

If Pisaconspattern[P_h | P_t],thenRep(P) ={cons, LI NE, Rep(P_h), Rep(P_t)}.

If Eisabinary pattern<<P_1: Si ze_1/TSL_1, ..., P_k: Size_k/ TSL_k>>, then Rep(E)
={bin, LINE, [{bin_el ement, LI NE, Rep(P_1), Rep(Si ze_1), Rep(TSL_1)}, ,
{bin_el ement, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k) }1}. For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) is represented by def aul t .

If PisP_1 Op P_2,where Op isabinary operator (thisis either an occurrence of ++ applied to aliteral string
or character list, or an occurrence of an expression that can be evaluated to a number at compile time), then
Rep(P) ={ op, LI NE, Op, Rep(P_1), Rep(P_2)}.

If PisOQp P_0, where Op isaunary operator (thisis an occurrence of an expression that can be evaluated to a
number at compile time), then Rep(P) = { op, LI NE, Op, Rep(P_0) }.

If Pisarecord pattern #Nane{ Fi el d_1=P_1, ..., Fi el d_k=P_k},then Rep(P) =

{record, LI NE, Narme, [{record_field, LINE Rep(Field_1),Rep(P_1)}, ...,
{record_field, LINE Rep(Field_k), Rep(P_k)}1}.

If Pis#Nane. Fi el d, then Rep(P) ={r ecord_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Pis(P_0),then Rep(P) = Rep(P_0), i.e, patterns cannot be distinguished from their bodies.

Note that every pattern has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.4.4 Expressions
A body B isasequence of expressionsE 1, ..., E k,andRep(B)=[Rep(E 1), ..., Rep(E K)].

An expression E is one of the following alternatives:

If Pisan atomic litera L, then Rep(P) = Rep(L).

IfEisP = E_O, then Rep(E) ={ mat ch, LI NE, Rep(P), Rep(E_0)}.

If EisavariableV, then Rep(E) = { var, LI NE, A}, where Aisan atom with a printname consisting of the
same charactersas V.

If Eisatupleskeleton{E_1, ..., E k},thenRep(E)={tuple, LINE, [Rep(E_ 1), ...,
Rep(E_k)]}.

If Eis[],thenRep(E) ={ni |, LI NE}.

If Eisaconsskeleton[E_ h | E t],thenRep(E)={cons, LI NE, Rep(E_h), Rep(E_t)}.

If Eisabinary constructor <<V_1: Si ze_1/TSL_1, ..., V_k:Size_k/ TSL_k>>, then Rep(E)
={bin,LINE, [{bin_el ement, LINE, Rep(V_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_el enent, LI NE, Rep(V_Kk), Rep(Si ze_k), Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
IfEiISE_1 Op E_2, where Op isahbinary operator, then Rep(E) =

{op, LINE, Op, Rep(E_1), Rep(E_2)}.

If EisOp E_0, where Op isaunary operator, then Rep(E) ={ op, LI NE, Op, Rep(E_0) }.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.4 The Abstract Format

o |IfEis#Nane{Field_1=E 1, ..., Field_k=E Kk}, thenRep(E) =
{record, LI NE, Narme, [{record_field, LINE Rep(Field_1),Rep(E_1)}, ...,
{record_field, LINE Rep(Field_k), Rep(E_k)}1}.
e |IfEisE O#Nane{Field 1=E 1, ..., Field k=E k},then Rep(E) =
{record, LI NE, Rep(E_0), Naneg,
[{record field, LINE, Rep(Field 1),Rep(E_ 1)}, ...,
{record field,LINE Rep(Field k), Rep(E_k)}1}.
« If Eis#Nane. Fi el d, then Rep(E) ={r ecor d_i ndex, LI NE, Nane, Rep(Fi el d)}.
« |IfEisE O#Nane. Fi el d,thenRep(E) ={record_field, LINE, Rep(E_0), Nane, Rep(Field)}.
e |IfEiscatch E_O,thenRep(E)={' catch', LI NE, Rep(E_0)}.

« IfEISE_ O(E_1, ..., E_k),thenRep(E)={call,LINE Rep(E_O),[Rep(E_1), ...,
Rep(E k)1}.

e« IfEISE MEO(E 1, ..., E K),thenRep(E)={call, LI NE,
{renote, LINE, Rep(E n),Rep(E 0)},[Rep(E_1), ..., Rep(E Kk)]}.

* IfEisalistcomprehension[E O || W1, ..., WKk],whereeachW. i isagenerator or afilter, then
Rep(E) ={I c, LI NE, Rep(E_0), [Rep(W.1), ..., Rep(WKk)]}.ForRep(W), seebelow.

e |If Eisabinary comprehension<<gE 0 || W1, ..., Wk>> whereeachW i isagenerator or afilter,
then Rep(E) ={ bc, LI NE, Rep(E_0), [Rep(W1), ..., Rep(WKk)]}.ForRep(W), seebelow.

« |IfEisbegi n B end, whereBisabody, then Rep(E) ={ bl ock, LI NE, Rep(B)}.

« IfEisif Ic_1; ... ; lc_k end,whereeachlc_i isanif clausethenRep(E) ={"if"', LI NE,
[Rep(lc_1), ..., Rep(lc_k)]}.

e |IfEiscase EO of Cc_1; ... ; Cc_k end,whereE OisanexpressionandeachCc i isacase
clausethen Rep(E) ={' case', LI NE, Rep(E 0),[Rep(Cc_1), ..., Rep(Cc_k)]}.

e |IfEistry B catch Tc_1 ; ... ; Tc_k end,whereBisabody and each Tc_i isacatch clause
thenRep(E)={"try' ,LINE, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_Kk)].,I[1}.

e |IfEistry Bof Cc_1; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end,whereBisabody,
each Cc_i isacaseclauseandeach Tc_j isacatch clausethen Rep(E) ={'try', LI NE, Rep(B),
[Rep(Cc_1), ..., Rep(Cc_Kk)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}.

« |IfEistry B after A end,whereBandAarebodiesthenRep(E)={"'try', LI NE, Rep(B),[],
[].Rep(A)}.

« |IfEistry Bof Cc_1; ... ; Cc_k after A end,whereB andA areabodiesand each
Cc_i isacaseclausethenRep(E) ={'try', LI NE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[].Rep(A)}.

e |IfEistry B catch Tc_1 ; ... ; Tc_k after A end,whereBandA arebodiesand

each Tc_i isacatchclausethen Rep(E) ={ ' try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A)}.

e |IfEistry Bof Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n after A end,
where B and A are abodies, each Cc_i isacase clause and each Tc_j isacatch clause then Rep(E)
={"try',LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,
Rep(Tc_n)], Rep(A)}.

e |IfEisreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacaseclausethen Rep(E) =
{'receive',LINE [Rep(Cc_1), ..., Rep(Cc_Kk)]}.

e |IfEisreceive Cc_1; ... ; Cc_k after E O -> B t end,whereeachCc_i isacaseclause,

E Oisanexpressionand B t isabody, then Rep(E) ={' recei ve' , LI NE, [Rep(Cc_1),
Rep(Cc_k)], Rep(E_0), Rep(B_t)}.
e |IfEisfun Nane / Arity,thenRep(E)={'fun', LINE {function, Nane, Arity}}.

32| Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 The Abstract Format

If Eisfun Mbdul e: Name/ Arity,thenRep(E) ={' fun', LI NE,

{function, Rep(Mdul), Rep(Nane), Rep(Arity)}}. (Beforethe R15 release: Rep(E) =
{'fun', LINE, {function, Modul e, Nane, Arity}}.)

IfEisfun Fc_1 ; ... ; Fc_k endwhereeachFc_i isafunction clause then Rep(E) =
{'fun',LINE {clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}.

If Eisquery [E O || W1, ..., WKk] end,whereeachW i isagenerator or afilter, then Rep(E)
={"query',LINE {lc, LINE, Rep(E_0),[Rep(W1), ..., Rep(WKk)]}}.ForRep(W), see
below.

If EisE_O. Fi el d, aMnesiarecord access inside a query, then Rep(E) =

{record_field, LINE Rep(E_0), Rep(Field)}.

IfEis(E_O),thenRep(E) =Rep(E_0),i.e, parenthesized expressions cannot be distinguished from their
bodies.

Generators and filters

When W is a generator or afilter (in the body of alist or binary comprehension), then:

If Wisagenerator P <- E, where P isapattern and E is an expression, then Rep(W) =
{generate, LI NE, Rep(P), Rep(E)}.

If Wisagenerator P <= E, where P isapattern and E is an expression, then Rep(W) =
{b_generate, LINE, Rep(P), Rep(E) }.

If Wisafilter E, which is an expression, then Rep(W) = Rep(E) .

Binary element type specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS 1 - ... - TS k. Rep(TSL)
=[Rep(TS_1), ..., Rep(TS k)].

When TSis atype specifier for abinary element, then:

If TSisanatom A, Rep(TS) = A
If TSisacouple A: Val ue where Aisan atom and Val ue isaninteger, Rep(TS) ={ A, Val ue}.

1.4.5 Clauses

There are function clauses, if clauses, case clauses and catch clauses.

A clause Cisone of the following alternatives:

If Cisafunctionclause(Ps) -> BwherePs isapattern sequence and B is a body, then Rep(C) =

{cl ause, LI NE, Rep(Ps),[], Rep(B)}.

If Cisafunctionclause(Ps) when Gs -> BwherePs isapattern sequence, Gs isaguard sequence
and B isabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

If Cisanif clauseGs - > Bwhere Gs isaguard sequence and B is abody, then Rep(C) = { cl ause, LI NE,
[].Rep(Gs),Rep(B)}.

If Cisacaseclause P - > Bwhere Pisapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep(P)],[].Rep(B)}.

If CisacaseclauseP when Gs -> BwherePisapattern, Gs isaguard sequence and B is a body, then
Rep(C) ={cl ause, LINE, [Rep(P)], Rep(Gs), Rep(B)}.

If Cisacatch clause P - > Bwhere Pisapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep({throw, P, _})],[],Rep(B)}.

If Cisacatchclause X : P -> Bwhere Xisan atomic literal or avariable pattern, Pisapatternand Bisa
body, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].,[], Rep(B)}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.4 The Abstract Format

 IfCisacachclauseP when Gs -> BwhereP isapattern, Gs isaguard sequence and B is a body, then
Rep(C) ={cl ause, LI NE, [Rep({throw, P, _})], Rep(Gs), Rep(B)}.

« IfCisacachclauseX : P when Gs -> Bwhere Xisanatomic literal or avariable
pattern, P is apattern, Gs isaguard sequence and B is abody, then Rep(C) ={ cl ause, LI NE,
[Rep({X P, _})],Rep(Gs),Rep(B)}.

1.4.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G 1), ..., Rep(GKk)].
If the guard sequenceis empty, Rep(Gs) =[] .

A guard G is a nonempty sequence of guardtests & _ 1, ..., G _k,and Rep(G) =[Rep(G& _1),
Rep(& _Kk)].

A guardtest & isone of the following alternatives:

e |If Gtisanatomic literal L, then Rep(Gt) = Rep(L).

* If Gtisavariable pattern V, then Rep(Gt) = { var, LI NE, A}, where A is an atom with a printname consisting
of the same charactersas V.

e« IfGtisatupleskeleton{G& 1, ..., & _k},thenRep(Gt)={tuple, LINE [Rep(& _1), ...,
Rep(& _k)1}.

o IfGtis[],thenRep(Gt) ={nil, LI NE}.

e |IfGtisaconsskeleton[& _h | G _t],then Rep(Gt) ={cons, LINE, Rep(&G _h), Rep(& _t)}.

e If Gtisahinary constructor <<G _1: Size_1/TSL_1, ..., G _k: Size_k/ TSL_k>>, then Rep(Gt)
={bin,LINE, [{bin_el ement, LINE, Rep(& _1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_el enent, LI NE, Rep(& _k), Rep(Si ze_k), Rep(TSL_k) }]} . For Rep(TSL), see above. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .

e IfGtis@_1 Op & _2,where Op isabinary operator, then Rep(Gt) =
{op, LINE, Op, Rep(& _1),Rep(G _2)}.

e IfGtisOp & _0, where Op isaunary operator, then Rep(Gt) ={ op, LI NE, Op, Rep(& _0)}.

o IfGtis#Nane{Field_1=G _1, ..., Field_k=G_k},thenRep(E) =
{record, LI NE, Nanme, [{record_field, LINE Rep(Field_1),Rep(&_1)},
{record_field, LINE Rep(Field_Kk), Rep(&_k)}1}.

e IfGtis#Nane. Fi el d, then Rep(Gt) ={recor d_i ndex, LI NE, Nanme, Rep(Fi el d)}.

« IfGtis@& _O0#Nane. Fi el d, then Rep(Gt) =
{record_field,LINE Rp(&_0), Nane, Rep(Field)}.

e IfGtisA(G_1, ..., & _k),whereAisanatom,then Rep(Gt) ={cal | , LI NE, Rep(A),
[Rep(G_1), ..., Rep(&_Kk)]}.
e IfGtisAMA(G 1, ..., G _k),whereA mistheatomer| ang and Aisan atom or an operator,

then Rep(Gt) ={cal | , LI NE, {renot e, LI NE, Rep(A M, Rep(A },[Rep(& _1), ...,
Rep(& _k)1}.

e IfGtis{AmA(&_1, ..., &_Kk),whereA mistheatomer| ang and Aisan atom or an operator,
then Rep(Gt) ={cal |, LI NE, Rep({Am A}),[Rep(& _1), ..., Rep(&_k)1}.

e IfGtis(G _0),then Rep(Gt) = Rep(& _0), i.e., parenthesized guard tests cannot be distinguished from
their bodies.

Note that every guard test has the same source form as some expression, and is represented the same way as the
corresponding expression.

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 tty - A command line interface

1.4.7 The abstract format after preprocessing

The compilation option debug_i nf o can be given to the compiler to have the abstract code stored in the
abstract _code chunk inthe BEAM file (for debugging purposes).

In OTP R9C and later, theabst ract _code chunk will contain
{raw_abstract_v1, Abstract Code}
where Abst r act Code isthe abstract code as described in this document.

In releases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM file. Thefirst
element of the tuple would be either abst ract _v1 (R7B) or abstract _v2 (R8B).

1.5 tty - A command line interface

t t y isasimple command line interface program where keystrokes are collected and interpreted. Completed lines are
sent to the shell for interpretation. There is a simple history mechanism, which saves previous lines. These can be
edited before sending them to the shell. t t vy is started when Erlang is started with the command:

erl
t t y operatesin one of two modes:

« normal mode, in which lines of text can be edited and sent to the shell.

o shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell break mode is
started by typing Control G.

1.5.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line editing
commands are supported. The following is acomplete list of the supported line editing commands.

Note: The notation C- a means pressing the control key and the letter a simultaneously. M f means pressing the ESC
key followed by the letter f .

Key Sequence Function

C-a Beginning of line
C-b Backward character
M-b Backward word
Cd Delete character
M-d Delete word

C-e End of line

C-f Forward character
M-f Forward word

C-g Enter shell break mode
C-k Kill line

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to implement a driver

CH Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer
C-t Transpose characters

C-y Insert previoudly killed text

Table 5.1: tty text editing

1.5.2 Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

» Kill or suspend the current shell
» Connect to a suspended shell
e Start anew shell

1.6 How to implement a driver

Note:

This document was written a long time ago. A lot of it is still interesting since it explains important concepts,
but it was written for an older driver interface so the examples do not work anymore. The reader is encouraged
toread erl_driver and the driver_entry documentation.

1.6.1 Introduction

This chapter tells you how to build your own driver for erlang.

A driver in Erlang is alibrary written in C, that is linked to the Erlang emulator and called from erlang. Drivers can
be used when C is more suitable than Erlang, to speed things up, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on windows), or statically loaded, linked
with the emulator when it iscompiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this chapter.

When a driver is loaded it is executed in the context of the emulator, shares the same memory and the same thread.
Thismeansthat all operationsin the driver must be non-blocking, and that any crash in the driver will bring the whole
emulator down. In short: you have to be extremely careful!

1.6.2 Sample driver

Thisisasimple driver for accessing a postgres database using the libpg C client library. Postgresis used because it's
free and open source. For information on postgres, refer to the website www.postgr es.or g.

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

1.6 How to implement a driver

Thedriver issynchronous, it usesthe synchronouscalls of theclient library. Thisisonly for simplicity, and isgenerally
not good, since it will halt the emulator while waiting for the database. This will be improved on below with an
asynchronous sample driver.

Thecodeisquitestraight-forward: all communication between Erlang and thedriver isdonewithport _control / 3,
and the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. This is defined with amacro, DRI VER_| NI T,
and returns a pointer to a C st ruct containing the entry points that are called from the emulator. The st r uct

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

Thest art entry is called when the driver is opened as a port with open_por t/ 2. Here we alocate memory for
auser data structure. This user data will be passed every time the emulator calls us. First we store the driver handle,
because it is needed in subsequent calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return allocated driver binaries, by setting the flag PORT_CONTROL_FLAG BI NARY, calling
set _port_control flags. (Thisis because we don't know whether our data will fit in the result buffer of
cont r ol , which has adefault size set up by the emulator, currently 64 bytes.)

Thereisanentry i ni t whichiscalled when the driver isloaded, but we don't use this, sinceit is executed only once,
and we want to have the possibility of several instances of the driver.

Thest op entry is called when the port is closed.

The control entry iscaled from the emulator when the Erlang code calls port _cont r ol / 3, to do the actual
work. We have defined a ssimple set of commands: connect to login to the database, di sconnect to log out
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in
erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobi nary_t o_t er miscaled in Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In our simple example, we only provide
start,stopandcontrol.

/* Driver interface declarations */

static ErlDrvData start(Erl DrvPort port, char *command);

static void stop(Erl DrvData drv_data);

static int control (Erl DrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static Erl DrvEntry pg_driver_entry = {

NULL, /[* init */

start,

st op,

NULL, /* output */

NULL, /* ready_i nput */
NULL, /* ready_out put */
"pg_sync", /* the nane of the driver */
NULL, /* finish */

NULL, /* handl e */
control,

NULL, /* tineout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.6 How to implement a driver

We have a structure to store state needed by the driver, in this case we only need to keep the database connection.

typedef struct our_data_s {
PGconn* conn;
} our_data_t;

These are control codes we have defined.

/* Keep the follow ng definitions in alignment with the
* defines in erl_pg_sync.erl
*/

#def i ne DRV_CONNECT '
#def i ne DRV_DI SCONNECT '
#defi ne DRV_SELECT '

(2R eNe]

This just returns the driver structure. The macro DRI VER_| NI T defines the only exported function. All the other
functions are static, and will not be exported from the library.

/* I NI TI ALI ZATI ON AFTER LOADI NG */

/*

* This is the init function called after this driver has been | oaded.
* |t must *not* be declared static. Must return the address to

* the driver entry.

*/
DRI VER | NI T(pg_dr v)
{
return &pqg_driver_entry;
}

Herewe do someinitiaization, st art iscalled fromopen_por t . Thedatawill be passedtocont r ol and st op.

/* DRI VER | NTERFACE */
static ErlDrvData start(Erl DrvPort port, char *conmmand)

{
our_data_t* data;
data = (our_data_t*)driver_alloc(sizeof(our_data_t));
dat a- >conn = NULL;
set _port_control _flags(port, PORT_CONTROL_FLAG Bl NARY) ;
return (Erl DrvDat a)dat a;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do_disconnect(our_data t* data, ei_x_buff* x);

38| Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

static void stop(ErlDrvData drv_data)

{
our _data_t* data = (our_data_t*)drv_data;
do_di sconnect (data, NULL);
driver_free(data);

}

We use the binary format only to return data to the emulator; input data is a string paramater for connect and

sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new_bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, since the postgres client library wants that. ei _x_t o_new _bi nary
takesanei _x_buf f buffer and allocates a binary and copiesthe datathere. Thisbinary isreturnedin* r buf . (Note

that this binary is freed by the emulator, not by us.)

int len);
our _data_t* dat

static char* get_s(const char* buf,
static int do_connect(const char *s,
static int do_sel ect(const char* s,

/* Since we are operating in binary node,
* is irrelevant, as long as it is not negative.
*/

a, ei _x_buff* x);

our _data_t* data, ei_x_buff* x);

the return value from control

static int control (Erl DrvData drv_data, unsigned int conmand, char *buf,
int len, char **rbuf, int rlen)
{ .
int r;
ei _x_buff x;
our _data_t* data = (our_data_t*)drv_data;
char* s = get_s(buf, len);
ei _x_new with_version(&x);
switch (command) {
case DRV_CONNECT: r = do_connect (s, data, &x); break;
case DRV_DI SCONNECT: r = do_di sconnect (data, &x); break;
case DRV_SELECT: r = do_sel ect(s, data, &x); br eak;
def aul t: r = -1; br eak;
}
rbuf = (char)ei _x_to_new_ binary(&x);
ei _x_free(&x);
driver_free(s);
return r;
}

do_connect iswherewelog in to the database. If the connection was successful we store the connection handlein
our driver data, and return ok. Otherwise, we return the error message from postgres, and store NULL in thedriver data.

static int do_connect(const char *s,

{

PCconn* conn =

if (PQstatus(conn)
encode_error (X,
PQ i ni sh(conn);
conn = NULL;

} else {
encode_ok(x) ;

}

dat a- >conn = conn;

our_data_t* data, ei_x_buff* x)

PQconnect db(s) ;
I = CONNECTI ON_OK) {
conn) ;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 How to implement a driver

return O;

If we are connected (if the connection handle is not NULL), we log out from the database. We need to check if we
should encode an ok, since we might get here from the st op function, which doesn't return data to the emulator.

static int do_disconnect(our_data t* data, ei_x_buff* x)

if (data->conn == NULL)
return O;

PQ i ni sh(dat a- >conn) ;

dat a- >conn = NULL;

if (x != NULL)
encode_ok(x) ;

return O;

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢ which is aso
provided as sample code.

static int do_select(const char* s, our_data_t* data, ei_x_buff* x)

PG esult* res = PQexec(data->conn, s);
encode_result(x, res, data->conn);
PQcl ear (res);

return O;

Herewe simply check the result from postgres, and if it'sdatawe encodeit aslists of listswith column data. Everything
from postgresis C strings, sowejust useei _x_encode_st ri ng to send the result as stringsto Erlang. (The head
of the list contains the column names.)

voi d encode_result(ei_x_buff* x, PGesult* res, PGconn* conn)
{
int row, n_rows, col, n_cols;
switch (PQesultStatus(res)) {
case PCGRES TUPLES OK:
n_rows = PQntupl es(res);
n_cols = PQnfields(res);
ei _x_encode_t upl e_header (x, 2);
encode_ok(x);
ei _x_encode_list_header(x, n_rows+1);
ei _x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei _x_encode_string(x, PQname(res, col));
}
ei _x_encode_enpty_list(x);
for (row = 0; row < n_rows; ++row) {
ei _x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei _x_encode_string(x, PQgetvalue(res, row, col));
}

ei _x_encode_enpty_list(x);

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

}
ei _x_encode_enpty_list(x);
br eak;
case PGRES COMVAND_CX:
ei _x_encode_t upl e_header (x, 2);
encode_ok(x);
ei _x_encode_string(x, PQndTupl es(res));
br eak;
defaul t:
encode_error(x, conn);
br eak;

1.6.3 Compiling and linking the sample driver

The driver should be compiled and linked to a shared library (DLL on windows). With gcc this is done with the link
flags- shar ed and - f pi c. Since we usethe ei library we should include it too. There are severa versions of ei ,
compiled for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples the obj
directory isused for theei library, meaning that we use the non-debug, single-threaded version.

1.6.4 Calling a driver as a port in Erlang

Before adriver can be called from Erlang, it must be loaded and opened. Loading isdoneusingtheer | _ddl | module
(theer | _ddl | driverthat loadsdynamicdriver, isactually adriver itself). If loading is ok the port can be opened with
open_port/ 2. The port name must match the name of the shared library and the name in the driver entry structure.

When the port has been opened, the driver can be called. Inthe pg_sync example, we don't have any data from the
port, only the return value fromtheport _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl .

- modul e(pg_sync) .

- def i ne(DRV_CONNECT, 1).
- def i ne(DRV_DI SCONNECT, 2).
-def i ne(DRV_SELECT, 3).

-export ([connect/1, disconnect/1, select/2]).

connect (Connect Str) ->

case erl _ddll:load _driver(".", "pg_sync") of
ok -> ok;
{error, already_| oaded} -> ok;
E -> exit({error, E})

end,

Port = open_port ({spawn, ?MODULE}, []),

case binary to term(port_control (Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

di sconnect (Port) ->
R = binary_to_tern(port_control (Port, ?DRV_DI SCONNECT, "")),
port _cl ose(Port),
R.

select (Port, Query) ->
binary to_term(port_control (Port, ?DRV_SELECT, Query)).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 How to implement a driver

The APl is simple: connect / 1 loads the driver, opens it and logs on to the database, returning the Erlang port
if successful, sel ect/ 2 sends a query to the driver, and returns the result, di sconnect/ 1 closes the database
connection and the driver. (It does not unload it, however.) The connection string should be a connection string for
postgres.

The driver is loaded with er| _ddl | : 1 oad_dri ver/ 2, and if thisis successful, or if it's aready loaded, it is
opened. Thiswill call thest art function in the driver.

Weusetheport _contr ol / 3 functionfor al callsinto thedriver, theresult fromthedriver isreturned immediately,
and converted to terms by calling bi nary_t o_t er ni 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be containedinacat ch.)

1.6.5 Sample asynchronous driver

Sometimes database queries can take long time to complete, in our pg_sync driver, the emulator halts while the
driver is doing its job. This is often not acceptable, since no other Erlang process gets a chance to do anything. To
improve on our postgres driver, we reimplement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the samplefilespg_async. c and pg_asyng. er| .

/* Driver interface declarations */

static ErlDrvData start(Erl DrvPort port, char *conmand);

static void stop(ErlDrvData drv_data);

static int control (Erl DrvData drv_data, unsigned int conmand, char *buf,
int len, char **rbuf, int rlen);

static void ready_i o(Erl DrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pqg_driver_entry = {

NULL, [* init */

start,

st op

NULL, /* output */
ready_i o, /* ready_i nput */
ready_i o, /* ready_out put */
"pg_async", /* the name of the driver */
NULL, [* finish */

NULL, /* handl e */
control

NULL, [* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, [* flush */

NULL, [* call */

NULL [* event */

}s

typedef struct our_data_ t {
PGconn* conn
Erl DrvPort port;
int socket;
i nt connecting
} our_data_t;

Here some things have changed from pg_sync. c: we use the entry ready_i o for ready_i nput and
r eady_out put whichwill becalled from the emulator only when thereisinput to be read from the socket. (Actually,

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

the socketisusedinasel ect function inside the emulator, and when the socket is signalled, indicating there is data
toread, ther eady_i nput entry iscalled. More on this below.)

Our driver datais also extended, we keep track of the socket used for communi cation with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflagconnect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed sincethe entry r eady _i o
will be called both when connecting and when there is a query result.)

static int do_connect(const char *s, our_data_t* data)

{
PGconn* conn = PQconnect Start(s);
if (PQstatus(conn) == CONNECTI ON_BAD) {
ei _x_buff x;
ei _x_new_wi th_version(&x);
encode_error (&, conn);
P& i ni sh(conn);
conn = NULL;
driver_out put (dat a- >port, x.buff, x.index);
ei _x_free(&);
}
PQconnect Pol | (conn) ;
int socket = PQsocket (conn);
dat a- >socket = socket;
driver_sel ect (data->port, (ErlDrvEvent)socket, DO READ, 1);
driver_sel ect (data->port, (ErlDrvEvent)socket, DO WRI TE, 1);
dat a- >conn = conn;
dat a- >connecting = 1;
return O;
}

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket is used with the
driver _sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady i o
function will be called.

Note that we only return data (with dr i ver _out put) if thereisan error here, otherwise we wait for the connection
to be completed, in which case our r eady_i o function will be called.

static int do_sel ect(const char* s, our_data_t* data)
{
dat a- >connecting = 0;
PGconn* conn = dat a- >conn;
/* if there's an error return it now */
if (PQendQuery(conn, s) == 0) {
ei _x_buff x;
ei _x_new_wi th_version(&x);
encode_error (&, conn);
driver_out put (dat a- >port, x.buff, x.index);
ei _x_free(&);
}
/* else wait for ready_output to get results */
return O;

Thedo_sel ect functioninitiatesaselect, and returnsif thereisnoimmediate error. The actual result will bereturned
whenr eady_i oiscalled.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 How to implement a driver

static void ready_i o(Erl DrvData drv_data, ErlDrvEvent event)
{
PGresult* res = NULL;
our_data_t* data = (our_data_t*)drv_data;
PGconn* conn = dat a->conn;
ei _x_buff x;
ei _x_new w th_version(&x);
i f (data->connecting) {
ConnSt at usType st at us;
PQconnect Pol | (conn) ;
status = PQstatus(conn);
if (status == CONNECTI ON_OK)
encode_ok(&x);
else if (status == CONNECTI ON_BAD)
encode_error (&, conn);
} else {
PQconsunel nput (conn) ;
i f (PQ sBusy(conn))
return;
res = PQuet Resul t (conn);
encode_result (&, res, conn);
PQcl ear (res);
for (5;) {
res = PQuet Resul t (conn);
if (res == NULL)
br eak;
PQcl ear (res);
}

}
if (x.index > 1) {
driver_out put (data->port, x.buff, x.index);
i f (data->connecting)
driver_sel ect (data->port, (ErlDrvEvent)data->socket, DO WRI TE, 0);

}
ei _x free(&);

Ther eady_i o function will be called when the socket we got from postgresisready for input or output. Herewefirst
check if we are connecting to the database. In that case we check connection status and return ok if the connection is
successful, or error if it'snot. If the connectionisnot yet established, wesimply return; r eady _i o will becalled again.

If we have a result from a connect, indicated by having data in the x buffer, we no longer need to select on output
(ready_out put), soweremovethisby calingdri ver _sel ect.

If were not connecting, we're waiting for results from a P@sendQuery, so we get the result and return it. The
encoding is done with the same functions asin the earlier example.

We should add error handling here, for instance checking that the socket is still open, but thisisjust asimple example.

The Erlang part of the asynchronous driver consists of the samplefilepg_async. er | .

- modul e(pg_async) .

- defi ne(DRV_CONNECT, $C).

- def i ne(DRV_DI SCONNECT, $D).
- defi ne(DRV_SELECT, $S).

-export ([connect/1, disconnect/1, select/2]).

connect (Connect Str) ->

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

case erl _ddll:load_driver(".", "pg_async") of
ok -> ok;
{error, already_| oaded} -> ok;
_ ->exit({error, could_not_|oad driver})
end,
Port = open_port ({spawn, ?MODULE}, [binary]),
port _control (Port, ?DRV_CONNECT, ConnectStr),
case return_port_data(Port) of

ok ->

{ok, Port};
Error ->

Error

end.

di sconnect (Port) ->
port _control (Port, ?DRV_DI SCONNECT, ""),
R = return_port_data(Port),
port _cl ose(Port),
R.

select (Port, Query) ->
port _control (Port, ?DRV_SELECT, Query),
return_port_data(Port).

return_port_data(Port) ->
receive
{Port, {data, Data}} ->
bi nary_to_ternData)
end.

The Erlang code is dlightly different, thisis because we don't return the result synchronously fromport _control ,
instead we get it fromdr i ver _out put asdatain the message queue. The functionr et ur n_port _dat a above
receives data from the port. Since the data is in binary format, we use bi nary_to_term 1 to convert it to an
Erlang term. Note that the driver is opened in binary mode (open_port/ 2 is called with the option [bi nar y]).
This means that data sent from the driver to the emulator is sent as binaries. Without the bi nar y option, they would
have been lists of integers.

1.6.6 An asynchronous driver using driver_async

As afina example we demonstrate the use of dri ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We will usethe next _per nut at i on agorithm to
get the next permutation of alist of integers. For large lists (more than 100000 elements), this will take some time,
so we will perform this as an asynchronous task.

The asynchronous API for drivers is quite complicated. First of all, the work must be prepared. In our example we
do thisin out put . We could have used cont r ol just aswell, but we want some variation in our examples. In our
driver, we alocate a structure that contains anything that's needed for the asynchronous task to do the work. Thisis
done in the main emulator thread. Then the asynchronous function is called from a driver thread, separate from the
main emulator thread. Note that the driver-functions are not reentrant, so they shouldn't be used. Finaly, after the
function is completed, the driver callback r eady _async is called from the main emulator thread, thisis where we
return the result to Erlang. (We can't return the result from within the asynchronous function, since we can't call the
driver-functions.)

The code below is from the samplefilenext _perm cc.

The driver entry looks like before, but also contains the call-back r eady_async.

static Erl DrvEntry next_permdriver_entry = {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.6 How to implement a driver

NULL, [* init */

start,

NULL, /* stop */

out put,

NULL, /* ready_i nput */
NULL, /* ready_out put */
"next _pernt, /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready_async

NULL, [* flush */

NULL, [* call */

NULL /* event */

The out put function allocates the work-area of the asynchronous function. Since we use C++, we use a struct, and
stuff the dataiin it. We haveto copy the original data, it isnot valid after we have returned from the out put function,
and the do_per mfunction will be called later, and from another thread. We return no data here, instead it will be
sent later from ther eady _async call-back.

The async_dat a will be passed to the do_per mfunction. We do not use a async_free function (the last
argumenttodr i ver _async), it'sonly used if the task is cancelled programmatically.

struct our_async_data {
bool prev;
vector<i nt> data
our _async_data(Erl DrvPort p, int command, const char* buf, int |en)

i

our _async_dat a: : our _async_data(Erl DrvPort p, int command
const char* buf, int |en)
prev(command == 2)
data((int*)buf, (int*)buf + len / sizeof(int))
{
}

static void do_pern(voi d* async_dat a)

static void output(Erl DrvData drv_data, char *buf, int |en)

{
if (*buf <1 || *buf > 2) return
Erl DrvPort port = reinterpret_cast<Erl DrvPort>(drv_data);
voi d* async_data = new our _async_data(port, *buf, buf+1, |en)
driver_async(port, NULL, do_perm async_data, do_free)

}

Inthedo_per mwe simply do the work, operating on the structure that was allocated in out put .

static void do_permvoi d* async_dat a)

{
our _async_data* d = reinterpret_cast<our_async_dat a*>(async_dat a) ;
if (d->prev)
prev_permnut ati on(d->dat a. begi n(), d->data.end());
el se

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

next _permut ati on(d->data. begin(), d->data.end());

In the r eady_async function, the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_ternif 1. In our simple example this works well, and we don't need to use ei to handle the binary
term format.

When the datais returned we deallocate our data.

static void ready_async(Erl DrvData drv_data, ErlDrvThreadData async_data)

Erl DrvPort port = reinterpret_cast<Erl DrvPort>(drv_data);
our _async_data* d = reinterpret_cast<our_async_dat a*>(async_data) ;
int n = d->data.size(), result_n = n*2 + 3;
Erl DrvTernData *result = new Erl DrvTernData[result_n], *rp = result;
for (vector<int>: :iterator i = d->data.begin();
i = d->data.end(); ++i) {
*rp++ = ERL_DRV_I NT;
rp++ = X

}
*rpt++ ERL_DRV_NI L;

*rpt++ ERL_DRV_LI ST;

*rp++ n+1;

driver_output_tern(port, result, result_n);
delete[] result;

del ete d;

Thisdriver is called like the others from Erlang, however, sincewe usedr i ver _out put _t er m there is no need
to call binary_to_term. The Erlang code isin the samplefilenext _perm erl .

Theinput is changed into alist of integers and sent to the driver.

- modul e(next _perm.
-export([next_perm 1, prev_perm1l, |load/0, all_perm1]).
| oad() ->

case wherei s(next_pern) of
undefined ->

case erl _ddll:load_driver(".", "next_pern) of
ok -> ok;
{error, already_| oaded} -> ok;
E -> exit(E)

end,

Port = open_port ({spawn, "next_perni'}, []),
regi ster(next_perm Port);

-5
ok

end.

list_to_integer_binaries(L) ->
[<<l:32/integer-native>> || | <- L].

next _pern(L) ->
next _pern(L, 1).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.7 Inet configuration

prev_pern(L) ->
next _perm(L, 2).

next _pern(L, Nxt) ->

| oad(),
B =1list_to_integer_binaries(L),
port _control (next_perm Nxt, B),
receive
Result ->
Resul t
end.

all _perm(L) ->
New = prev_pern(L),
all _perm(New, L, [Newj).

all _perm(L, L, Acc) ->
Acc;
all _permL, Oig, Acc) ->
New = prev_pern(L),
all _perm(New, Oig, [New | Acc]).

1.7 Inet configuration

1.7.1 Introduction

Thischapter tellsyou how the Erlang runtime systemisconfigured for IP communication. It also explainshow you may
configure it for your own particular needs by means of a configuration file. The information here is mainly intended
for users with special configuration needs or problems. There should normally be no need for specific settings for
Erlang to function properly on a correctly IP configured platform.

When Erlang startsup it will read the kernel variablei net r ¢ which, if defined, should specify the location and name
of auser configuration file. Example:

%erl -kernel inetrc ./cfg_files/erl inetrc

Note that the usage of a. i net r ¢ file, which was supported in earlier Erlang versions, is now obsolete.

A second way to specify the configuration file is to set the environment variable ERL_| NETRC to the full name of
the file. Example (bash):

% export ERL_INETRC=./cfg_files/erl_inetrc
Note that the kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang will use default configuration settings and a native lookup method that should work correctly under most
circumstances. Erlang will not read any information from system inet configuration files (like /etc/host.conf, /etc/
nsswitch.conf, etc) in these modes, except for /etc/resolv.conf and /etc/hosts that is read and monitored for changes
on Unix platforms for theinternal DNS client inet_res.

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and will read
system inet configuration files for this information. Any hosts and resolver information found then is also recorded,
but not used aslong as Erlang is configured for native lookups. (The information becomes useful if the lookup method
ischangedto' fil e' or' dns', seebelow).

Native lookup (system calls) is always the default resolver method. Thisistruefor all platforms except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat order of priority).

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 Inet configuration

On Windows platforms, Erlang will search the system registry rather than look for configuration files when started
in long name distributed mode.

1.7.2 Configuration Data
Erlang records the following datain alocal databaseif found in system inet configuration files (or system registry):

e Host names and addresses

e Domain name

* Nameservers

e Search domains

e Lookup method

This data may also be specified explicitly in the user configuration file. The configuration file should contain lines
of configuration parameters (each terminated with a full stop). Some parameters add data to the configuration (e.g.
host and nameserver), others overwrite any previous settings (e.g. domain and lookup). The user configuration fileis

always examined last in the configuration process, making it possible for the user to override any default values or
previously made settings. Call i net : get _r c() to view the state of the inet configuration database.

These are the valid configuration parameters:
{file, Format, File}.

Format = atom()
File = string()
Specify a system file that Erlang should read configuration data from. For mat tells the parser how
the file should be interpreted: r esol v (Unix resolv.conf), host _conf _freebsd (FreeBSD host.conf),

host _conf_bsdos (BSDOS host.conf), host _conf _I i nux (Linux host.conf), nsswi t ch_conf (Unix
nsswitch.conf) or host s (Unix hosts). Fi | e should specify the name of the file with full path.

{resolv_conf, File}.
File = string()
Specify a system file that Erlang should read resolver configuration from for the internal DNS client inet_res,

and monitor for changes, even if it does not exist. The path must be absol ute.

This may override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They may also change any time in the future reflecting the file contents.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to / et c/ resol v. conf unless the environment variable
ERL_I NET_ETC_DI Risset which definesthe directory for thisfile to some maybe other than / et c.

{hosts _file, File}.
File = string()

Specify a system file that Erlang should read resolver configuration from for the internal hosts file resolver and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after all added with {fil e, hosts, File} aboveor {host, IP,
Al i ases} below when the lookup optionfi | e isused.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.7 Inet configuration

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to /etc/hosts unless the environment variable
ERL_| NET_ETC DI Ris set which defines the directory for this file to some maybe other than/ et c.

{registry, Type}.
Type = atom()

Specify a system registry that Erlang should read configuration data from. Currently, wi n32 is the only valid
option.

{host, I P, Aliases}.

IP = tuple()
Aliases = [string()]

Add host entry to the hosts table.
{donai n, Donai n}.

Domain = string()

Set domain name.
{naneserver, IP [,Port]}.

I P = tuple()
Port = integer()

Add address (and port, if other than default) of primary nameserver to use for inet_res.
{al t_nameserver, IP [,Port]}.

I P = tuple()
Port = integer()

Add address (and port, if other than default) of secondary nameserver for inet_res.
{search, Domai ns}.

Domains = [string()]

Add search domainsfor inet_res.
{l ookup, Methods}.

Met hods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are: nat i ve (use system cals),
fil e (usehost data retrieved from system configuration files and/or the user configuration file) or dns (usethe
Erlang DNSclient inet_res for nameserver queries).

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 Inet configuration

The lookup method st ri ng tries to parse the hostname as a IPv4 or 1Pv6 string and return the resulting |P
address. It isautomatically tried first when nat i ve isnot inthe Met hods list. To skipit in this case the pseudo
lookup method nost r i ng can beinserted anywhere in the Met hods list.

{cache_si ze, Size}.

Size = integer()

Set size of resolver cache. Default is 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in millisec) the resolver cache for inet_res. is refreshed (i.e. expired DNS records are del eted).
Defaultis1 h.

{tinmeout, Tine}.

Time = integer()

Set the time to wait until retry (in millisec) for DNS queries made by inet_res. Default is 2 sec.
{retry, N}.

N = integer()

Set the number of DNS queriesinet_reswill try before giving up. Default is 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto look up 1Pv6 addresses. Default isfalse.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto use TCP (Virtual Circuit) instead of UDP. Default is false.
{edns, Version}.

Version = false | O

Sets the EDNS version that inet_res will use. The only allowed is zero. Default is fal se which means to not use
EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size inet_res will advertise in EDNS queries. Also sets the limit when the DNS
query will be deemed too large for UDP forcing a TCP query instead, which is not entirely correct since the
advertised UDP payload size of the individual nameserver is what should be used, but this simple strategy will

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.7 Inet configuration

do until amore intelligent (probing, caching) algorithm need be implemented. The default is 1280 which stems
from the standard Ethernet MTU size.

{udp, Mbdul e}.

Modul e = atom()

Tell Erlang to use other primitive UDP module than inet_udp.
{tcp, Mbodul e}.

Modul e = atom()

Tell Erlang to use other primitive TCP module than inet_tcp.
cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear the list of search domains.

1.7.3 User Configuration Example
Here follows a user configuration example.

Assume auser does not want Erlang to use the native lookup method, but wants Erlang to read all information necessary
from start and use that for resolving names and addresses. In case lookup fails, Erlang should request the data from
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
will be updated when its configuration file changes, furthermore, DNS records should never be cached. The user
configuration file (in this example named er | _i net r c, stored in directory . / cfg_fi | es) could then look like
this (Unix):

%% - - ERLANG | NET CONFlI GURATI ON FI LE - -
%Woread the hosts file

{file, hosts, "/etc/hosts"}.

%6 add a particul ar host

{host, {134,138,177,105}, ["finwe"]}.

%% do not nonitor the hosts file
{hosts_file, ""}.

%6 read and nonitor naneserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enabl e EDNS

{edns, 0}.

%% di sabl e cachi ng

{cache_si ze, 0}.

%% speci fy | ookup net hod

{l ookup, [file, dns]}.

And Erlang could, for example, be started like this:

%erl -sname ny_node -kernel inetrc .lcfg_files/erl _inetrc

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

1.8 External Term Format

1.8.1 Introduction
The external term format is mainly used in the distribution mechanism of Erlang.

Since Erlang has afixed number of types, there is no need for a programmer to define a specification for the externa
format used within some application. All Erlang terms has an external representation and the interpretation of the
different terms are application specific.

InErlangtheBIFterm to_binary/1,2 isusedto convert atermintothe external format. To convert binary dataencoding
atermthe BIF binary to ternvl isused.

The distribution does this implicitly when sending messages across node boundaries.

The overall format of the term format is:

131 Tag Dat a

Table 8.1:

Note:

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. This since the version
number isimplied by the version number in the distribution header.

A compressed term looks like this:

1 1 4 N

131 80 UncompressedSize Zlib-compressedData

Table 8.2:

Uncompressed Size (unsigned 32 bit integer in big-endian byte order) isthe size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Data

Table 8.3:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 External Term Format

1.8.2 Distribution header

As of erts version 5.7.2 the old atom cache protocol was dropped and a new one was introduced. This atom cache
protocol introduced the distribution header. Nodeswith ertsversions earlier than 5.7.2 can still communi cate with new
nodes, but no distribution header and no atom cache will be used.

The distribution header currently only contains an atom cache reference section, but could in the future contain more
information. The distribution header precedes one or more Erlang terms on the external format. For more information
see the documentation of the protocol between connected nodes in the distribution protocol documentation.

ATOM_CACHE_REF entrieswith corresponding At onCacheRef er encel ndex intermsencoded on the external
format following a distribution header refersto the atom cache references made in the distribution header. The range
isO<= At onCacheRef er encel ndex < 255, i.e., at most 255 different atom cache references from the following
terms can be made.

The distribution header format is:

1 1 1 Nun1berOfAt01n0CacheRefs 2+1 N|O
131 68 Nurtber Of At onCacheRefs Fl ags At onCacheRef s

Table 8.4:

Fl ags consists of Nunber OF At onCacheRef s/ 2+1 bytes, unless Number Of At onCacheRef s is 0. If
Number O At onCacheRef s is 0, FI ags and At onCacheRef s are omitted. Each atom cache reference have
a haf byte flag field. Flags corresponding to a specific At omCacheRef er encel ndex, are located in flag byte
number At onCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber OF At onCacheRef s
byte. Flagsfor an even At onCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex arelocated in the most significant half byte.

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segnent | ndex

Table 8.5:

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrrent | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments each of size 256, i.e., an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located which has the following format:

3 hits 1 bit

Current !l yUnused LongAt ons

Table 8.6:

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

Theleast significant bit in that half byteisthe LongAt ons flag. If it isset, 2 bytes are used for atom lengths instead
of 1 byte in the distribution header. However, the current emulator cannot handle long atoms, so it will currently
awaysbeO.

After the Fl ags field follow the At omCacheRef s. The first At onCacheRef is the one corresponding to
At onCacheRef er encel ndex 0. Higher indices follows in sequence up to index Nunber OF At omCacheRef s
- 1.

If theNewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt onCacheRef onthefollowing
format will follow:

1 1]2 Length

I nt er nal Segnent | ndex Lengt h At onTText

Table 8.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom cache
entry in the atom cache. Lengt h is number of one byte characters that the atom text consists of. Length isatwo byte
big endian integer if the LongAt ons flag has been set, otherwise a one byte integer. Subsequent CachedAt onRef s
with the same Segnent | ndex and | nt er nal Segnent | ndex as this NewAt onCacheRef will refer to this
atom until anew NewAt onCacheRef with the same Segnent | ndex and | nt er nal Segnent | ndex appear.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef on thefollowing
format will follow:

1

I nt er nal Segnent | ndex

Table 8.8:

I nt er nal Segnent | ndex together with the Segrent | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previously passed distribution header.

1.8.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 8.9:

Refers to the atom with At onCacheRef er encel ndex in the distribution header.

1.8.4 SMALL_INTEGER_EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

1.8 External Term Format

97 Int
Table 8.10:
Unsigned 8 bit integer.
1.8.5 INTEGER_EXT
1 4
98 Int
Table 8.11:
Signed 32 bit integer in big-endian format (i.e. MSB first)
1.8.6 FLOAT_EXT
1 31
99 Float String

Table 8.12:

A float isstored in string format. the format used in sprintf to format the float is"%.20e" (there are more bytesall ocated
than necessary). To unpack the float use sscanf with format "%l f".

Thisterm isused in minor version 0 of the external format; it has been superseded by NEW_FLOAT_EXT .

1.8.7 ATOM_EXT

Len

100

Len

At omNane

Table 8.13:

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8 bit characters that

formsthe At omNane. Note: The maximum alowed value for Len is 255.

1.8.8 REFERENCE_EXT

1

101

Node

Creation

Table 8.14:

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

Encode a reference object (an object generated with nake_r ef / 0). The Node term is an encoded atom, i.e.
ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thel Dfield contains abig-endian unsigned integer, but
should be regarded as uninterpreted data since this field is node specific. Cr eat i on is a byte containing a node
serial number that makes it possible to separate old (crashed) nodes from a new one.

Inl D, only 18 bits are significant; the rest should be 0. In Cr eat i on, only 2 bits are significant; the rest should be
0. See NEW_REFERENCE_EXT.

1.8.9 PORT_EXT

1 N 4 1

102 Node I D Creation

Table 8.15:

Encode a port object (obtained form open_port/ 2). The | D is a node specific identifier for a local port. Port
operations are not allowed across node boundaries. The Cr eat i on worksjust likein REFERENCE_EXT.

1.8.10 PID_EXT

1 N 4 4 1

103 Node I D Seri al Creation

Table 8.16:

Encode a process identifier object (obtained from spawn/ 3 or friends). The | D and Cr eat i on fields works just
likein REFERENCE_EXT, whilethe Ser i al field isused to improve safety. In | D, only 15 bits are significant; the
rest should be O.

1.8.11 SMALL_TUPLE_EXT

1 1 N

104 Arity Elements

Table 8.17:

SMALL TUPLE EXT encodesatuple. TheAri ty field is an unsigned byte that determines how many element that
followsinthe El ement s section.

1.8.12 LARGE_TUPLE_EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.8 External Term Format

105 Arity Elements

Table 8.18:

Same as SVALL_TUPLE_EXT with the exception that Ar i t y is an unsigned 4 byte integer in big endian format.

1.8.13 NIL_EXT

106

Table 8.19:

The representation for an empty lit, i.e. the Erlang syntax [] .

1.8.14 STRING_EXT

1 2 Len

107 Length Characters

Table 8.20:

String does NOT have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Since the Lengt h field is an unsigned 2 byte integer (big
endian), implementations must make sure that lists longer than 65535 elements are encoded as LIST_EXT.

1.8.15 LIST_EXT

108 Length Elements Tall

Table 8.21:

Lengt h is the number of elements that follows in the El emrent s section. Tai | is the fina tail of the ligt; it is
NIL_EXT for a proper list, but may be anything type if thelist isimproper (for instance[a| b]).

1.8.16 BINARY_EXT

109 Len Data

Table 8.22:

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

Binaries are generated with bit syntax expression or with list_to_binary/1, term to_binary/1, or asinput from binary
ports. The Len length field is an unsigned 4 byte integer (big endian).

1.8.17 SMALL_BIG_EXT

1 1 1 n

110 n Sign d(0) ... d(n-1)

Table 8.23:

Bignums are stored in unary form with a Si gn byte that is O if the binum is positive and 1 if is negative. The digits
are stored with the L SB byte stored first. To calculate the integer the following formula can be used:

B =256

(do*B™0 + d1*B~1 + d2* B2 + ... d(N-1)*B~(n-1))

1.8.18 LARGE_BIG_EXT

1 4 1 n

111 n Sign d(0) ... d(n-1)

Table 8.24:

Same as SMALL_BIG_EXT with the difference that the length field is an unsigned 4 byte integer.

1.8.19 NEW_REFERENCE_EXT

1 2 N 1 N'

114 Len Node Creation ID ...

Table 8.25:

Node and Creation are asin REFERENCE_EXT.

I D contains a sequence of big-endian unsigned integers (4 byteseach, soN' isamultiple of 4), but should be regarded
as uninterpreted data.

N =4* Len.

In the first word (four bytes) of | D, only 18 bits are significant, the rest should be 0. In Cr eat i on, only 2 bits are
significant, the rest should be 0.

NEW_REFERENCE_EXT was introduced with distribution version 4. In version 4, N' should be at most 12.
See REFERENCE_EXT).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.8 External Term Format

1.8.20 SMALL_ATOM_EXT

Len

115 Len At omName

Table 8.26:

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8 bit characters that forms the
At omNane. Longer atoms can be represented by ATOM_EXT. Note the SMALL _ATOM EXT was introduced in erts
version 5.7.2 and require a small atom distribution flag exchanged in the distribution handshake.

1.8.21 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 NumFree Pid Module Index Uniq Freevars...
Table 8.27:

Pi d
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.

Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the fun isimplemented in.

| ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. It istypically asmall index into the
module's fun table.

Uni g
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
for the fun.

Free vars
isNuntr ee number of terms, each one encoded according to its type.

1.8.22 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5
. . . . } Free
112 Size Arity Uniq Index |NumFree| Module |Oldindex| OldUniq| Pid Vars
Table 8.28:
Thisisthe new encoding of internal funs: fun F/ Aandfun(Argl,..) -> ... end.

Si ze

isthetotal number of bytes, including the Si ze field.

Arity

isthe arity of the function implementing the fun.

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

Uni g
isthe 16 bytes MD5 of the significant parts of the Beam file.
| ndex
isan index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nunfr ee
isthe number of free variables.
Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the fun isimplemented in.
a dl ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. It istypically asmall index into the
modul€e's fun table.
a duni q
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
tree for the fun.
Pid
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.
Free vars
is Nunfr ee number of terms, each one encoded according to its type.

1.8.23 EXPORT_EXT

1 N1 N2 N3

113 Module Function Arity

Table 8.29:

Thisterm is the encoding for external funs: f un M F/ A.
Modul e and Funct i on are atoms (encoded using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF).
Arity isaninteger encoded using SMALL _INTEGER EXT.

1.8.24 BIT_BINARY_EXT

77 Len Bits Data

Table 8.30:

This term represents a bitstring whose length in bits is not a multiple of 8 (created using the bit syntax in R12B and
later). The Len field is an unsigned 4 byte integer (big endian). The Bi t s field is the number of bitsthat are used in
the last byte in the data field, counting from the most significant bit towards the least significant.

1.8.25 NEW_FLOAT EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.9 Distribution Protocol

70 |EEE float

Table 8.31:

A float is stored as 8 bytes in big-endian |EEE format.
Thisterm isused in minor version 1 of the external format.

1.9 Distribution Protocol

The description here is far from complete and will therefore be further refined in upcoming releases. The protocols
both from Erlang nodes towards EPMD (Erlang Port Mapper Daemon) and between Erlang nodes, however, are stable
since many years.

The distribution protocol can be divided into four (4) parts:

e 1. Low level socket connection.

e 2. Handshake, interchange node name and authenticate.
e 3. Authentication (done by net_kernel).

e 4. Connected.

A node fetches the Port number of another node through the EPMD (at the other host) in order to initiate a connection
request.

For each host where a distributed Erlang node is running there should also be an EPMD running. The EPMD can be
started explicitly or automatically as aresult of the Erlang node startup.

By default EPMD listens on port 4369.

3 and 4 are performed at the same level but the net_kernel disconnects the other node if it communicates using an
invalid cookie (after one (1) second).

The integersin al multi-byte fields are in big-endian order.

1.9.1 EPMD Protocol
The requests served by the EPMD (Erlang Port Mapper Daemon) are summarized in the figure below.

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

Client Cor Nodel EPMD
ALIVEZ_REQ h‘
ALIYEZ_RESP
.‘ ..
ALIVE_CLOSE_REQ P’
PORT_PLEASEZ_RED h‘
PORTZ_RESF
.‘ ..
NAMES_REQ P’
NAMES_RESE
‘ ..
OUMP _REQ "
OUMP_RESP
‘ __
KILL_RE(h
KILL_RESP
‘ ..
STOP_REQ P’
STOP_Ok_RESP
‘ __
STOP_MNOTOK_RESP
‘ ..

Figure 9.1: Summary of EPMD requests.

Each request * _REQis preceded by atwo-byte length field. Thus, the overall request format is:

2 n

Length Request

Table 9.1:

Register a node in the EPMD

When a distributed node is started it registers itself in EPMD. The message ALIVE2 REQ described below is sent
from the node towards EPMD. The response from EPMD is ALIVE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.9 Distribution Protocol

120 PortNo |NodeType| ProtocolH|ghestVerdi JwestVersi+n Nlen [NodeNamg Elen Extra

Table 9.2: ALIVE2_REQ (120)

Port No
The port number on which the node accept connection requests.
NodeType
77 = normal Erlang node, 72 = hidden node (C-node),...
Pr ot ocol
0 =tcplip-v4, ...
H ghest Ver si on
The highest distribution version that this node can handle. The value in R6B and later is 5.
Lowest Ver si on
The lowest distribution version that this node can handle. The valuein R6B and later is 5.
N en
The length of the NodeNarre.
NodeNarne
The NodeName as a string of length NI en.
El en
The length of the Ext r a field.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed the node is automatically unregistered from the EPMD.

The response message ALIVE2 RESP is described below.

1 1 2

121 Result Creation

Table 9.3: ALIVE2_RESP (121)

Result = 0 -> ok, Result > 0 -> error

Unregister a node from the EPMD

A node unregisters itself from the EPMD by simply closing the TCP connection towards EPMD established when
the node was registered.

Get the distribution port of another node

When one node wants to connect to another node it starts with a PORT_PLEASE2 REQ request towards EPMD on
the host where the node resides in order to get the distribution port that the node listens to.

1 N

122 NodeName

Table 9.4: PORT_PLEASE2_REQ (122)

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

whereN = Length - 1

1 1

119 Result

Table 9.5: PORT2_RESP (119) response indicating error, Result > 0.

Or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 Result | PortNo [NodeTypg ProtocchigheﬁVeLs’rwnﬂVersjon Nlen \IodeNamT Elen Extra

Table 9.6: PORT2_RESP when Result = 0.

If Result > 0, the packet only consists of [119, Result].
EPMD will close the socket as soon as it has sent the information.

Get all registered names from EPMD

This request is used via the Erlang function net _adm nanes/ 1, 2. A TCP connection is opened towards EPMD
and this request is sent.

1
110
Table 9.7: NAMES_REQ (110)
The response for aNAVES REQIooks like this:
4
EPMDPortNo Nodelnfo*

Table 9.8: NAMES_RESP

Nodelnfo is a string written for each active node. When all Nodelnfo has been written the connection is closed by
EPMD.

Nodelnfo is, as expressed in Erlang:

io:format ("name ~s at port ~p~n", [NodeNane, Port]).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.9 Distribution Protocol

Dump all data from EPMD
Thisrequest is not really used, it should be regarded as a debug feature.

1
100
Table 9.9: DUMP_REQ
The response for a DUMP_REQIooks like this:
4
EPMDPortNo Nodelnfo*

Table 9.10: DUMP_RESP

Nodelnfo isastring written for each node kept in EPMD. When all Nodel nfo has been written the connection is closed
by EPMD.

Nodelnfo is, as expressed in Erlang:

io:format ("acti ve name ~s at port ~p, fd = ~p ~n",
[NodeNane, Port, Fd]).

or
i o:format ("ol d/ unused nane ~s at port ~p, fd = ~p~n",
[NodeNane, Port, Fd]).
Kill the EPMD
This reguest will kill the running EPMD. It is amost never used.
1
107
Table 9.11: KILL_REQ
The responsefo aKl LL_REQIlooks likethis:
2

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

OK String
Table 9.12: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeName

Table 9.13: STOP_REQ

wheren = Length- 1
The current implementation of Erlang does not care if the connection to the EPMD is broken.
Theresponse for a STOP_REQIooks like this.

.
OKString
Table 9.14: STOP_RESP
where OKString is"STOPPED".
A negative response can look like this.
.
NOK String

Table 9.15: STOP_NOTOK_RESP

where NOK String is "NOEXIST".

1.9.2 Handshake
The handshake is discussed in detail in the internal documentation for the kernel (Erlang) application.

1.9.3 Protocol between connected nodes

As of ertsversion 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. M essages passed between nodes are in this case on the following format:

4 d n m

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.9 Distribution Protocol

Length Di stributi onHeader Cont r ol Message Message

Table 9.16:

where:
Lengthisequa tod+n+m
Cont r ol Message isatuple passed using the external format of Erlang.

Message is the message sent to another node using the '!" (in external format). Note that Message is only passed
in combination with a Cont r ol Message encoding asend ('!").

Also note that the version number is omitted from the terms that follow a distribution header.

Nodes with an erts version less than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes are in this case on the following format:

4 1 n m

Length Type Cont r ol Message Message

Table 9.17:

where:

Lengthisequd tol+n+m

Typeis: 112 (pass through)

Cont r ol Message isatuple passed using the external format of Erlang.

Message is the message sent to another node using the '!I" (in external format). Note that Message is only passed
in combination with aCont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes.
LI NK
{1, FronPid, ToPid}
SEND
{2, Cookie, ToPid}
Note followed by Message
EXIT
{3, FronPid, ToPid, Reason}
UNLIT NK
{4, FronPid, ToPid}
NODE_LI NK
{5}
REG_SEND
{6, FronPid, Cookie, ToNane}
Note followed by Message

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

GROUP_LEADER
{7, FronPid, ToPid}
EXI T2
{8, FronPid, ToPid, Reason}

1.9.4 New Ctrimessages for distrvsn = 1 (OTP R4)
SEND_TT
{12, Cookie, ToPid, TraceToken}
Note followed by Message
EXIT_TT
{13, FronPid, ToPid, TraceToken, Reason}
REG SEND TT
{16, FronPid, Cookie, ToNane, TraceToken}
Note followed by Message
EXI T2_TT
{18, FronPid, ToPid, TraceToken, Reason}

1.9.5 New Ctrlmessages for distrvsn = 2

distrvsn 2 was never used.

1.9.6 New Ctrlmessages for distrvsn = 3 (OTP R5C)

None, but the version number was increased anyway.

1.9.7 New Ctrimessages for distrvsn =4 (OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref} FronPi d = monitoring process ToPr oc = monitored process pid or
name (atom)

DEMONI TOR_P

{20, FronPid, ToProc, Ref} Weincludethe FromPid justin case we want to trace this. Fr onPi d =
monitoring process ToPr oc = monitored process pid or name (atom)

MONI TOR P_EXI T

{21, FronProc, ToPid, Ref, Reason} FronProc =monitored process pid or name (atom) ToPi d
= monitoring process Reason = exit reason for the monitored process

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.9 Distribution Protocol

2 Reference Manual

The Erlang Runtime System Application ERTS.

Note:

By default, the er t s is only guaranteed to be compatible with other Erlang/OTP components from the same
release asthe er t s itself. See the documentation of the system flag +R on how to communicate with Erlang/
OTP components from earlier rel eases.

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

erl_prim_loader

Erlang module

erl _prim.| oader isused to load all Erlang modules into the system. The start script is also fetched with this
low level loader.

erl _prim.| oader knows about the environment and how to fetch modules. The loader could, for example, fetch
files using the file system (with absolute file names as input), or a database (where the binary format of a module
is stored).

The- | oader Loader command line flag can be used to choose the method used by theer| _pri m | oader.
Two Loader methods are supported by the Erlang runtime system: ef i | e and i net . If another loader is required,
then it hasto be implemented by the user. The Loader provided by the user must fulfill the protocol defined below,
and it is started withtheer | _pri m_| oader by evaluating open_port ({ spawn, Loader}, [bi nary]).

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before
it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future
release. Thefunctionsl i st _dir/ 1andread fil e i nfo/1aswell astheflag-1 oader debug areaso
experimental

Data Types
host() = atom()

Exports

start(ld, Loader, Hosts) -> {ok, Pid} | {error, Wat}
Types.
Id = tern()
Loader = atom() | string()
Hosts = Host | [Host]
Host = host ()
Pid = pid()
VWhat = term)
Startsthe Erlang low level loader. Thisfunctionis called by thei ni t process (and module). Thei ni t processreads

the command lineflags-i d 1d, -1 oader Loader, and-hosts Hosts. These are the arguments supplied
tothest art/ 3 function.

If - | oader isnot given, the default loader isef i | e which tells the system to read from the file system.

If -1 oader isinet,the-id 1d,-hosts Hosts, and-setcooki e Cooki e flags must also be supplied.
Host s identifies hosts which this node can contact in order to load modules. One Erlang runtime system with a
erl _boot _server process must be started on each of hosts given in Host s in order to answer the requests. See
erl_boot_server(3).

If - | oader issomething else, the given port program is started. The port program is supposed to follow the protocol
specified below.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

erl_prim_loader

get file(Filename) -> {ok, Bin, FullNane} | error
Types.
Filename = atom() | string()
Bin = binary()
Ful | Name = string()
This function fetches afile using the low level loader. Fi | enane is either an absolute file name or just the name of
thefile, for example" | i st s. beant . If aninternal pathis set to the loader, this path is used to find thefile. If auser

supplied loader is used, the path can be stripped off if it is obsolete, and the loader does not use a path. Ful | Nane is
the complete name of the fetched file. Bi n isthe contents of the file as a binary.

The Fil ename can also be a file in an archive. For example $OTPROOT/ | i b/ nmesi a-4.4. 7. ez/
mesi a- 4. 4. 7/ ebi n/ mesi a. beam See code(3) about archive files.

get _path() -> {ok, Path}
Types:
Path = [Dir :: string()]

This function gets the path set in the loader. The path is set by thei ni t process according to information found in
the start script.

list dir(Dir) -> {ok, Filenanes} | error

Types.
Dir = string()
Filenanes = [Filenane :: string()]

Listsall thefilesinadirectory. Returns{ ok, Fi | enanmes} if successful. Otherwise,itreturnser r or .Fi | enames
isalist of the names of al the filesin the directory. The names are not sorted.

The Dir can adso be a directory in an archive. For example $OTPROOT/ | i b/ mesia-4.4.7. ez/
mmesi a- 4. 4. 7/ ebi n. See code(3) about archivefiles.

read file_info(Filename) -> {ok, Filelnfo} | error

Types:
Fil enanme = string()
Filelnfo = file:file_info()

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Fil el nfoisa
record f i | e_i nf o, defined in the Kernel include filefi | e. hr | . Include the following directive in the module
from which the function is called:

-include_li b("kernel/include/file.hrl").

See filg(3) for more info about therecordfi | e_i nf o.

The Fil enane can adso be a file in an archive. For example $OTPROOT/ | i b/ mesi a-4.4.7. ez/
mesi a- 4. 4. 7/ ebi n/ mesi a. See code(3) about archive files.

set _path(Path) -> ok
Types:

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

Path = [Dir :: string()]
This function sets the path of the loader if i ni t interpretsapat h command in the start script.

Protocol

The following protocol must be followed if a user provided loader port program is used. The Loader port program
is started with the command open_port ({ spawn, Loader }, [bi nary]) . Theprotocoal is asfollows:

Function Send Recei ve

get _file [102 | Fil eNane] [121 | BinaryFile] (on success)
[122] (failure)

st op eof term nate

Command Line Flags
Theer!| _pri m_| oader moduleinterprets the following command line flags:
-1 oader Loader

Specifies the name of the loader used by er| _pri m | oader. Loader can be efil e (use the loca file
system), or i net (load using the boot _ser ver on another Erlang node). If Loader is user defined, the
defined Loader port program is started.

If the- | oader flagisomitted, it defaultstoefi | e.
-1 oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifieswhich other Erlang nodesthei net loader can use. Thisflagis mandatory if the- | oader i net flag
is present. On each host, there must be on Erlang node with the er | _boot _ser ver which handles the load
requests. Host s isalist of IP addresses (hostnames are not acceptable).

-id Id

Specifiesthe identity of the Erlang runtime system. If the system runs as a distributed node, | d must beidentical
to the name supplied with the - sname or - nane distribution flags.

- set cooki e Cooki e
Specifiesthe cookie of the Erlang runtime system. Thisflag ismandatory if the- | oader i net flagispresent.

SEE ALSO

init(3), erl_boot_server(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

erlang

erlang

Erlang module

By convention, most built-in functions (BIFs) are seen as being in the module erl ang. A number of
the BIFs are viewed more or less as part of the Erlang programming language and are auto-imported.
Thus, it is not necessary to specify the module name and both the calls atomto_|ist(Erlang) and
erlang:atomto_Ilist(Erlang) areidentical.

In thetext, auto-imported BIFs are listed without modul e prefix. BIFslisted with modul e prefix are not auto-imported.

BIFs may fail for a variety of reasons. All BIFs fail with reason badar g if they are called with arguments of an
incorrect type. The other reasons that may make BIFs fail are described in connection with the description of each
individua BIF.

Some BIFs may be used in guard tests, these are marked with "Allowed in guard tests".

Data Types
ext _binary()
A binary data object, structured according to the Erlang external term format.

ti mestanp() =
{MegaSecs :: integer() >= 0O,
Secs :: integer() >= 0,
M croSecs :: integer() >= 0}
See now/0.
Exports

abs(Nunber) -> integer() | float()
Types:
Number = nunber ()
Returns an integer or float which isthe arithmetical absolute value of Nunber .

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.
erl ang: adl er32(Data) -> integer()
Types:

Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erl ang: adl er32(0d dAdl er, Data) -> integer()
Types:

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

A dAdl er = integer()
Data = iodata()

Continue computing the adler32 checksum by combining the previous checksum, O dAdlI er , with the checksum of
Dat a.

The following code:

erl ang: adl er 32(Dat al) ,
erl ang: adl er 32(X, Dat a2) .

- would assign the same valueto Y as this would:

Y = erl ang: adl er 32([Dat al, Dat a2]).

erl ang: adl er 32_conbi ne(Fi rst Adl er, SecondAdl er, SecondSi ze) -> integer()

Types:
Fi rst Adl er = SecondAdl er = integer()
SecondSi ze = integer()

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erl ang: adl er 32(Dat al) ,
erl ang: adl er 32(Y, Dat a2) .

- would assign the same value to Z as this would:

erl ang: adl er32(Dat al),
erl ang: adl er 32(Dat a2) ,
erl ang: adl er32_conbi ne(X, Y,iolist_size(Data2)).

N < X
o u

erl ang: append_el enent (Tupl el, Tern) -> Tuple2
Types:
Tupl el = Tuple2 = tuple()
Term = term)
Returns a new tuple which has one element more than Tupl el, and contains the elements in Tupl el followed

by Ter mas the last element. Semantically equivalent to | i st _to_tuple(tuple_to list(Tuple) ++
[Term), but much faster.

> erl ang: append_el ement ({one, two}, three).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

erlang

{one, two, t hr ee}

appl y(Fun, Args) -> term)
Types:
Fun = function()
Args = [term()]
Call afun, passing the elementsin Ar gs as arguments.

Note: If the number of elementsin the arguments are known at compile-time, the call is better written asFun(Ar g1,
Arg2, ... ArgN.

Warning:

Earlier, Fun could also be given as{ Modul e, Functi on}, equivaenttoappl y(Modul e, Functi on,
Ar gs) . This usage is deprecated and will stop working in afuture release of Erlang/OTP.

appl y(Mbdul e, Function, Args) -> term)
Types.
Modul e = nodul e()
Function = atom()
Args = [tern()]
Returnstheresult of applying Funct i on inModul e to Ar gs. The applied function must be exported from Modul e.
The arity of the function isthe length of Ar gs.

> apply(lists, reverse, [[a, b, c]]).
[c, b, a]

app! y can be used to evaluate BIFs by using the module name er | ang.

> apply(erlang, atomto_list, ['Erlang']).
"Erl ang”

Note: If the number of arguments are known a compiletime, the cal is better written as
Modul e: Function(Argl, Arg2, ..., ArgN).

Failure: er r or _handl er: undefi ned_functi on/ 3 iscaledif the applied function is not exported. The error
handler can be redefined (see process flag/2). If theer r or _handl er isundefined, or if the user has redefined the
default er r or _handl er so the replacement module is undefined, an error with the reason undef is generated.

atomto_binary(Atom Encoding) -> binary()

Types:
At om = at on()
Encoding = latinl | utf8 | unicode

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returns a binary which corresponds to the text representation of At om If Encodi ng isl ati nl, there will be one
byte for each character in the text representation. If Encodi ng isut f 8 or uni code, the characterswill be encoded
using UTF-8 (meaning that characters from 16480 up to OxFF will be encoded in two bytes).

Note:

Currently,at om t o_bi nary(Atom | ati nl) cannever fail because thetext representation of an atom can
only contain characters from 0 to 16#FF. In afuture release, the text representation of atoms might be allowed to
contain any Unicode character and at om t o_bi nary(Atom | ati nl) will fail if the text representation
for the At omcontains a Unicode character greater than 16#FF.

> atomto_binary('Erlang', latinl)
<<"Erl ang" >>

atomto list(Atom -> string()
Types:
Atom = atom()

Returns a string which corresponds to the text representation of At om

> atomto_list('Erlang').
"Erl ang”

bi nary_part (Subj ect, PosLen) -> binary()
Types:
Subj ect = binary()
PosLen = {Start, Lengt h}
Start = integer() >= 0
Length = integer() >= 0
Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of abinary:

1> Bin = <<1, 2, 3,4,5,6,7,8,9, 10>>
2> binary_part(Bin, {byte_size(Bin), -5)).
<<6,7,8,9, 10>>

If PosLen in any way references outside the binary, abadar g exception israised.
St art iszero-based, i.e.

1> Bin = <<1, 2, 3>>
2> binary_part(Bin, {0, 2})
<1, 2>>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

erlang

Seethe STDLIB module bi nar y for details about the PosLen semantics.
Allowed in guard tests.

bi nary_part (Subject, Start, Length) -> binary()

Types:
Subj ect = binary()
Start = integer() >= 0

Length = integer() >= 0
Thesameasbi nary_part (Subj ect, {Pos, Len}).
Allowed in guard tests.

bi nary to_aton(Bi nary, Encoding) -> aton{()

Types:
Bi nary = binary()
Encoding = latinl | utf8 | unicode

Returnsthe atom whosetext representationisBi nar y. If Encodi ngisl at i n1, notrandation of bytesinthebinary
is done. If Encodi ng isut f 8 or uni code, the binary must contain valid UTF-8 sequences; furthermore, only
Unicode characters up to OxFF are allowed.

Note:

bi nary _to_at on(Bi nary, utf8) will fail if the binary contains Unicode characters greater than 16#FF.
In afuture release, such Unicode characters might be allowed and bi nary_t o_at om(Bi nary, utf8) will
not fail in that case.

> binary_to_aton(<<"Erlang">> |latinl).
' Erl ang’
> binary_to_at on(<<1024/ utf8>>, utf8).
** exception error: bad argunent
in function binary_to_aton 2
called as binary_to_aton(<<208, 128>>, ut f 8)

bi nary_to_exi sting_atomBi nary, Encoding) -> atom()

Types:
Bi nary = binary()
Encoding = latinl | utf8 | unicode

Workslike binary_to_atorm/2, but the atom must already exist.
Failure: badar g if the atom does not already exist.

binary_to_list(Binary) -> [char()]
Types:
Bi nary = binary()
Returns alist of integers which correspond to the bytes of Bi nary.

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

binary to list(Binary, Start, Stop) -> [char()]
Types.

Bi nary = binary()

Start = Stop = 1..byte_size(Binary)

Asbinary to_Iist/1,butreturnsalist of integers corresponding to the bytes from position St ar t to position
St op in Bi nary. Positionsin the binary are numbered starting from 1.

Note:

This function's indexing style of using one-based indices for binaries is deprecated. New code should use
the functions in the STDLIB module bi nary instead. They consequently use the same (zero-based) style of
indexing.

bitstring_to_ list(Bitstring) -> [char()|bitstring()]
Types:
Bitstring = bitstring()

Returns a list of integers which correspond to the bytes of Bi t st ri ng. If the number of bits in the binary is not
divisible by 8, the last element of the list will be a bitstring containing the remaining bits (1 up to 7 bits).

binary to termBinary) -> term))
Types:
Bi nary = ext _bi nary()

Returns an Erlang term which is the result of decoding the binary object Bi nar y, which must be encoded according
to the Erlang external term format.

Warning:

When decoding binaries from untrusted sources, consider using bi nary to_t ernf 2 to prevent denia of
service attacks.

See also term to_binary/1 and binary_to termy2.

binary to termBinary, Opts) -> term)
Types:
Opts = [safe]
Bi nary = ext _binary()
Asbi nary_t o_terni 1, but takes options that affect decoding of the binary.
safe
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that may be used to attack the Erlang system. In the event of receiving
unsafe data, decoding fails with abadarg error.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

erlang

Currently, this prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded
in certain structures like pids, refs, funs, etc.), and creation of new external function references. None of those
resources are currently garbage collected, so unchecked creation of them can exhaust available memory.

Failure: badar g if saf e is specified and unsafe data is decoded.
See alsoterm to_binary/1, binary to term/1, and list_to_existing_atom/1.

bit size(Bitstring) -> integer() >= 0
Types.
Bitstring = bitstring()

Returns an integer which isthe sizein bitsof Bi t st ri ng.

> bit_size(<<433:16, 3: 3>>).
19

> bit_size(<<1,2,3>>).

24

Allowed in guard tests.

erl ang: bunp_reducti ons(Reductions) -> void()
Types:
Reductions = integer() >= 0
This implementation-dependent function increments the reduction counter for the calling process. In the Beam

emulator, the reduction counter is normally incremented by one for each function and BIF call, and a context switch
is forced when the counter reaches the maximum number of reductions for a process (2000 reductionsin R12B).

Warning:

This BIF might be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte_size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()
Returns an integer which is the number of bytes needed to contain Bi t st ri ng. (That is, if the number of bitsin
Bi t st ri ngisnot divisible by 8, the resulting number of bytes will be rounded up.)

> byte_size(<<433:16, 3:3>>).
3

> byte_size(<<1, 2, 3>>).

3

Allowed in guard tests.

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: cancel _tinmer(TinerRef) -> Tine | fal se

Types:
Ti mer Ref = reference()
Time = integer() >= 0

Cancelsatimer, where Ti mer Ref wasreturned by either erlang:send_after/3 or erlang: start_timer/3. If thetimer is
there to be removed, the function returns the time in milliseconds left until the timer would have expired, otherwise
f al se (which means that Ti ner Ref was never atimer, that it has already been cancelled, or that it has already
delivered its message).

See also erlang: send_after/3, erlang: start_timer/3, and erlang:read_timer/1.
Note: Cancelling atimer does not guarantee that the message has not aready been delivered to the message queue.

check_ol d_code(Moddul €) -> bool ean()
Types:
Modul e = atom()
Returnst r ue if the Mbdul e hasold code, and f al se otherwise.

See also code(3).

check_process_code(Pi d, Mdule) -> bool ean()
Types:
Pid = pid()
Modul e = atom()
Returnst r ue if theprocess Pi d isexecuting old codefor Modul e. That is, if the current call of the process executes

old code for this module, or if the process has references to old code for this module, or if the process contains funs
that references old code for this module. Otherwiseg, it returnsf al se.

> check_process_code(Pid, lists).
fal se

See also code(3).

erlang:crc32(Data) -> integer() >= 0
Types:
Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang: crc32(A dCrc, Data) -> integer() >= 0
Types:
AdCrc = integer() >=0
Data = iodata()
Continue computing the crc32 checksum by combining the previous checksum, O dCr c, with the checksum of Dat a.

The following code:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

erlang

erl ang: crc32(Datal),
erl ang: crc32(X, Dat a2).

X
I n

- would assign the same valueto Y as this would:

Y = erl ang: crc32([Dat al, Dat a2]).

erlang: crc32_conbine(FirstCrc, SecondCrc, SecondSize) -> integer() >= 0

Types.
FirstCrc = SecondCrc = integer() >= 0
SecondSi ze = integer() >= 0

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erl ang: crc32(Datal),
erl ang: crc32(Y, Dat a2) .

- would assign the same value to Z as this would:

erl ang: crc32(Datal),
erl ang: crc32(Dat a2),
erl ang: crc32_conbi ne(X, Y,iolist_size(Data2)).

N < X
Inomn

date() -> Date
Types:
Date = cal endar: date()
Returnsthe current date as{ Year, Month, Day}.

The time zone and daylight saving time correction depend on the underlying OS.

> date().
{1995, 2, 19}

erl ang: decode_packet (Type, Bi n, Opti ons) -> {ok, Packet, Rest} | {nore, Length} |
{error, Reason}

Types.
Bin = binary()
Options = [Opt]

Packet = binary() | HttpPacket

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Rest = binary()
Length integer() > 0 | undefined
Reason = term)

Type, Opt -- see bel ow

Ht t pPacket = HttpRequest | HtpResponse | HttpHeader | http_eoh |
Ht t pError

Ht t pRequest = {http_request, HttpMethod, HttpUri, HttpVersion}

Ht t pResponse = {http _response, HttpVersion, integer(), HtpString}
Ht t pHeader = {http_header, integer(), HttpField, Reserved=term(),
Val ue=Ht t pSt ri ng}

HtpError = {http_error, HtpString}

Ht t pMet hod = Htt pMet hodAtom | HitpString

Htt pMet hodAtom = ' OPTIONS' | 'GET' | 'HEAD | 'POST' | 'PUT' | 'DELETE |
' TRACE'
HtpUi ="'*" | {absoluteURl, http|https, Host=HttpString, Port=integer()]

undefined, Path=HttpString} | {schene, Schene=HttpString, HttpString} |
{abs_path, HtpString} | HtpString

Ht t pVersion = {Major=integer(), Mnor=integer()}
HtpString = string() | binary()
HtpField = HtpFieldAtom | HttpString

Ht t pFi el dAtom = ' Cache-Control' | 'Connection' | 'Date' | 'Pragnma' |
"Transfer-Encoding' | 'Upgrade' | 'Via' | 'Accept' | 'Accept-Charset' |

" Accept - Encodi ng' | ' Accept-Language' | 'Authorization' | 'From | 'Host'
| "If-Modified-Since' | '"If-Match' | 'If-None-Match' | 'If-Range' | 'If-
Unnodi fi ed-Since' | 'Max-Forwards' | 'Proxy-Authorization' | 'Range' |
'"Referer' | 'User-Agent' | 'Age' | 'Location' | 'Proxy-Authenticate'

| "Public' | '"Retry-After' | 'Server' | 'Vary' | '"Warning' | ' Ww

Aut henticate' | "Allow | 'Content-Base' | 'Content-Encoding' | 'Content-
Language' | 'Content-Length' | 'Content-Location' | 'Content-M5" |

' Content-Range' | 'Content-Type' | 'Etag' | 'Expires' | 'Last-Modified

| ' Accept-Ranges' | 'Set-Cookie' | 'Set-Cookie2' | 'X-Forwarded-For' |

' Cookie' | 'Keep-Aive' | 'Proxy-Connection'

Decodesthe binary Bi n according to the packet protocol specified by Type. Very similar to the packet handling done
by sockets with the option { packet, Type} .

If an entire packet is contained in Bin it is returned together with the remainder of the binary as
{ ok, Packet, Rest}.

If Bi n does not contain the entire packet, { mor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet or undef i ned if the expected packet size is not known. decode_packet can then be called again
with more data added.

If the packet does not conform to the protocol format { er r or , Reason} isreturned.

Thefollowing values of Type arevalid:

raw | O

No packet handling is done. Entire binary is returned unlessit is empty.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

erlang

11 2] 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of header can be one, two, or four bytes; the order of the bytesis big-endian. The header will be stripped
off when the packet is returned.

line
A packet is a line terminated with newline. The newline character is included in the returned packet unless the
line was truncated according to the option | i ne_| engt h.
asnl | cdr | sunrm| fcgi | tpkt
The header is not stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER

sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)

fcgi - Fast CGI

t pkt - TPKT format [RFC1006]

http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
above. A packet is either arequest, a response, a header or an end of header mark. Invalid lines are returned as
H t pError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings.

The protocol type ht t p should only be used for thefirst linewhen aHt t pRequest oraHtt pResponse is
expected. Thefollowing calls should use ht t ph to get Ht t pHeader 'suntil ht t p_eoh isreturned that marks
the end of the headers and the beginning of any following message body.

Thevariantshtt p_bi nand ht t ph_bi n will return strings (Ht t pSt r i ng) as binariesinstead of lists.
The following options are avail able:
{packet size, integer()}

Sets the max allowed size of the packet body. If the packet header indicates that the length of the packet islonger
than the max allowed length, the packet is considered invalid. Default is 0 which means no size limit.

{l'ine_length, integer()}
For packet typel i ne, truncate lines longer than the indicated length.

Option | i ne_I| engt h also appliesto ht t p* packet types as an alias for option packet _si ze in the case
when packet _si ze itself isnot set. This usageis only intended for backward compatibility.

> erl ang: decode_packet (1, <<3, "abcd">>,[]).
{ok, <<"abc">>, <<"d" >>}

> erl ang: decode_packet (1, <<5, "abcd">>,[]).
{nore, 6}

del et e_nodul e(Modul e) -> true | undefined
Types:
Modul e = atom()

Makesthe current code for Modul e become old code, and deletes all references for this module from the export table.
Returnsundef i ned if the module does not exist, otherwiset r ue.

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

Failure: badar g if thereis already an old version of Mbdul e.

denmoni tor (MonitorRef) -> true
Types:
Moni t or Ref = reference()

If Moni t or Ref isareference which the calling process obtained by calling monitor/2, this monitoring is turned off.
If the monitoring is aready turned off, nothing happens.

Oncedenoni t or (Moni t or Ref) hasreturneditisguaranteedthatno{' DOAWN , MnitorRef, _, , _}
message due to the monitor will be placed in the caller's message queue in thefuture. A {* DOAN' , Moni t or Ref,
_, _, _} message might have been placed in the caller's message queue prior to the call, though. Therefore, in most
cases, it is advisable to remove such a' DOWN message from the message queue after monitoring has been stopped.
demonitor (MonitorRef, [flush]) can be used instead of denoni t or (Moni t or Ref) if this cleanup is wanted.

Note:

Prior to OTPrelease R11B (ertsversion 5.5) denoni t or / 1 behaved completely asynchronous, i.e., the monitor
was active until the "demonitor signal" reached the monitored entity. This had one undesirable effect, though.
Y ou could never know when you were guaranteed not to receive a DOWN message due to the monitor.

Current behavior can be viewed as two combined operations: asynchronously send a "demonitor signa" to the
monitored entity and ignore any future results of the monitor.

Failure: Itisan error if Moni t or Ref refersto amonitoring started by another process. Not all such cases are cheap
to check; if checking is cheap, the call failswith badar g (for exampleif Moni t or Ref isaremote reference).

denoni t or (Moni tor Ref, OptionList) -> bool ean()
Types:
Moni t or Ref = reference()

OptionList = [Option]
Option = flush | info

Thereturned valueist r ue unlessi nf o ispart of Opt i onLi st .

denoni t or (Moni torRef, []) isequivaent to demonitor(Monitor Ref).
Currently the following Opt i onsare valid:

flush

Remove (one) { _, MonitorRef, _, _, _} message, if thereis one, from the caler's message queue
after monitoring has been stopped.

Callingdenoni t or (Moni t or Ref, [fl ush]) isequivaent to the following, but more efficient:

denoni t or (Mbni t or Ref) ,

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

erlang

recei ve
{_, MonitorRef, , _, } ->
true
after 0 ->
true
end

i nfo
Thereturned value is one of the following:
true

The monitor was found and removed. In thiscase no ' DOAN' message due to this monitor have been nor will
be placed in the message queue of the caller.

fal se

The monitor was not found and could not be removed. This probably because someone aready has placed a
" DOWN' message corresponding to this monitor in the caller's message queue.

If thei nf o optioniscombined withthef | ush option, f al se will bereturned if aflush was needed; otherwise,
true.

Note:
More options may be added in the future.

Failure:badar g if Opt i onLi st isnotalist, orif Opt i onisnotavalidoption, or thesamefailureasfor demonitor/1

di sconnect _node(Node) -> bool ean() | ignored
Types:
Node = node()

Forces the disconnection of a node. This will appear to the node Node as if the local node has crashed. This BIF
is mainly used in the Erlang network authentication protocols. Returnst r ue if disconnection succeeds, otherwise
f al se. If thelocal nodeis not aive, the function returnsi gnor ed.

erl ang: di splay(Term) -> true
Types:
Term = term)
Prints atext representation of Ter mon the standard output.

Warning:
This BIF isintended for debugging only.

el ement (N, Tuple) -> term)
Types:
N = 1..tuple_size(Tuple)
Tupl e = tuple()

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returns the Nth element (numbering from 1) of Tupl e.

> element (2, {a, b, c}).
b

Allowed in guard tests.

erase() -> [{Key, Val}]
Types:
Key = Val = term))
Returns the process dictionary and deletesiit.

> put (keyl, {1, 2, 3}),

put (key2, [a, b, c]),

erase().

[{keyl, {1, 2,3}},{key2,[a,b,c]}]

erase(Key) -> Val | undefined
Types:
Key = Val = term)
Returns the value Val associated with Key and deletes it from the process dictionary. Returns undef i ned if no
value is associated with Key.

> put (keyl, {merry, |anbs, are, playing}),
X = erase(keyl),

{X, erase(keyl)}.

{{nerry, | anbs, are, pl ayi ng}, undef i ned}

error (Reason)
Types:
Reason = term()
Stops the execution of the calling process with the reason Reason, where Reason isany term. The actual exit reason

will be{ Reason, Wher e}, where\Wher e isalist of the functions most recently called (the current function first).
Since evaluating this function causes the process to terminate, it has no return value.

> catch error(foobar).

{"EXIT , {foobar,[{erl| _eval,do_apply, 5},
{erl _eval, expr, 5},
{shel | , exprs, 6},
{shel | , eval _exprs, 6},
{shel |, eval _| oop, 3}]1}}

error (Reason, Args)
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

erlang

Reason = term()

Args = [term)]
Stops the execution of the calling process with the reason Reason, where Reason isany term. The actual exit reason
will be{ Reason, Wher e}, where\Wher e isalist of the functions most recently called (the current function first).
Ar gs is expected to be the list of arguments for the current function; in Beam it will be used to provide the actua

arguments for the current function in the Wher e term. Since evaluating this function causes the process to terminate,
it has no return value.

exi t (Reason)
Types:
Reason = term()

Stops the execution of the calling process with the exit reason Reason, where Reason isany term. Since evaluating
this function causes the process to terminate, it has no return value.

> exit(foobar).

** exception exit: foobar
> catch exit(foobar)
{"EXIT , foobar}

exit(Pid, Reason) -> true
Types:
Pid = pid()
Reason = term()
Sends an exit signal with exit reason Reason to the process Pi d.
The following behavior apply if Reason isany term except nor mal orkil | :

If Pi disnot trapping exits, Pi d itself will exit with exit reason Reason. If Pi d istrapping exits, the exit signal is
transformed intoamessage{' EXI T', From Reason} and delivered to the message queue of Pi d. Fr omisthe
pid of the process which sent the exit signal. See also process_flag/2.

If Reason istheatomnor mal , Pi d will not exit. If it istrapping exits, the exit signal istransformed into a message
{"EXIT", From nornmal} anddelivered to its message queue.

If Reasonistheatomki | | ,thatisifexit (Pid, kill) iscaled,anuntrappableexitsignal issenttoPi d which
will unconditionally exit with exit reason ki | | ed.

erl ang: external _size(Term) -> integer() >=0
Types:
Term= term)

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies always:

> Sjzel byte_size(termto_binary(Term)
> Sjze2 erl ang: ext ernal _si ze(Tern),

> true = Sizel =< Size2

true

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Thisisequivalent to acall to:

erl ang: external _size(Term [])

erl ang: external _size(Term [Option]) -> integer() >=0
Types:

Term= term)

Option = {m nor_version, Version}

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies always:

> Sizel = byte_size(termto_binary(Term Options)),
> Size2 = erlang: external _size(Term Options),

> true = Sizel =< Size2.

true

The option { mi nor _ver si on, Version} specifies how floats are encoded. See term_to_binary/2 for a more
detailed description.

float (Nunber) -> float()
Types:
Nunber = nunber()
Returns afloat by converting Nunber to afloat.

> fl oat (55).
55.0

Allowed in guard tests.

Note:

Note that if used on the top-level in a guard, it will test whether the argument is a floating point number; for
clarity, useis float/1 instead.

When f | oat / 1 isused in an expression in aguard, such as'f | oat (A) == 4. 0/, it converts a number as
described above.

float _to list(Float) -> string()
Types:
Float = float()
Returns a string which corresponds to the text representation of Fl oat .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

erlang

> float_to list(7.0).
"7.00000000000000000000e+00"

erlang: fun_info(Fun) -> [{ltem Info}]
Types:
Fun = function()
Iltem= arity
| env
| index
| nane
| nodul e
| new_ i ndex
| new uniq
| pid
| type
| unig
Info = term))

Returns alist containing information about the fun Fun. Each element of the list isatuple. The order of thetuplesis
not defined, and more tuples may be added in afuture release.

Warning:

This BIF is mainly intended for debugging, but it can occasionaly be useful in library functions that might need
to verify, for instance, the arity of afun.

There are two types of funswith dlightly different semantics:

A funcreated by f un M F/ Aliscaled an external fun. Calling it will always call the function F with arity Ain the
latest code for module M Note that module Mdoes not even need to be loaded when thefunf un M F/ Aliscreated.

All other funs are called local. When alocal fun is called, the same version of the code that created the fun will be
called (even if newer version of the module has been |oaded).

The following elements will always be present in the list for both local and external funs:
{type, Type}
Type iseither | ocal orexternal .
{odul e, Modul e}
Modul e (an atom) isthe module name.
If Fun isalocal fun, Modul e isthe module in which the fun is defined.
If Fun isan external fun, Modul e isthe module that the fun refers to.
{nane, Nane}
Nane (an atom) is a function name.

If Fun isalocal fun, Nane isthe name of the local function that implements the fun. (This name was generated
by the compiler, and is generaly only of informational use. Asitisalocal function, it is not possible to call it
directly.) If no codeis currently loaded for thefun, [] will be returned instead of an atom.

If Fun isan externa fun, Name is the name of the exported function that the fun refersto.

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{arity, Arity}
Ari ty isthe number of arguments that the fun should be called with.
{env, Env}
Env (alist) isthe environment or free variables for the fun. (For external funs, the returned list is always empty.)
The following elements will only be present in thelist if Fun islocal:
{pid, Pid}
Pi d isthe pid of the process that originally created the fun.
{i ndex, Index}
I ndex (aninteger) is an index into the modul€'s fun table.
{new_i ndex, | ndex}
I ndex (aninteger) is an index into the modul€'s fun table.
{new_uni g, Uni g}
Uni q (abinary) isaunique value for thisfun. It is calculated from the compiled code for the entire module.
{uni g, Uniq}

Uni g (an integer) is a unique value for this fun. Starting in the R15 release, this integer is calculated from the
compiled code for the entire module. Before R15, this integer was based on only the body of the fun.

erlang: fun_info(Fun, Item -> {Item Info}

Types.
Fun = fun()
Iltem Info -- see bel ow

Returnsinformation about Fun as specified by | t emyintheform{ It em I nf o} .
For any fun, | t emcan be any of the atomsnodul e, nane,arity,env,ortype.

For alocal fun, | t emcan also be any of the atoms i ndex, new_i ndex, new_uni ¢, uni g, and pi d. For an
external fun, the value of any of these items is aways the atom undef i ned.

See erlang:fun_info/1.

erlang: fun_to_list(Fun) -> string()
Types:
Fun = fun()

Returns a string which corresponds to the text representation of Fun.

erl ang: functi on_exported(Mdul e, Function, Arity) -> bool ean()
Types:

Modul e = Function = aton()

Arity = arity()

Returnst r ue if the module Modul e isloaded and contains an exported function Funct i on/ Ari t y; otherwise
fal se.

Returnsf al se for any BIF (functions implemented in C rather than in Erlang).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

erlang

garbage _collect() -> true

Forces an immediate garbage collection of the currently executing process. The function should not be used, unless it
has been noticed -- or there are good reasons to suspect -- that the spontaneous garbage collection will occur too late
or not at al. Improper use may seriously degrade system performance.

Compatibility note: In versions of OTP prior to R7, the garbage collection took place at the next context switch, not
immediately. To force a context switch after acall to er | ang: gar bage_col | ect (), it was sufficient to make
any function call.

gar bage_col |l ect (Pid) -> bool ean()
Types:
Pid = pid()
Workslikeer | ang: gar bage_col | ect () but on any process. The same caveats apply. Returnsf al se if Pi d
refersto adead process; t r ue otherwise.

get() -> [{Key, Val}]
Types:
Key = Val = term)
Returns the process dictionary asalist of { Key, Val} tuples.

> put (keyl, nerry),

put (key2, |anbs),

put (key3, {are, playing}),

get ().

[{keyl, merry}, {key2, | anbs}, {key3, {are, pl ayi ng}}]

get (Key) -> Val | undefined
Types:
Key = Val = term)
Returns the value Val associated with Key in the process dictionary, or undef i ned if Key does not exist.

> put (keyl, merry),

put (key2, |anbs),

put ({any, [valid, ternm}, {are, playing}),
get ({any, [valid, ternm}).

{are, pl ayi ng}

erl ang: get _cooki e() -> Cookie | nocookie
Types:
Cooki e = aton()

Returns the magic cookie of the local node, if the nodeis dlive; otherwise the atom nocooki e.
get _keys(Val) -> [Key]

Types:
Val = Key = term)

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returns alist of keys which are associated with the value Val in the process dictionary.

> put (mary, {1, 2}),
put (had, {1, 2}),

put (a, {1, 2}),
put(little, {1, 2}),

put (dog, {1, 3}),
put (I amb, {1, 2}),

get _keys({1, 2}).
[mary, had, a,little, | anb]

erl ang: get _stacktrace() -> [{Mdule, Function, Arity | Args, Location}]
Types:

Modul e = Function = atom()

Arity = arity()

Args = [term()]

Location = [{aton(),tern()}]

Get the cal stack back-trace (stacktrace) of the last exception in the caling process as a list of
{Modul e, Function, Arity, Locati on} tuples. TheAri ty fieldinthefirst tuple may be the argument list of
that function call instead of an arity integer, depending on the exception.

If there has not been any exceptionsin aprocess, the stacktrace is[]. After acode changefor the process, the stacktrace
may also bereset to [].

The stacktrace is the same data as the cat ch operator returns, for example:
{'EXIT ,{badarg, Stacktrace}} = catch abs(x)

Locat i on isa(possibly empty) list of two-tuples that may indicate the location in the source code of the function.
The first element is an atom that describes the type of information in the second element. Currently the following
items may occur:

file

The second element of the tuple isa string (list of characters) representing the filename of the source file of the
function.

line

The second element of the tuple is the line number (an integer greater than zero) in the source file where the
exception occurred or the function was called.

See dso erlang:error/1 and erlang:error/2.

group_|l eader () -> G ouplLeader
Types:
G oupLeader = pid()
Returns the pid of the group leader for the process which evaluates the function.

Every process is a member of some process group and all groups have a group leader. All 10 from the group is
channeled to the group leader. When a new processis spawned, it gets the same group leader as the spawning process.
Initially, at system start-up, i ni t isboth its own group leader and the group leader of all processes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

erlang

group_| eader (GroupLeader, Pid) -> true
Types:
GroupLeader = Pid = pid()
Setsthe group leader of Pi d to G- oupLeader . Typically, thisis used when a processes started from a certain shell
should have another group leader thani ni t .

See also group_leader/0.

hal t ()
Thesameashal t (0, []).

> halt().
0os_pronpt %

hal t (St at us)
Types:

Status = integer() >= 0 | string() | abort
Thesameashal t (Status, []).

> halt(17).
os_pronpt % echo $?
17

os_pronpt %

hal t (St atus, Options)

Types:
Status = integer() >= 0| string() | abort
Options = [Option]
Option = {flush,boolean()} | term)

St at us must be anon-negative integer, astring, or the atom abor t . Halts the Erlang runtime system. Has no return
value. Depending on St at us:

integer()
The runtime system exits with the integer value St at us as status code to the calling environment (operating
system).

string()
An erlang crash dump is produced with St at us as slogan, and then the runtime system exits with status code
1.

abort
The runtime system aborts producing a core dump, if that is enabled in the operating system.

Note that on many platforms, only the status codes 0-255 are supported by the operating system.

For integer St at us the Erlang runtime system closes all ports and allows async threads to finish their operations
before exiting. To exit without such flushinguse Opt i on as{f | ush, f al se}.

For statusesst ri ng() andabort thef| ush optionisignored and flushing is not done.

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: hash(Term Range) -> Hash
Returns a hash value for Ter mwithintherange 1. . Range. The allowed rangeis 1..2/27-1.

Warning:

This BIF is deprecated as the hash value may differ on different architectures. Also the hash values for integer
terms larger than 227 as well as large binaries are very poor. The BIF is retained for backward compatibility
reasons (it may have been used to hash records into a file), but al new code should use one of the BIFs
er| ang: phash/ 2 or er| ang: phash2/ 1, 2 instead.

hd(List) -> tern()
Types.
List = [term)]
Returnsthe head of Li st , that is, the first element.

> hd([1,2, 3,4,5]).
1

Allowed in guard tests.
Failure: badar g if Li st istheempty list[].

erl ang: hi ber nat e(Modul e, Function, Args)
Types:
Modul e = Function = atom()
Args = [term()]
Puts the calling process into await state where its memory allocation has been reduced as much as possible, which is
useful if the process does not expect to receive any messages in the near future.

The process will be awaken when a message is sent to it, and control will resumein Modul e: Funct i on with the
arguments given by Ar gs with the call stack emptied, meaning that the process will terminate when that function
returns. Thuser | ang: hi ber nat e/ 3 will never return to its caler.

If the process has any message in its message queue, the process will be awaken immediately in the same way as
described above.

Inmoretechnical terms, whater | ang: hi ber nat e/ 3 doesisthefollowing. It discardsthecall stack for the process.
Then it garbage collects the process. After the garbage collection, all live dataisin one continuous heap. The heap is
then shrunken to the exact same size as the live data which it holds (even if that size is less than the minimum heap
size for the process).

If the size of the live datain the processis|ess than the minimum heap size, the first garbage collection occurring after
the process has been awaken will ensure that the heap sizeis changed to asize not smaller than the minimum heap size.

Note that emptying the call stack means that any surrounding cat ch is removed and has to be re-inserted after
hibernation. One effect of this is that processes started using proc_| i b (also indirectly, such as gen_ser ver
processes), should use proc_lib: hibernate/3 instead to ensure that the exception handler continues to work when the
process wakes up.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

erlang

integer to list(lnteger) -> string()
Types:
I nteger = integer()
Returns a string which corresponds to the text representation of | nt eger .

> integer_to_list(77)
w7

integer to list(lnteger, Base) -> string()
Types.

Integer = integer()

Base = 2..36

Returns a string which corresponds to the text representation of | nt eger in base Base.

> integer_to_list(1023, 16).
oY==

iolist_to_binary(loListOrBinary) -> binary()
Types:
loListOBinary = iolist() | binary()
Returns a binary which is made from the integers and binariesin | oLi st Or Bi nary.

> Binl = <<1, 2, 3>>

<<1, 2, 3>>

> Bin2 = <<4, 5>>

<<4, 5>>

> Bin3 = <<6>>

<<6>>

> jolist_to_binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4, 6>>

iolist_size(ltem -> integer() >=0
Types:
Iltem=iolist() | binary()
Returns an integer which isthe size in bytes of the binary that would betheresultof i ol i st _to_binary(lten).

> iolist_size([1,2]<<3,4>>]).
4

is_alive() -> bool ean()

Returnst r ue if thelocal nodeis dive; that is, if the node can be part of a distributed system. Otherwise, it returns
fal se.

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

is_atom(Term -> bool ean()
Types.
Term= term)
Returnst r ue if Ter misan atom; otherwisereturnsf al se.

Allowed in guard tests.

is_binary(Tern) -> bool ean()
Types:
Term= term)
Returnst r ue if Ter misabinary; otherwisereturnsf al se.
A binary always contains a complete number of bytes.

Allowed in guard tests.

is_bitstring(Tern) -> bool ean()
Types:
Term= term)
Returnst r ue if Ter misabitstring (including a binary); otherwise returnsf al se.

Allowed in guard tests.

i s_bool ean(Term -> bool ean()
Types:
Term= term()
Returnst r ue if Ter miseither theatomt r ue or theatomf al se (i.e. aboolean); otherwisereturnsf al se.

Allowed in guard tests.

erlang:is_builtin(Mdule, Function, Arity) -> bool ean()
Types:
Modul e = Function = atom)
Arity = arity()
Returnst r ue if Modul e: Functi on/ Ari ty isaBIF implemented in C; otherwise returns f al se. ThisBIF is
useful for builders of cross reference tools.

is_float(Term) -> bool ean()
Types:
Term = term()
Returnst r ue if Ter misafloating point number; otherwisereturnsf al se.

Allowed in guard tests.

is_function(Tern) -> bool ean()
Types:
Term = term()
Returnst r ue if Ter misafun; otherwisereturnsf al se.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

erlang

Allowed in guard tests.

is_function(Term Arity) -> bool ean()
Types:
Term = term)
Arity = arity()
Returnst r ue if Ter misafun that can be applied with Ar i t y number of arguments; otherwisereturnsf al se.
Allowed in guard tests.

Warning:

Currently, i s_functi on/ 2 will also return t r ue if the first argument is a tuple fun (a tuple containing two
atoms). In afuture release, tuple funs will no longer be supported andi s_f unct i on/ 2 will returnf al se if
given atuple fun.

is_integer(Term -> bool ean()
Types:
Term = term)
Returnst r ue if Ter misan integer; otherwisereturnsf al se.

Allowed in guard tests.

is_list(Term) -> bool ean()
Types:
Term = term)
Returnst r ue if Ter misalist with zero or more elements; otherwisereturnsf al se.

Allowed in guard tests.

i s_nunber (Ternm) -> bool ean()
Types:
Term = term)
Returnst r ue if Ter mis either an integer or afloating point number; otherwisereturnsf al se.

Allowed in guard tests.

is_pid(Tern) -> bool ean()
Types:
Term = term)
Returnst r ue if Ter misapid (processidentifier); otherwisereturnsf al se.

Allowed in guard tests.
is_port(Term -> bool ean()

Types:
Term = term)

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returnst r ue if Ter misaport identifier; otherwise returnsf al se.
Allowed in guard tests.

i s_process_alive(Pid) -> bool ean()
Types:
Pid = pid()

Pi d must refer to a process at the local node. Returnst r ue if the process exists and is dive, that is, is not exiting
and has not exited. Otherwise, returnsf al se.

is_record(Term RecordTag) -> bool ean()
Types:

Term = term)

RecordTag = atom()

Returnst r ue if Ter misatuple and itsfirst element isRecor dTag. Otherwise, returnsf al se.

Note:

Normally the compiler treatscallstoi s_r ecor d/ 2 specialy. It emits code to verify that Ter misatuple, that
itsfirst element is Recor dTag, and that the size is correct. However, if the Recor dTag isnot aliteral atom,
thei s_recor d/ 2 BIF will be called instead and the size of the tuple will not be verified.

Allowed in guard tests, if Recor dTag isaliteral atom.

is_record(Term RecordTag, Size) -> bool ean()
Types:

Term = term()

RecordTag = atom()

Size = integer()

Recor dTag must be an atom. Returns t r ue if Ter mis atuple, its first element is Recor dTag, and its size is
Si ze. Otherwise, returnsf al se.

Allowed in guard tests, provided that Recor dTag isaliteral atom and Si ze isaliteral integer.

Note:

This BIF is documented for completeness. In most casesi s_r ecor d/ 2 should be used.

is_reference(Term -> bool ean()
Types.
Term= term)
Returnst r ue if Ter misareference; otherwise returnsf al se.

Allowed in guard tests.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

erlang

is_tuple(Term) -> bool ean()
Types:
Term= term()
Returnst r ue if Ter misatuple; otherwise returnsf al se.

Allowed in guard tests.

length(List) -> integer() >= 0
Types:

List = [term()]
Returnsthe length of Li st .

> length([1,2,3,4,56,7,8,9]).
9

Allowed in guard tests.

link(Pid) -> true
Types:
Pid = pid() | port()

Creates a link between the calling process and another process (or port) Pi d, if thereis not such alink aready. If a
process attempts to create alink to itself, nothing is done. Returnst r ue.

If Pi d does not exist, the behavior of the BIF depends on if the calling process is trapping exits or not (see
process_flag/2):

« If thecalling processis not trapping exits, and checking Pi d ischeap -- that is, if Pi d islocal -- | i nk/ 1 fails
with reason nopr oc.

» Otherwise, if the calling processis trapping exits, and/or Pi d isremote, | i nk/ 1 returnst r ue, but an exit
signal with reason nopr oc is sent to the calling process.

list to atom(String) -> atom()
Types:
String = string()
Returns the atom whose text representationis St r i ng.

> |ist_to_atom("Erlang").
' Erl ang'

list to binary(loList) -> binary()
Types.
loList = iolist()

Returns a binary which is made from the integers and binariesin | oLi st .

> Binl = <<1, 2, 3>>.

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

<<1, 2, 3>>

> Bin2 = <<4, 5>>

<<4, 5>>

> Bin3 = <<6>>

<<6>>

> |list_to_binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4, 6>>

list_to bitstring(BitstringList) -> bitstring()
Types:
BitstringList = [BitstringList | bitstring() | char()]

Returns a bhitstring which is made from the integers and bitstrings in Bi t stringLi st. (The last tail in
Bi t stringLi st isallowed to be abitstring.)

> Binl = <<1, 2, 3>>

<<1, 2, 3>>

> Bin2 = <<4,5>>

<<4, 5>>

> Bin3 = <<6,7: 4,>>

<<6>>

> |list_to_binary([Bini,1,[2,3,Bin2], 4| Bin3])
<<1,2,3,1,2,3,4,5,4,6, 7: 46>>

list to existing aton(String) -> aton()
Types:
String = string()
Returns the atom whose text representation is St r i ng, but only if there already exists such atom.
Failure: badar g if there does not already exist an atom whose text representationis St ri ng.

list to float(String) -> float()
Types:
String = string()
Returns the float whose text representationis St r i ng.

> |ist_to_float("2. 2017764e+0")
2.2017764

Failure: badar g if St ri ng contains abad representation of afloat.
list _to_integer(String) -> integer()
Types:

String = string()
Returns an integer whose text representationis St r i ng.

> |ist_to_integer("123").

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

erlang

123
Failure: badar g if St ri ng contains abad representation of an integer.

list to integer(String, Base) -> integer()
Types:
String = string()
Base = 2..36
Returns an integer whose text representation in base Base isSt ri ng.

> |ist_to_integer("3FF", 16).
1023

Failure: badar g if St ri ng contains a bad representation of an integer.

list_to_pid(String) -> pid()
Types:
String = string()
Returns a pid whose text representationis St r i ng.

Warning:

ThisBIF isintended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

> |list_to_pid("<0.4.1>").
<0.4. 1>
Failure: badar g if St ri ng contains a bad representation of a pid.

list to tuple(List) -> tuple()
Types:
List = [term()]

Returns atuple which correspondsto Li st . Li st can contain any Erlang terms.

> |ist_to_tuple([share, ['Ericsson_B', 163]]).
{share, ['Ericsson_B', 163]}

| oad_nodul e(Mbdul e, Binary) -> {nodule, Mdule} | {error, Reason}

Types:
Modul e = at om()
Bi nary = binary()

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Reason = badfile | not_purged | badfile

If Bi nary contains the object code for the module Modul e, this BIF loads that object code. Also, if the code for
the module Mbdul e already exists, al export references are replaced so they point to the newly loaded code. The
previously loaded code iskept in the system as old code, asthere may still be processes which are executing that code.
It returns either { rodul e, Mbdul e}, or{error, Reason} if loading fails. Reason isone of the following:

badfile

The object code in Bi nar y has an incorrect format.
not purged

Bi nar y contains a module which cannot be loaded because old code for this module already exists.
badfile

The object code contains code for another module than Modul e

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

erlang:load_nif(Path, Loadlnfo) -> ok | {error, {Reason, Text}}
Types.
Path = string()
Loadlnfo = term))
Reason = load failed | bad_lib | load | reload | upgrade | ol d_code
Text = string()

Note:

In releases older than OTP R14B, NIFs were an experimental feature. Versions of OTP older than R14B might
have different and possibly incompatible NIF semantics and interfaces. For example, in R13B03 the return value
onfalurewas{ err or, Reason, Text}.

Loads and links a dynamic library containing native implemented functions (NIFs) for amodule. Pat h is afile path
to the sharabl e object/dynamic library file minus the OS-dependent file extension (.so for Unix and .dll for Windows).
See erl_nif on how to implement aNIF library.

Loadl nf o canbeany term. It will be passed on to thelibrary as part of theinitialization. A good practiceistoinclude
amodule version number to support future code upgrade scenarios.

Thecadl tol oad_ni f/ 2 must be made directly from the Erlang code of the module that the NIF library belongs to.

Itreturnseither ok, or{ error, { Reason, Text }} if loadingfails. Reason isoneof theatomsbelow, while Text
is a human readable string that may give some more information about the failure.

| oad _failed
The OSfailed to load the NIF library.
bad_|ib

The library did not fulfil the requirements as a NIF library of the calling module.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erlang

load | reload | upgrade
The corresponding library callback was not successful.
ol d_code
Thecadl tol oad_ni f/ 2 was made from the old code of a module that has been upgraded. Thisis not allowed.

erl ang: | oaded() -> [Modul €]
Types:
Modul e = atom()
Returns alist of all loaded Erlang modules (current and/or old code), including preloaded modules.

See also code(3).

erlang:localtine() -> DateTine
Types:
Dat eTi me = cal endar: datetine()
Returnsthe current local dateandtime{{ Year, Month, Day}, {Hour, M nute, Second}}.

The time zone and daylight saving time correction depend on the underlying OS.

> erlang: |l ocaltime()
{{1996, 11, 6}, { 14, 45, 17}}

erlang:localtine_to_universaltine(Localtinme :: {Datel, Tinel}) ->
{Date2, Tine2}
Types:
Datel = Date2 = cal endar: date()
Timel = Tinme2 = cal endar:tine()

Converts local date and time to Universal Time Coordinated (UTC), if this is supported by the underlying OS.
Otherwise, no conversionisdoneand { Dat el, Ti mel} isreturned.

> erlang:localtine_to_universaltime({{1996, 11, 6}, {14, 45, 17}}).
{{1996, 11, 6}, {13, 45, 17}}

Failure: badar g if Dat el or Ti mel do not denote avalid date or time.

erlang:localtine_to _universaltime({Datel, Tinmel}, |IsDst) -> {Date2, Ti ne2}
Types.

Dat el Dat e2 = cal endar: date()

Tinmel = Tine2 cal endar: tinme()

IsDst = true | false | undefined

Converts local date and time to Universa Time Coordinated (UTC) just like
erlang:localtine_to_universaltine/1,butthecaler decidesif daylight saving timeis active or not.

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If 1sDst == true the {Datel, Tinel} is during daylight saving time, if 1sDst == false
it is not, and if I sDst == undefi ned the underlying OS may guess, which is the same as calling
erlang:localtine_to_universaltine({Datel, Tinel}).

> erlang:localtine_to_universaltime({{1996, 11, 6}, {14, 45,17}}, true).
{{1996, 11, 6}, {12, 45, 17}}

> erlang:localtine_to_universaltime({{1996, 11, 6}, {14, 45,17}}, fal se).
{{1996, 11, 6}, {13, 45, 17}}

> erlang:localtinme_to_universaltime({{1996, 11, 6}, {14, 45,17}}, undefi ned).
{{1996, 11, 6}, {13, 45, 17}}

Failure: badar g if Dat el or Ti mel do not denote avalid date or time.

make_ref () -> reference()
Returns an almost unique reference.
Thereturned referencewill re-occur after approximately 2482 calls; thereforeit isunique enough for practical purposes.

> make_ref ()
#Ref <0. 0. 0. 135>

erl ang: nake tuple(Arity, InitialValue) -> tuple()
Types:
Arity = arity()
Initial Value = term))
Returns anew tuple of the given Ari t y, where all elementsare | ni ti al Val ue.

> erl ang: nake_tuple(4, []).

{01, 01,01, 11}

erl ang: make_tuple(Arity, Default, InitList) -> tuple()
Types:
Arity = arity()
Default = term))
InitList = [{Position,term)}]
Position = integer()
erl ang: make_t upl e first createsatuple of size Ar i t y where each element hasthevalue Def aul t . It thenfills
invaluesfrom| ni t Li st. Eachlist elementin| ni t Li st must be atwo-tuple where the first element is a position

in the newly created tuple and the second element is any term. If aposition occurs more than once in the list, the term
corresponding to last occurrence will be used.

> erl ang: make_tuple(5, [], [{2,ignored}, {5, zz},{2,aa}])
{{l1,aa,[],[1, 2z}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

max(Ternl, TernR) -> Maxi mum
Types.
Terml = TernR2 = Maxi mum = ternm()

Return the largest of Ter mlL and Ter n®2; if the terms compare equal, Ter niL will be returned.

erl ang: md5(Data) -> Digest
Types:

Data = iodata()

Di gest = binary()

Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes). Dat a isabinary
or alist of small integers and binaries.

See The MD5 Message Digest Algorithm (RFC 1321) for more information about MD5.

Warning:
The MD5 Message Digest Algorithm is not considered safe for code-signing or software integrity purposes.

erl ang: md5_final (Context) -> Digest
Types:
Context = Digest = binary()
Finishes the update of an MD5 Cont ext and returns the computed VD5 message digest.

erlang: md5_init() -> Context
Types:
Context = binary()
Creates an M D5 context, to be used in subsequent callsto nd5_updat e/ 2.

erl ang: nd5_updat e(Cont ext, Data) -> NewCont ext
Types.

Data = iodata()

Cont ext = NewContext = binary()

Updates an MD5 Cont ext with Dat a, and returns a NewCont ext .

erlang: menory() -> [{Type, Size}]
Types:
Type, Size -- see bel ow

Returns alist containing information about memory dynamically allocated by the Erlang emulator. Each element of
thelistisatuple{ Type, Si ze}. Thefirst element Typeisan atom describing memory type. The second element
Si zeismemory sizein bytes. A description of each memory type follows:

t ot al

The total amount of memory currently allocated, which is the same as the sum of memory sizefor pr ocesses
and system

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

processes
The total amount of memory currently allocated by the Erlang processes.
processes_used
The total amount of memory currently used by the Erlang processes.
This memory is part of the memory presented as pr ocesses memory.
system
Thetotal amount of memory currently allocated by the emulator that is not directly related to any Erlang process.
Memory presented as pr ocesses isnot included in this memory.
atom
Thetotal amount of memory currently allocated for atoms.
This memory is part of the memory presented as sy st emmemory.
at om used
The total amount of memory currently used for atoms.
This memory is part of the memory presented as at ommemory.
bi nary
Thetotal amount of memory currently allocated for binaries.
This memory is part of the memory presented as sy st emmemory.
code
The total amount of memory currently allocated for Erlang code.
This memory is part of the memory presented as sy st emmemory.
ets
The total amount of memory currently allocated for ets tables.
This memory is part of the memory presented as sy st emmemory.
maxi mum
The maximum total amount of memory allocated since the emulator was started.
Thistupleisonly present when the emulator is run with instrumentation.
For information on how to run the emulator with instrumentation see instrument(3) and/or erl(1).
| ow
Only on 64-bit halfword emulator.

Thetotal amount of memory allocated in low memory areas that are restricted to less than 4 Gb even though the
system may have more physical memory.

May be removed in future releases of halfword emulator.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

erlang

Note:

The syst emvalue is not complete. Some allocated memory that should be part of the syst emvalue are not.

When theemulator isrun withinstrumentation, thesy st emvalueismore accurate, but memory directly allocated
by mal | oc (and friends) are still not part of the syst emvalue. Direct calls to mal | oc are only done from
OS specific runtime libraries and perhaps from user implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Since the t ot al value is the sum of processes and syst emthe error in syst emwill propagate to the
tot al value.

The different amounts of memory that are summed are not gathered atomically which also introduce an error
in the result.

The different values has the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

total = processes + system

processes = processes_used + ProcessesNot Used
system = atom + binary + code + ets + O her System
atom = atom used + AtonNot Used

Real Total = processes + Real System
Real System = system + M ssedSystem

More tuplesin the returned list may be added in the future.

Note:

Thet ot al valueis supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emulator stack(s) are not supposed to be included. That is, the
t ot al value is not supposed to be equal to the total size of al pages mapped to the emulator. Furthermore,
due to fragmentation and pre-reservation of memory areas, the size of the memory segments which contain the
dynamically allocated memory blocks can be substantially larger than the total size of the dynamically allocated
memory blocks.

Note:

Since erts version 5.6.4 er | ang: menor y/ 0 requires that all erts alloc(3) alocators are enabled (default
behaviour).

Failure:

not sup
If an erts_alloc(3) alocator has been disabled.

erl ang: nenory(Type | [Type]) -> Size | [{Type, Size}]
Types:

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Type, Size -- see bel ow

Returns the memory size in bytes allocated for memory of type Type. The argument can also be given as alist of
Type atoms, in which case a corresponding list of { Type, Si ze} tuplesisreturned.

Note:

Since erts version 5.6.4 er | ang: menor y/ 1 requires that al erts alloc(3) alocators are enabled (default
behaviour).

Failures:

badar g

If Type isnot one of the memory types listed in the documentation of erlang: memory/0.
badar g

If maxi mumis passed as Ty pe and the emulator is not run in instrumented mode.
not sup

If an erts_alloc(3) alocator has been disabled.

See also erlang: memory/O.

m n(Ternl, TernR) -> M nimum
Types:
Ternml = Tern2 = Mnimum = term)

Return the smallest of Ter ml and Ter n2; if the terms compare equal, Ter mlL will be returned.

nmodul e_| oaded(Modul €) -> bool ean()
Types:
Modul e = atom()
Returnst r ue if the module Modul e isloaded, otherwisereturnsf al se. It does not attempt to load the module.

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

nmoni tor (Type, lItem) -> Monitor Ref
Types:
Type = process
Item = pid() | {RegNane, Node} | RegNane
RegNane = atom()
Node = node()
Moni t or Ref = reference()
The calling process starts monitoring | t emwhich is an object of type Type.

Currently only processes can be monitored, i.e. the only allowed Type ispr ocess, but other types may be allowed
in the future.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang

| t emcan be:
pi d()

The pid of the process to monitor.
{ RegNane, Node}

A tuple consisting of a registered name of a process and a node name. The process residing on the node Node
with the registered name RegNane will be monitored.

RegNane
The process locally registered as RegNane will be monitored.

Note:

When a process is monitored by registered name, the process that has the registered name at the time when
noni t or/ 2 iscaled will be monitored. The monitor will not be effected, if the registered nameis unregistered.

A' DONN' message will be sent to the monitoring processif | t emdies, if | t emdoes not exist, or if the connection
islost to the nodewhich | t emresideson. A' DOAN message has the following pattern:

{' DOMN', MonitorRef, Type, Object, |nfo}

where Moni t or Ref and Type are the same as described above, and:
hj ect
A reference to the monitored object:

» thepid of the monitored process, if | t emwas specified as a pid.
e {RegNane, Node},ifltemwasspecified as{ RegNane, Node}.

« {RegNanme, Node},ifltemwasspecified asRegNamne. Node will in this case be the name of the
local node (node()).

Info

Either the exit reason of the process, hopr oc (non-existing process), or noconnect i on (no connection to
Node).

Note:

If/when moni t or / 2 is extended (e.g. to handle other item types than pr ocess), other possible values for
oj ect ,and | nf o inthe' DOAN' message will be introduced.

The monitoring is turned off either when the' DOAN' message is sent, or when demonitor/1 is called.

If an attempt is made to monitor a process on an older node (where remote process monitoring is not implemented or
one where remote process monitoring by registered name is not implemented), the call failswith badar g.

Making several callstononi t or / 2 for thesamel t emisnot an error; it resultsin as many, completely independent,
monitorings.

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

The format of the' DOAN message changed in the 5.2 version of the emulator (OTP release R9B) for monitor
by registered name. The Obj ect element of the' DOWN' message could in earlier versions sometimes be the
pid of the monitored process and sometimes be the registered name. Now the Obj ect element isawaysatuple
consisting of theregistered name and the node name. Processes on new nodes (emulator version 5.2 or greater) will
aways get' DOAN messages on the new format even if they are monitoring processes on old nodes. Processes
on old nodes will always get' DOAN messages on the old format.

nmoni t or _node(Node, Flag) -> true

Types:
Node = node()
Fl ag = bool ean()

Monitors the status of the node Node. If Fl ag ist r ue, monitoring is turned on; if FI ag isf al se, monitoring
isturned off.

Making several callsto moni t or _node(Node, true) for the same Node isnot an error; it resultsin as many,
completely independent, monitorings.

If Node fails or does not exist, the message{ nodedown, Node} isdelivered to the process. If aprocess has made
two calstononi t or _node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, there will be an attempt to create one. If thisfails, anodedown message
is delivered.

Nodes connected through hidden connections can be monitored as any other node.
Failure: badar gif the local nodeisnot aive.

erl ang: noni t or_node(Node, Flag, Options) -> true
Types:

Node = node()

Fl ag = bool ean()

Options = [Option]

Option = all ow_passi ve_connect
Behaves as nonitor_node/2 except that it alows an extra option to be given, namely
al | ow_passi ve_connect . Theoption alowsthe BIF to wait the normal net connection timeout for the monitored
node to connect itself, even if it cannot be actively connected from this node (i.e. it is blocked). The state where this

might be useful can only be achieved by using thekernel optiondi st _aut o_connect once. If that kernel option
isnot used, theal | ow_passi ve_connect option has no effect.

Note:
The al | ow_passi ve_connect option is used internally and is seldom needed in applications where the
network topology and the kernel optionsin effect is known in advance.

Failure: badar g if the local nodeis not alive or the option list is malformed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

erlang

erlang: ni f _error (Reason)
Types:
Reason = term()

Works exactly like erlang:error/1, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a
stub function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer will not generate false
warnings.

erlang: ni f _error (Reason, Args)
Types:
Reason = term()
Args = [term()]
Works exactly like erlang:error/2, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a

stub function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer will not generate false
warnings.

node() -> Node
Types:
Node = node()
Returns the name of the local node. If the node is not alive, nonode@ohost isreturned instead.

Allowed in guard tests.

node(Arg) -> Node

Types:
Arg = pid() | port() | reference()
Node = node()

Returns the node where Ar g is located. Ar g can be a pid, a reference, or a port. If the local node is not alive,
nonode@ohost isreturned.

Allowed in guard tests.

nodes() -> Nodes
Types.
Nodes = [node()]

Returnsalist of all visible nodesin the system, excluding the local node. Same asnodes(vi si bl e) .

nodes(Arg | [Arg]) -> Nodes

Types:
Arg = visible | hidden | connected | this | known
Nodes = [node()]

Returnsalist of nodes according to argument given. The result returned when the argument isalist, isthelist of nodes
satisfying the disjunction(s) of the list elements.

Ar g can be any of the following:
visible
Nodes connected to this node through normal connections.

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

hi dden
Nodes connected to this node through hidden connections.
connected
All nodes connected to this node.
this
This node.
known
Nodes which are known to this node, i.e., connected, previously connected, etc.

Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible, hidden]),
andnodes() = nodes(visible).

If thelocal nodeisnot alive, nodes(t his) == nodes(known) == [nonode@ohost], for any other Ar g
the empty list [] is returned.

now() -> tinestanp()

Types.
ti mestanp() = {MegaSecs, Secs, M croSecs}
MegaSecs = Secs = McroSecs = integer() >= 0

Returnsthetuple{ MegaSecs, Secs, M croSecs} whichistheelapsedtimesince00:00 GMT, January 1, 1970
(zero hour) on the assumption that the underlying OS supports this. Otherwise, some other point in time is chosen.
It is also guaranteed that subsequent calls to this BIF returns continuously increasing values. Hence, the return value
fromnow() can be used to generate unique time-stamps, and if it is called in atight loop on a fast machine the time
of the node can become skewed.

It can only be used to check the local time of day if the time-zone info of the underlying operating system is properly
configured.

If you do not need the return value to be unigue and monotonically increasing, use os:timestamp/0 instead to avoid
some overhead.

open_port (PortNane, PortSettings) -> port()
Types:
Port Name = {spawn, Conmand} | {spawn_driver, Comand} | {spawn_execut abl e,
FileNanme} | {fd, In, Qut}
Command = string()
FileName = [FileNameChar] | binary()

Fi |l eNameChar = integer() (1..255 or any Unicode codepoint, see
description)

In = Qut = integer()
Port Settings = [Opt]

Opt = {packet, N} | stream| {line, L} | {cd, Dir} | {env, Env} | {args,
[ArgString 1} | {arg0, ArgString} | exit_status | use_stdio | nouse_stdio

| stderr_to_stdout | in | out | binary | eof
N=1]| 2| 4
L = integer()

Dir = string()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

erlang

ArgString = [FileNanmeChar] | binary()
Env = [{Nane, Val}]

Name = string()

Val = string() | false

Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an external Erlang process.
Por t Name isone of the following:

{spawn, Command}

Starts an external program. Command is the name of the external program which will be run. Command runs
outside the Erlang work space unless an Erlang driver with the name Conmand isfound. If found, that driver will
be started. A driver runsin the Erlang workspace, which meansthat it is linked with the Erlang runtime system.

When starting external programson Solaris, thesystemcall vf or k isusedin preferencetof or k for performance
reasons, athough it has a history of being less robust. If there are problems with using vf or k, setting the
environment variable ERL_NO_VFORK to any value will cause f or k to be used instead.

For external programs, the PATH is searched (or an equivalent method is used to find programs, depending on
operating system). This is done by invoking the shell on certain platforms. The first space separated token of
the command will be considered as the name of the executable (or driver). This (among other things) makes
this option unsuitable for running programs having spaces in file or directory names. Use { spawn_executable,
Command} instead if spacesin executable file namesisdesired.

{spawn_driver, Conmand}

Workslike{ spawn, Conmand}, but demandsthefirst (space separated) token of the command to be the name
of aloaded driver. If no driver with that name isloaded, abadar g error is raised.

{spawn_execut abl e, Comand}

Works like { spawn, Command}, but only runs external executables. The Comrand in its whole is used
as the name of the executable, including any spaces. If arguments are to be passed, the ar gs and ar g0
Port Set ti ngs can be used.

The shell is not usually invoked to start the program, it's executed directly. Neither isthe PATH (or equivalent)
searched. To find a program in the PATH to execute, use os.find_executable/1.

Only if ashell script or . bat fileis executed, the appropriate command interpreter will implicitly be invoked,
but there will still be no command argument expansion or implicit PATH search.

The name of the executable as well as the arguments given in ar gs and ar g0 is subject to Unicode file
name trandation if the system is running in Unicode file name mode. To avoid trandation or force i.e.
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. See the file module, the
file:native_name_encoding/O function and the stdlib users guide for details.

Note:

The charactersin the name (if given as alist) can only be > 255 if the Erlang VM is started in Unicode file
name translation mode, otherwise the name of the executable is limited to the |SO-latin-1 character set.

If the Conmand cannot be run, an error exception, with the posix error code as the reason, is raised. The error
reason may differ between operating systems. Typicaly the error enoent is raised when one tries to run a
program that is not found and eaccess israised when the given fileis not executable.

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{fd, In, Qut}

Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor | n
can be used for standard input, and the file descriptor Qut for standard output. It isonly used for various servers
in the Erlang operating system (shel | and user). Hence, its use is very limited.

Port Set ti ngs isalist of settings for the port. Valid settings are:

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. Valid values for N
arel, 2, or 4.

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{line, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent newline sequence) is
delivered in one single message. The message data format is { Fl ag, Li ne}, where Fl ag is either eol or
noeol andLi ne isthe actual data delivered (without the newline sequence).

L specifies the maximum line length in bytes. Lineslonger than thiswill be delivered in more than one message,
with the Fl ag set to noeol for al but the last message. If end of file is encountered anywhere else than
immediately following a newline sequence, the last line will also be delivered with the Fl ag set to noeol . In
all other cases, lines are delivered with Fl ag setto eol .

The{packet, N} and{li ne, L} settingsare mutually exclusive.

{cd, Dir}
Thisisonly validfor{ spawn, Conmand} and{spawn_execut abl e, Comrand} . Theexterna program
startsusing Di r asitsworking directory. Di r must be a string. Not available on VxWorks.

{env, Env}

Thisisonly valid for { spawn, Conmand} and { spawn_execut abl e, Command} . The environment of
the started process is extended using the environment specificationsin Env.

Env should be alist of tuples{ Nane, Val }, where Name is the name of an environment variable, and Val
isthevalueit isto have in the spawned port process. Both Nane and Val must be strings. The one exception is
Val beingtheatomf al se (inanaogy with os: get env/ 1), which removes the environment variable.

If Unicode filename encoding is in effect (see the erl manual page), the strings (both Narre and Val ue) may
contain characters with codepoints > 255.

{args, [string()]}

Thisoptionisonly valid for { spawn_execut abl e, Conmand} and specifies arguments to the executable.
Each argument is given as aseparate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, similar behavior is mimicked.

Theargumentsare not expanded by the shell prior to being supplied to the executable, most notably this meansthat
file wildcard expansion will not happen. Use filelib:wildcard/1 to expand wildcards for the arguments. Note that
even if the program is a Unix shell script, meaning that the shell will ultimately be invoked, wildcard expansion
will not happen and the script will be provided with the untouched arguments. On Windows®, wildcard expansion
isaways up to the program itself, why thisisn't an issue.

Note also that the actual executable name (a.k.a. ar gv[0]) should not begiveninthislist. The proper executable
name will automatically be used as argv[0] where applicable.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

erlang

When the Erlang VM is running in Unicode file name mode, the arguments can contain any Unicode characters
and will be translated into whatever is appropriate on the underlying OS, which means UTF-8 for all platforms
except Windows, which has other (more transparent) ways of dealing with Unicode arguments to programs.
To avoid Unicode trangdlation of arguments, they can be supplied as binaries in whatever encoding is deemed

appropriate.

Note:

The charactersin the arguments (if given asalist of characters) can only be > 255 if the Erlang VM is started
in Unicode file name mode, otherwise the arguments are limited to the | SO-latin-1 character set.

If one, for any reason, wants to explicitly set the program name in the argument vector, the ar g0 option can
be used.

{arg0, string()}

Thisoptionisonly valid for { spawn_execut abl e, Command} and explicitly specifies the program name
argument when running an executable. This might in some circumstances, on some operating systems, be
desirable. How the program responds to this is highly system dependent and no specific effect is guaranteed.

The unicode file name tranglation rules of the ar gs option apply to this option as well.
exit_status

This is only valid for { spawn, Comand} where Conmmand refers to an external program, and for
{spawn_execut abl e, Conmmand}.

When the external process connected to the port exits, a message of the form {Port,
{exit_status, Status}} issenttotheconnected process, where St at us isthe exit status of the external
process. If the program aborts, on Unix the same convention is used as the shellsdo (i.e., 128+signal).

If the eof option has been given as well, the eof message and the exi t _st at us message appear in an
unspecified order.

If the port program closes its stdout without exiting, the exi t _st at us option will not work.
use_stdio

Thisisonly validfor { spawn, Conmand} and{spawn_execut abl e, Conmand}. It alowsthe standard
input and output (file descriptors 0 and 1) of the spawned (UNIX) process for communication with Erlang.

nouse_stdio
The opposite of use_st di 0. Usesfile descriptors 3 and 4 for communication with Erlang.
stderr_to_stdout

Affects ports to externa programs. The executed program gets its standard error file redirected to its standard
output file. st derr _t o_st dout and nouse_st di o are mutually exclusive.

over |l apped_io

Affects ports to external programs on Windows® only. The standard input and standard output handles of the
port program will, if this option is supplied, be opened with the flag FILE_FLAG_OVERLAPPED, so that the
port program can (and has to) do overlapped I/O on its standard handles. Thisisnot normally the case for smple
port programs, but an option of value for the experienced Windows programmer. On all other platforms, this
option is silently discarded.

The port can only be used for input.

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

out

The port can only be used for output.
bi nary

All 10 from the port are binary data objects as opposed to lists of bytes.
eof

The port will not be closed at the end of the file and produce an exit signal. Instead, it will remain open and a
{Port, eof} messagewill be sent to the process holding the port.

hi de

When running on Windows, suppress creation of a new console window when spawning the port program. (This
option has no effect on other platforms.)

The defaultisst r eamfor al types of port and use_st di o for spawned ports.

Failure: If the port cannot be opened, the exit reason is badar g, system | i mi t, or the Posix error code which
most closely describes the error, or ei nval if no Posix code is appropriate:

badar g
Bad input argumentsto open_port.
systemlimt
All available portsin the Erlang emulator arein use.
enonem
There was not enough memory to create the port.
eagain
There are no more available operating system processes.
enanet ool ong
The external command given was too long.
enfile
There are no more available file descriptors (for the operating system process that the Erlang emulator runsin).
enfile
Thefiletableisfull (for the entire operating system).
eacces
The Command givenin{spawn_execut abl e, Command} doesnot point out an executablefile.
enoent
The Command givenin{spawn_execut abl e, Comand} does not point out an existing file.

During use of a port opened using { spawn, Nane}, {spawn_driver, Nane} or {spawn_execut abl e,
Nane}, errors arising when sending messages to it are reported to the owning process using signals of the form
{"EXIT, Port, PosixCode}.Seefil e(3) forpossiblevauesof Posi xCode.

The maximum number of ports that can be open at the same time is 1024 by default, but can be configured by the
environment variable ERL_ MAX PORTS.

erl ang: phash(Term Range) -> Hash
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

erlang

Term = term)
Range = 1..2732
Hash = 1..Range
Portable hash function that will give the same hash for the same Erlang term regardless of machine architecture and

ERTS version (the BIF was introduced in ERTS 4.9.1.1). Range can be between 1 and 232, the function returns a
hash value for Ter mwithintherange 1. . Range.

ThisBIF could be used instead of the old deprecated er | ang: hash/ 2 BIF, asit calculates better hashesfor all data-
types, but consider using phash2/ 1, 2 instead.

erl ang: phash2(Term [, Range]) -> Hash
Types.
Term= term()
Range = 1..2"32
Hash = 0..Range-1
Portable hash function that will give the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). Range can be between 1 and 232, the function returns a hash

value for Ter mwithin the range 0. . Range- 1. When called without the Range argument, a value in the range
0..2727- 1 isreturned.

This BIF should always be used for hashing terms. It distributes small integers better than phash/ 2, and it isfaster
for bignums and binaries.

Notethat therange 0. . Range- 1 isdifferent from the range of phash/ 2 (1. . Range).

pid_to list(Pid) -> string()
Types:
Pid = pid()
Returns a string which corresponds to the text representation of Pi d.

Warning:

ThisBIF isintended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

port_cl ose(Port) -> true
Types:
Port = port() | atom()
Closesan open port. Roughly thesameasPort ! {sel f(), cl ose} exceptfortheerror behaviour (seebelow),

and that the port does not reply with { Port, cl osed} . Any process may close aport withport _cl ose/ 1, not
only the port owner (the connected process).

For comparison: Port | {self(), close} failswithbadarg if Port cannot be sentto (i.e.,, Port refers
neither to a port nor to a process). If Por t isaclosed port nothing happens. If Por t isan open port and the calling
processis the port owner, the port replieswith { Port, cl osed} when all buffers have been flushed and the port
really closes, but if the calling processis not the port owner the port owner failswith badsi g.

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Notethat any processcancloseaportusingPort ! {Port Omer, cl ose} justasifititself wasthe port owner,
but the reply always goes to the port owner.

Inshort: port _cl ose(Port) hasacleaner and morelogical behaviour thanPort ! {self(), close}.

Failure: badar g if Por t isnot an open port or the registered name of an open port.

port _command(Port, Data) -> true

Types:
Port = port() | atom()
Data = iodata()

Sendsdatatoaport. SameasPort ! {sel f(), {conmmand, Dat a}} exceptfortheerror behaviour (seebelow).
Any process may send datato aport with port _conmand/ 2, not only the port owner (the connected process).

For comparison: Port ! {self(), {command, Data}} fallswithbadar g if Port cannot besentto (i.e.,
Por t refersneither to aport nor to aprocess). If Por t isaclosed port the data message disappears without a sound.
If Por t isopen and the calling processis not the port owner, the port owner failswith badsi g. The port owner fails
with badsi g dsoif Dat a isnotavalid 10 list.

Note that any process can send to aport using Port ! {Port Owner, {comrand, Data}} justasifititself
was the port owner.

In short: port _conmand(Port, Data) hasa cleaner and more logical behaviour than Port ! {sel f(),
{command, Data}}.

If the port is busy, the calling process will be suspended until the port is not busy anymore.
Failures:

badar g

If Por t isnot an open port or the registered name of an open port.
badar g

If Dat aisnotavalidiolist.

port_command(Port, Data, OptionList) -> bool ean()

Types:
Port = port() | atom()
Data = iodata()

OptionList = [Option]
Option = force
Opti on = nosuspend
Sends datato aport. port _command(Port, Data, []) equalsport_ comand(Port, Data).
If the port command is aborted f al se isreturned; otherwise, t r ue isreturned.
If the port is busy, the calling process will be suspended until the port is not busy anymore.
Currently the following Opt i onsare valid:

force
The calling process will not be suspended if the port is busy; instead, the port command is forced through. The
call will fail withanot sup exception if the driver of the port does not support this. For more information see
the ERL_DRV_FLAG _SOFT_BUSY driver flag.

nosuspend
The calling process will not be suspended if the port is busy; instead, the port command is aborted and f al se
is returned.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

erlang

Note:
More options may be added in the future.

Failures:

badar g
If Por t isnot an open port or the registered name of an open port.
badar g
If Dat a isnot avalidio list.
badar g
If Opti onLi st isnot avalid option list.
not sup
If thef or ce option has been passed, but the driver of the port does not allow forcing through a busy port.

port_connect (Port, Pid) -> true

Types:
Port = port() | atom()
Pid = pid()

Sets the port owner (the connected port) to Pi d. Roughly thesameasPort ! {self(), {connect, Pid}}
except for the following:

e Theerror behavior differs, see below.

e The port does not reply with { Por t , connect ed} .

* Thenew port owner gets linked to the port.

The old port owner stays linked to the port and have to call unl i nk(Por t) if thisisnot desired. Any process may
set the port owner to be any processwith port _connect/ 2.

For comparison: Port ! {self(), {connect, Pid}} failswithbadar g if Port cannot be sentto (i.e,
Por t refersneither to aport nor to a process). If Por t isaclosed port nothing happens. If Por t isan open port and
the calling process is the port owner, the port replieswith { Port, connect ed} to the old port owner. Note that
the old port owner is still linked to the port, and that the new is not. If Por t isan open port and the calling process
is not the port owner, the port owner fails with badsi g. The port owner fails with badsi g alsoif Pi d isnot an
existing local pid.

Note that any process can set the port owner usingPort | {Port Omer, {connect, Pid}} justasifititself
was the port owner, but the reply always goes to the port owner.

In short: port _connect (Port, Pid) hasa cleaner and more logical behaviour than Port ! {sel f(),
{connect, Pid}}.

Failure: badar g if Port isnot an open port or the registered name of an open port, or if Pi d is not an existing
local pid.

port_control (Port, Operation, Data) -> Res
Types:

Port = port() | atom()

Qperation = integer()

Data = Res = iodata()

Performs a synchronous control operation on a port. The meaning of Qper at i on and Dat a depends on the port,
i.e., onthe port driver. Not al port drivers support this control feature.

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returns: alist of integers in the range O through 255, or a binary, depending on the port driver. The meaning of the
returned data also depends on the port driver.

Failure: badar g if Port isnot an open port or the registered name of an open port, if Oper at i on cannot fitin a
32-bit integer, if the port driver does not support synchronous control operations, or if the port driver so decides for
any reason (probably something wrong with Oper at i on or Dat a).

erlang: port_call (Port, Operation, Data) -> tern()
Types:

Port = port() | atom()

Operation = integer()

Data = term))

Performs a synchronous call to a port. The meaning of Oper at i on and Dat a depends on the port, i.e., on the port
driver. Not all port drivers support this feature.

Port isaport identifier, referring to adriver.

Oper at i on isaninteger, which is passed on to the driver.

Dat a isany Erlang term. This datais converted to binary term format and sent to the port.
Returns: aterm from the driver. The meaning of the returned data al so depends on the port driver.

Failure: badar g if Port isnot an open port or the registered name of an open port, if Oper at i on cannot fitina
32-hit integer, if the port driver does not support synchronous control operations, or if the port driver so decides for
any reason (probably something wrong with Qper at i on or Dat a).

erlang: port_info(Port) -> [{Item Info}] | undefined

Types:
Port = port() | atom()
Iltem Info -- see bel ow

Returns alist containing tuples with information about the Por t , or undef i ned if the port is not open. The order
of the tuplesis not defined, nor are all the tuples mandatory.

{regi stered_nane, RegNane}

RegNane (an atom) isthe registered name of the port. If the port has no registered name, thistupleis not present
inthelist.

{id, Index}
I ndex (aninteger) isthe internal index of the port. Thisindex may be used to separate ports.
{connect ed, Pid}
Pi d isthe process connected to the port.
{l'i nks, Pids}
Pi ds isalist of pidsto which processes the port is linked.
{nane, String}
St ri ng isthe command name set by open_port.
{input, Bytes}
Byt es isthetotal number of bytes read from the port.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

erlang

{out put, Bytes}
Byt es isthetotal number of bytes written to the port.
{os_pid, Integer | undefined}

I nt eger isthe process identifier (or equivalent) of an OS process created with open_port ({spawn |
spawn_execut abl e, Command}, Opti ons). If the port is not the result of spawning an OS process,
thevalueisundef i ned.

Failure: badar g if Port isnot alocal port.

erlang: port_info(Port, Item) -> {ltem Info} | undefined | []
Types:

Port = port() | atom()

Iltem Info -- see bel ow

Returns information about Por t as specified by | t em or undef i ned if the port is not open. Also, if | tem ==
regi st er ed_nane and the port has no registered name, [] is returned.

For valid values of | t em and corresponding values of | nf o, see erlang:port_info/1.
Failure: badar g if Por t isnot alocal port.

erlang:port _to list(Port) -> string()
Types:
Port = port()
Returns a string which corresponds to the text representation of the port identifier Por t .

Warning:

ThisBIF isintended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

erlang: ports() -> [port()]
Returns alist of all ports on the local node.

pre_l oaded() -> [Modul €]
Types:
Modul e = atom()

Returns a list of Erlang modules which are pre-loaded in the system. As all loading of code is done through the file
system, the file system must have been loaded previously. Hence, at least the module i ni t must be pre-loaded.

erl ang: process_di spl ay(Pid, Type) -> void()
Types:

Pid = pid()

Type = backtrace

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Writes information about the local process Pi d on standard error. The currently allowed value for the atom Ty pe is
backt r ace, which shows the contents of the call stack, including information about the call chain, with the current
function printed first. The format of the output is not further defined.

process_flag(Fl ag, Value) -> A dVal ue
Types:
Fl ag, Value, 4 dValue -- see bel ow
Sets certain flags for the process which calls this function. Returns the old value of the flag.
process_flag(trap_exit, Bool ean)

Whentrap_exit issettotrue, exit signas arriving to a process are converted to {' EXIT', From
Reason} messages, which can be received as ordinary messages. If t rap_exi t issettof al se, the process
exits if it receives an exit signal other than nor mal and the exit signal is propagated to its linked processes.
Application processes should normally not trap exits.

See also exit/2.
process_flag(error_handl er, Mdule)

This is used by a process to redefine the error handler for undefined function calls and undefined registered
processes. Inexperienced users should not use this flag since code auto-loading is dependent on the correct
operation of the error handling module.

process_flag(m n_heap_size, M nHeapSi ze)
This changes the minimum heap size for the calling process.

process_flag(m n_bi n_vheap_si ze, M nBi nVHeapSi ze)
This changes the minimum binary virtual heap size for the calling process.

process_flag(priority, Level)

This setsthe process priority. Level isanatom. There are currently four priority levels: | ow, nor nal , hi gh,
and max. The default priority level isnor mal . NOTE: The max priority level isreserved for internal usein the
Erlang runtime system, and should not be used by others.

Internally in each priority level processes are scheduled in around robin fashion.

Execution of processes on priority nor mal and priority | owwill be interleaved. Processes on priority | owwill
be selected for execution less frequently than processes on priority nor mal .

When there are runnable processes on priority hi gh no processes on priority | ow, or nor mal will be selected
for execution. Note, however, that this does not mean that no processes on priority | ow, or nor mal will be able
to run when there are processes on priority hi gh running. On the runtime system with SMP support there might
be more processes running in parallel than processes on priority hi gh, i.e., al ow, and ahi gh priority process
might execute at the same time.

When there are runnable processes on priority max no processes on priority | ow, nor mal , or hi gh will be
selected for execution. As with the hi gh priority, processes on lower priorities might execute in parallel with
processes on priority max.

Scheduling is preemptive. Regardless of priority, a process is preempted when it has consumed more than a
certain amount of reductions since the last time it was selected for execution.

NOTE: You should not depend on the scheduling to remain exactly as it is today. Scheduling, at least on the
runtime system with SMP support, is very likely to be modified in the future in order to better utilize available
Processor cores.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

erlang

Thereiscurrently no automatic mechanism for avoiding priority inversion, such aspriority inheritance, or priority
ceilings. When using priorities you have to take this into account and handle such scenarios by yourself.

Making callsfromahi gh priority processinto codethat you don't have control over may causethehi gh priority
process to wait for a processes with lower priority, i.e., effectively decreasing the priority of the hi gh priority
process during the call. Even if thisisn't the case with one version of the code that you don't have under your
control, it might be the case in afuture version of it. This might, for example, happen if ahi gh priority process
triggers code loading, since the code server runs on priority nor ral .

Other prioritiesthan nor mal are normally not needed. When other priorities are used, they need to be used with
care, especially the hi gh priority must be used with care. A processon hi gh priority should only perform work
for short periods of time. Busy looping for long periods of timein ahi gh priority processwill most likely cause
problems, since there are important serversin OTP running on priority nor mal .

process_flag(save calls, N)

N must be an integer in the interval 0..10000. If N> 0, call saving is made active for the process, which means
that information about the N most recent global function calls, BIF calls, sends and receives made by the process
are saved in alist, which can be retrieved with process_info(Pid, |ast _calls). A global function
call is one in which the module of the function is explicitly mentioned. Only a fixed amount of information is
saved: atuple{ Modul e, Function, Arity} forfunction cals, and the mereatomssend, ' r ecei ve'
and ti meout for sendsand receives (' r ecei ve' when amessageisreceived andti meout when areceive
times out). If N= 0, call saving is disabled for the process, which is the default. Whenever the size of the call
saving list is set, its contents are reset.

process_flag(sensitive, Bool ean)

Set or clear thesensi t i ve flag for the current process. When a process has been marked as sensitive by calling
process_flag(sensitive, true),featuresin the run-time system that can be used for examining the
data and/or inner working of the process are silently disabled.

Features that are disabled include (but are not limited to) the following:

Tracing: Trace flags can still be set for the process, but no trace messages of any kind will be generated. (If the
sensi ti ve flagisturned off, trace messages will again be generated if there are any trace flags set.)

Sequential tracing: The sequential trace token will be propagated as usual, but no sequential trace messages will
be generated.

process_i nfo/ 1, 2 cannot be used to read out the message queue or the process dictionary (both will be
returned as empty lists).

Stack back-traces cannot be displayed for the process.
In crash dumps, the stack, messages, and the process dictionary will be omitted.

If {save_cal | s, N} has been set for the process, no function calls will be saved to the call saving list. (The
call saving list will not be cleared; furthermore, send, receive, and timeout events will still be added to the list.)

process_flag(Pid, Flag, Value) -> A dVal ue

Types:
Pid = pid()
Fl ag, Value, d dvalue -- see bel ow

Sets certain flags for the process Pi d, in the same manner as process flag/2. Returns the old value of the flag. The
allowed values for FI ag are only a subset of those allowed in pr ocess_f | ag/ 2, namely: save_cal | s.

Failure: badar g if Pi d isnot alocal process.

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

process_info(Pid) -> InfoResult

Types.
Pid = pid()
Item = atom()
Info = term()

InfoTuple = {Item Info}
I nf oTupl eLi st = [I nfoTupl €]
I nfoResult = InfoTuplelList | undefined

Returns a list containing | nf oTupl es with miscellaneous information about the process identified by Pi d, or
undef i ned if the processis not alive.

The order of the | nf oTupl es is not defined, nor are al the | nf oTupl es mandatory. The | nf oTupl es
part of the result may be changed without prior notice. Currently | nf oTupl es with the following | t ens are
part of the result: current _function, initial call, status, nessage_queue_| en, nessages,
links,dictionary,trap_exit,error_handler,priority,group_| eader,total heap_si ze,
heap_si ze,stack_si ze,reducti ons,andgar bage_col | ecti on. If the processidentified by Pi d hasa
registered namealsoan | nf oTupl e withl t em == regi st er ed_nane will appear.

See process_info/2 for information about specific | nf oTupl es.
Warning:
This BIF isintended for debugging only, use process info/2 for al other purposes.

Failure: badar g if Pi d isnot alocal process.

process_info(Pid, ItenSpec) -> InfoResult

Types:
Pid = pid()
Item = atom)
Info = term)

Itenmlist = [Item

ItenBpec = Item| Itenlist

InfoTuple = {Item Info}

I nf oTupl eLi st = [I nfoTupl €]

InfoResult = InfoTuple | InfoTupleList | undefined | []

Returnsinformation about the processidentified by Pi d asspecified by thel t enSpec, orundef i ned if the process
isnot aive.

If the processisaiveand | t enSpec isasinglel t em the returned value is the corresponding | nf oTupl e unless
I tenSpec == registered_nane and the process has no registered name. In thiscase [] isreturned. This
strange behavior is due to historical reasons, and is kept for backward compatibility.

If ItenBpec isanltenlist,theresultisan| nfoTupl eLi st. Thel nfoTupl esinthel nf oTupl eLi st
will appear with the corresponding | t ensin the same order asthel t ensappearedinthel t enlLi st. ValidI t ens
may appear multipletimesinthel t enli st .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

erlang

Note:

If registered_nane is pat of an Itenlist and the process has no name registered a
{regi stered_name, []} | nfoTupl e will appear in the resulting | nf oTupl eLi st . This behavior is
different thanwhen | t enSpec == r egi st er ed_nan®e, and than when pr ocess_i nf o/ 1 is used.

Currently the following | nf oTupl eswith corresponding | t ens are valid:
{backtrace, Bin}

The binary Bi n contains the same information as the output from er | ang: process_di spl ay(Pi d,
backtrace).Usebinary_to_list/1toobtanthestring of characters from the binary.

{bi nary, Binlnfo}

Bi nl nf o isalist containing miscellaneousinformation about binaries currently being referred to by this process.
This| nf oTupl e may be changed or removed without prior notice.

{catchl evel, CatchLevel}

Cat chLevel isthe number of currently active catches in this process. This| nf oTupl e may be changed or
removed without prior notice.

{current _function, {Mdule, Function, Arity}}
Mbdul e, Funct i on, Ari ty isthe current function call of the process.
{current _location, {Mdule, Function, Arity, Location}}

Modul e, Functi on, Ari ty isthe current function call of the process. Locat i on isalist of two-tuples that
describes the location in the source code.

{current _stacktrace, Stack}

Return the current call stack back-trace (stacktrace) of the process. The stack has the same format as returned
by erlang:get_stacktrace/O.

{dictionary, Dictionary}

Di cti onary isthedictionary of the process.
{error_handl er, Mdul e}

Modul e isthe error handler module used by the process (for undefined function calls, for example).
{garbage _coll ection, GCl nfo}

GCl nf o isalist which contains miscellaneousinformation about garbage collection for this process. The content
of GCI nf o may be changed without prior notice.

{group_| eader, G ouplLeader}
G oupLeader isgroup leader for the IO of the process.
{heap_si ze, Size}

Si ze isthesizeinwordsof youngest heap generation of the process. Thisgeneration currently include the stack of
the process. Thisinformation is highly implementation dependent, and may changeif theimplementation change.

{initial _call, {Mdule, Function, Arity}}
Modul e, Functi on, Ari ty istheinitial function call with which the process was spawned.
{l'i nks, PidsAndPort s}
Pi dsAndPort s isalist of pidsand port identifiers, with processes or ports to which the process has alink.

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{last_calls, false|Calls}

Thevalueisf al se if call saving isnot active for the process (see process flag/3). If call saving isactive, alist
isreturned, in which the last element is the most recent called.

{menory, Size}
Si ze isthe sizein bytes of the process. Thisincludes call stack, heap and internal structures.
{message_queue_l en, MessageQueuelen}

MessageQueueLen isthe number of messages currently in the message queue of the process. Thisisthelength
of thelist MessageQueue returned astheinfo item messages (see below).

{messages, MessageQueue}
MessageQueue isalist of the messages to the process, which have not yet been processed.
{m n_heap_si ze, M nHeapSi ze}
M nHeapSi ze isthe minimum heap size for the process.
{m n_bin_vheap_size, M nBi nVHeapSi ze}
M nBi nVHeapSi ze isthe minimum binary virtual heap size for the process.
{noni tored_by, Pids}
A list of pidsthat are monitoring the process (with noni t or / 2).
{noni tors, Mbnitors}

A list of monitors (started by noni t or / 2) that are activefor the process. For alocal process monitor or aremote
process monitor by pid, the list itemis{ pr ocess, Pi d}, and for aremote process monitor by name, the list
itemis{process, {RegNane, Node}}.

{priority, Level}

Level isthecurrent priority level for the process. For more information on priorities see process flag(priority,
Leve).

{reductions, Numnber}
Nunber isthe number of reductions executed by the process.
{regi stered_nane, Aton}

At omis the registered name of the process. If the process has no registered name, this tuple is not present in
thelist.

{sequential trace_token, [] | Sequential TraceToken}

Sequent i al TraceToken the sequentia trace token for the process. This| nf oTupl e may be changed or
removed without prior notice.

{stack_size, Size}
Si ze isthe stack size of the processin words.
{status, Status}

St at us is the status of the process. St at us is exi ti ng, garbage_col | ecti ng, wai ti ng (for a
message), r unni ng, r unnabl e (ready to run, but another processis running), or suspended (suspended on
a"busy" port or by theer | ang: suspend_process/ [1, 2] BIF).

{suspendi ng, SuspendeelLi st}

Suspendeeli st is a list of { Suspendee, Act i veSuspendCount ,
Qut st andi ngSuspendCount } tuples. Suspendee is the pid of a process that have been or is

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

erlang

to be suspended by the process identified by Pid via the erlang:suspend process’2 BIF, or the
erlang: suspend_process/1 BIF. Act i veSuspendCount is the number of times the Suspendee has been
suspended by Pi d. Qut st andi ngSuspendCount isthe humber of not yet completed suspend requests sent
by Pi d. That is, if Acti veSuspendCount /= 0, Suspendee is currently in the suspended state, and if
Qut st andi ngSuspendCount /= 0 theasynchronous option of er| ang: suspend_process/ 2
has been used and the suspendee has not yet been suspended by Pi d. Note that the Act i veSuspendCount
and Qut st andi ngSuspendCount arenot thetotal suspend count on Suspendee, only the parts contributed
by Pi d.

{total _heap_size, Size}
Si ze isthetotal sizeinwords of all heap fragments of the process. This currently include the stack of the process.
{trace, Internal TraceFl ags}

I nt er nal Tr aceFl ags isan integer representing internal trace flag for this process. This| nf oTupl e may
be changed or removed without prior notice.

{trap_exit, Bool ean}
Bool ean ist r ue if the processis trapping exits, otherwiseit isf al se.
Note however, that not all implementations support every one of the abovel t ens.

Failure: badar g if Pi d isnot alocal process, orif | t emisnotavalidl t em

processes() -> [pid()]
Returns alist of processidentifiers corresponding to all the processes currently existing on the local node.

Note that a process that is exiting, exists but is not alive, i.e,, i s_process_al i ve/ 1 will return f al se for a
process that is exiting, but its process identifier will be part of the result returned from pr ocesses/ 0.

> processes().
[<0.0. 0>, <0. 2. 0>, <0. 4. 0>, <0. 5. 0>, <0. 7. 0>, <0. 8. 0>]

pur ge_nodul e(Modul e) -> voi d()
Types:
Modul e = atom()

Removes old code for Modul e. BeforethisBIF isused, er | ang: check_process_code/ 2 should be caled to
check that no processes are executing old code in the module.

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

Failure: badar g if thereis no old code for Mbdul e.
put (Key, Val) -> ddval | undefined

Types:
Key = Val = Addval = tern()

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Adds anew Key to the process dictionary, associated with the value Val , and returnsundef i ned. If Key aready
exists, the old value is deleted and replaced by Val and the function returns the old value.

Note:

The values stored when put is evaluated within the scope of a cat ch will not be retracted if at hr ow is
evaluated, or if an error occurs.

> X = put(nanme, walrus), Y = put(nanme, carpenter),
Z = get(nane),

{X Y, z}.

{undef i ned, wal r us, car pent er }

erl ang: rai se(d ass, Reason, Stacktrace)
Types.
Class = error | exit | throw
Reason = term()
Stacktrace = [{Modul e, Function, Arity | Args} | {Fun, Args}]
Modul e = Function = aton()
Arity = arity()
Args = [tern()]
Fun = [fun()]
Stopsthe execution of the calling process with an exception of given class, reason and call stack backtrace (stacktrace).

Warning:

This BIF isintended for debugging and for use in the Erlang operating system. In general, it should be avoided
in applications, unless you know very well what you are doing.

Cl assisoneof error,exit ort hr ow, soif it werenot for the stacktraceer | ang: r ai se(C ass, Reason,

St acktrace) isequivalentto er| ang: O ass(Reason) . Reason isany term and St ackt r ace isalist as
returned from get _st acktrace(), that is alist of 4-tuples { Modul e, Function, Arity | Args,

Locat i on} where Mbdul e and Funct i on are atoms and the third element is an integer arity or an argument list.
The stacktrace may aso contain { Fun, Args, Location} tupleswhere Fun isalocal fun and Ar gs isan
argument list.

TheLocat i on element at the end is optional. Omitting it is equivalent to specifying an empty list.

The stacktrace is used as the exception stacktrace for the calling process; it will be truncated to the current maximum
stacktrace depth.

Because evaluating this function causes the process to terminate, it has no return value - unless the arguments are
invalid, in which case the function returnsthe error reason, that isbadar g. If you want to be really sure not to return
youcancal error(erl ang: rai se(C ass, Reason, Stacktrace)) andhope to distinguish exceptions
later.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

erlang

erlang:read_tiner(TinerRef) -> integer() >= 0 | false
Types.
Ti mer Ref = reference()

Ti mer Ref is a timer reference returned by erlang:send_after/3 or erlang:start_timer/3. If the timer is active,
the function returns the time in milliseconds left until the timer will expire, otherwise f al se (which means that
Ti mer Ref was never atimer, that it has been cancelled, or that it has already delivered its message).

See also erlang:send_after/3, erlang: start_timer/3, and erlang:cancel _timer/1.

erlang:ref to list(Ref) -> string()
Types:
Ref = reference()
Returns a string which corresponds to the text representation of Ref .

Warning:

ThisBIF isintended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

regi ster(RegNanme, Pid | Port) -> true

Types:
RegNane = atom()
Pid = pid()

Port = port()

Associates the name RegNane with apid or aport identifier. RegNane, which must be an atom, can be used instead
of the pid / port identifier in the send operator (RegNane ! Message).

> regi ster(db, Pid)
true

Failure: badar g if Pi d isnot an existing, local process or port, if RegName isaready in use, if the process or port
is aready registered (already has aname), or if RegNane isthe atom undef i ned.

regi stered() -> [RegNane]
Types.
RegNane = atom()

Returns alist of names which have been registered using register/2.

> registered().
[code_server, file_server, init, user, ny_db]

erl ang: resume_process(Suspendee) -> true
Types:

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Suspendee = pid()

Decreases the suspend count on the process identified by Suspendee. Suspendee should previously
have been suspended via erlang:suspend process/’2, or erlang:suspend_process/l by the process calling
erl ang: resume_pr ocess(Suspendee) . When the suspend count on Suspendee reach zero, Suspendee
will be resumed, i.e, the state of the Suspendee is changed from suspended into the state Suspendee was in
before it was suspended.

Warning:
This BIF isintended for debugging only.

Failures:

badar g
If Suspendee isn't aprocessidentifier.
badar g
If the process calling er | ang: r esume_pr ocess/ 1 had not previously increased the suspend count on the
processidentified by Suspendee.
badar g
If the processidentified by Suspendee isnot alive.

round(Nunber) -> integer()
Types:

Number = nunber ()
Returns an integer by rounding Nurber .

> round(5.5).
6

Allowed in guard tests.
self() -> pid()

Returns the pid (process identifier) of the calling process.

> self().
<0. 26. 0>

Allowed in guard tests.

erl ang: send(Dest, Msg) -> Mg

Types:
Dest = pid() | port() | RegNane | {RegNanme, Node}
Meg = term)

RegNane = atom()
Node = node()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

erlang

Sends a message and returns Msg. ThisisthesameasDest ! Msg.

Dest may be aremote or local pid, a (local) port, alocally registered name, or atuple { RegNane, Node} for a
registered name at another node.

erl ang: send(Dest, Msg, [Option]) -> Res

Types:
Dest = pid() | port() | RegName | {RegName, Node}
RegNane = aton()
Node = node()

Msg = term)
Option = nosuspend | noconnect
Res = ok | nosuspend | noconnect

Sends a message and returns ok, or does not send the message but returns something else (see below). Otherwise the
same as erlang: send/2. See also erlang: send_nosuspend/2,3. for more detailed explanation and warnings.

The possible options are;
nosuspend

If the sender would have to be suspended to do the send, nosuspend isreturned instead.
noconnect

If the destination node would have to be auto-connected before doing the send, noconnect isreturned instead.

Warning:

Aswither| ang: send_nosuspend/ 2, 3: Use with extreme care!

erl ang: send_after(Ti ne, Dest, Msg) -> TimerRef
Types:
Time = integer() >= 0
0 <= Tinme <= 4294967295
Dest = pid() | RegNane
Local Pid = pid() (of a process, alive or dead, on the |ocal node)
Meg = term)
Ti mer Ref = reference()
Starts atimer which will send the message Msg to Dest after Ti me milliseconds.

If Dest isanatom, it issupposed to be the name of aregistered process. The process referred to by the nameislooked
up at the time of delivery. No error is given if the name does not refer to a process.

If Dest isapid, thetimer will be automatically canceled if the process referred to by the pid is not alive, or when the
process exits. This feature was introduced in erts version 5.4.11. Note that timers will not be automatically canceled
when Dest isan atom.

See also erlang: start_timer/3, erlang:cancel_timer/1, and erlang:read_timer/1.
Failure: badar g if the arguments does not satisfy the requirements specified above.

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: send_nosuspend(Dest, Msg) -> bool ean()

Types.
Dest = dst()
Msg = term()
dst() = pid()

(RegNane :: aton())
{RegNane :: atom(), Node :: node()}

Thesameaserlang: send(Dest, Msg, [nosuspend]), but returnst r ue if themessagewassentandf al se if themessage
was not sent because the sender would have had to be suspended.

I port ()
|

This function is intended for send operations towards an unreliable remote node without ever blocking the sending
(Erlang) process. If the connection to the remote node (usually not areal Erlang node, but anode writtenin C or Java)
is overloaded, this function will not send the message but return f al se instead.

The same happens, if Dest refersto alocal port that isbusy. For all other destinations (allowed for the ordinary send
operator ' ! ') this function sends the message and returnst r ue.

Thisfunction isonly to be used in very rare circumstances where a process communicates with Erlang nodes that can
disappear without any trace causing the TCP buffers and the drivers queue to be over-full before the node will actually
be shut down (due to tick timeouts) by net _ker nel . The normal reaction to take when this happens is some kind
of premature shutdown of the other node.

Note that ignoring the return value from this function would result in unreliable message passing, which is
contradictory to the Erlang programming model. The message is not sent if this function returnsf al se.

Note also that in many systems, transient states of overloaded queues are normal. The fact that this function returns
f al se does not in any way mean that the other node is guaranteed to be non-responsive, it could be a temporary
overload. Also areturn value of t r ue does only mean that the message could be sent on the (TCP) channel without
blocking, the message is not guaranteed to have arrived at the remote node. Also in the case of a disconnected non-
responsive node, the return valueist r ue (mimics the behaviour of the! operator). The expected behaviour as well
as the actions to take when the function returnsf al se are application and hardware specific.

Warning:

Use with extreme care!

erl ang: send_nosuspend(Dest, Mg, Options) -> bool ean()
Types:

Dest = dst()

Meg = term)

Options = [noconnect]

dst() = pid()
| port()
| (RegNane :: atom())
| {RegNane :: atom(), Node :: node()}

The same as erlang: send(Dest, Msg, [hosuspend | Options]), but with boolean return value.

Thisfunction behaves like erlang: send _nosuspend/2), but takes athird parameter, alist of options. The only currently
implemented option isnoconnect . The option noconnect makes the function return f al se if the remote node
is not currently reachable by the local node. The normal behaviour is to try to connect to the node, which may stall

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

erlang

the process for a shorter period. The use of the noconnect option makesit possible to be absolutely sure not to get
even the slightest delay when sending to a remote process. Thisis especially useful when communicating with nodes
who expect to always be the connecting part (i.e. nodes writtenin C or Java).

Whenever the function returnsf al se (either when a suspend would occur or when noconnect was specified and
the node was not aready connected), the message is guaranteed not to have been sent.

Warning:

Use with extreme care!

erl ang: set _cooki e(Node, Cookie) -> true
Types:
Node = node()
Cookie = atom()
Sets the magic cookie of Node to the atom Cooki e. If Node isthe local node, the function also sets the cookie of
all other unknown nodesto Cooki e (see Distributed Erlang in the Erlang Reference Manual).

Failure: f unct i on_cl ause if thelocal nodeis not aive.

set el enent (I ndex, Tuplel, Value) -> Tuple2
Types:

I ndex = 1..tuple_size(Tuplel)

Tupl el = Tupl e2 = tuple()

Value = term))

Returns atuple which isacopy of the argument Tupl el with the element given by the integer argument | ndex (the
first element is the element with index 1) replaced by the argument Val ue.

> setelenent (2, {10, green, bottles}, red).
{10, red, bottl| es}

size(ltem -> integer() >= 0
Types:
I[tem = tuple() | binary()
Returns an integer which isthe size of the argument | t em which must be either atuple or abinary.

> sjize({norni, nulle, bwange}).
3

Allowed in guard tests.

spawn(Fun) -> pid()
Types:

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Fun = function()
Returnsthe pid of anew process started by the application of Fun to theempty list [] . Otherwise workslike spawn/3.

spawn(Node, Fun) -> pid()
Types:

Node = node()

Fun = function()

Returns the pid of a new process started by the application of Fun to the empty list [] on Node. If Node does not
exist, auseless pid is returned. Otherwise works like spawn/3.

spawn(Modul e, Function, Args) -> pid()
Types:
Modul e = Function = atom)
Args = [term()]
Returnsthe pid of anew process started by the application of Modul e: Funct i on to Ar gs. The new process created
will be placed in the system scheduler queue and be run some time later.

error _handl er: undefi ned_function(Mdul e, Function, Args) isevauated by the new process
if Modul e: Function/ Arity does not exist (where Arity is the length of Args). The error handler can
be redefined (see process flag/2). If error_handl er is undefined, or the user has redefined the default
error _handl er itsreplacement isundefined, afailure with the reason undef will occur.

> spawn(speed, regul ator, [high_speed, thin_cut]).
<0.13. 1>

spawn(Node, Mddul e, Function, Args) -> pid()
Types:
Node = node()
Modul e = nodul e()
Function = atom()
Args = [tern()]
Returnsthe pid of anew process started by the application of Modul e: Funct i on to Ar gs on Node. If Node does
not exists, auseless pid is returned. Otherwise works like spawn/3.

spawn_l i nk(Fun) -> pid()
Types:
Fun = function()

Returns the pid of a new process started by the application of Fun to the empty list []. A link is created between the
calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_l i nk(Node, Fun) -> pid()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

erlang

Node = node()
Fun = function()
Returns the pid of a new process started by the application of Fun to the empty list [on Node. A link is created

between the calling process and the new process, atomically. If Node does not exist, auseless pid is returned (and due
to thelink, an exit signal with exit reason noconnect i on will be received). Otherwise works like spawn/3.

spawn_I| i nk(Modul e, Function, Args) -> pid()
Types:

Modul e = Function = atom)

Args = [term()]

Returnsthe pid of anew process started by the application of Modul e: Funct i ontoAr gs. A link iscreated between
the calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_l i nk(Node, Mdul e, Function, Args) -> pid()
Types:
Node = node()
Modul e = nodul e()
Function = atom()
Args = [tern()]
Returns the pid of a new process started by the application of Modul e: Functi on to Args on Node. A link is

created between the calling process and the new process, atomically. If Node does not exist, a useless pid is returned
(and dueto thelink, an exit signal with exit reasonnoconnect i on will bereceived). Otherwiseworkslike spawn/3.

spawn_noni tor (Fun) -> {pid(), reference()}
Types:
Fun = function()

Returns the pid of a new process started by the application of Fun to the empty list [] and reference for a monitor
created to the new process. Otherwise works like spawn/3.

spawn_noni t or (Modul e, Function, Args) -> {pid(), reference()}
Types.
Modul e = nodul e()
Function = atom()
Args = [tern()]
A new process is started by the application of Modul e: Funct i on to Ar gs, and the process is monitored at the
same time. Returns the pid and a reference for the monitor. Otherwise works like spawn/3.

spawn_opt (Fun, Options) -> pid() | {pid(), reference()}
Types.
Fun = function()

Options = [Option]

Option = link
| ronitor
| {priority, Level}
| {fullsweep_after, Number :: integer() >= 0}

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

| {m n_heap_size, Size :: integer() >= 0}
| {m n_bin_vheap_size, VSize :: integer() >= 0}
Level = low | normal | high

Returns the pid of a new process started by the application of Fun to the empty list [] . Otherwise works like
spawn_opt/4.

If the option noni t or isgiven, the newly created process will be monitored and both the pid and reference for the
monitor will be returned.

spawn_opt (Node, Fun, Options) -> pid() | {pid(), reference()}
Types:

Node = node()

Fun = function()

Options = [Option]

Option = link

| nonitor

| {priority, Level}

| {fullsweep_after, Number :: integer() >= 0}

| {m n_heap_size, Size :: integer() >= 0}

| {m n_bin_vheap_size, VSize :: integer() >= 0}
Level = low | nornmal | high

Returns the pid of a new process started by the application of Fun to the empty list[] on Node. If Node does not
exist, a useless pid is returned. Otherwise works like spawn_opt/4.

spawn_opt (Modul e, Function, Args, Options) ->
pid() | {pid(), reference()}

Types:
Modul e = nodul e()
Function = atom()
Args = [term()]
Options = [Option]

Option = link

| nonitor

| {priority, Level}

| {fullsweep_after, Nunmber :: integer() >= 0}

| {m n_heap_size, Size :: integer() >= 0}

| {m n_bin_vheap_size, VSize :: integer() >= 0}
Level = low | normal | high

Works exactly like spawn/3, except that an extraoption list is given when creating the process.

If the option noni t or isgiven, the newly created process will be monitored and both the pid and reference for the
monitor will be returned.

link

Sets alink to the parent process (like spawn_I i nk/ 3 does).
noni t or

Monitor the new process (just like monitor/2 does).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

erlang

{priority, Level}

Setsthe priority of the new process. Equivalent to executing process flag(priority, Level) in the start function of
the new process, except that the priority will be set before the process is selected for execution for the first time.
For more information on priorities see process_flag(priority, Level).

{full sweep_after, Number}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

The Erlang runtime system uses a generational garbage collection scheme, using an "old heap" for data that
has survived at least one garbage collection. When there is no more room on the old heap, a fullsweep garbage
collection will be done.

Thef ul | sweep_aft er option makesit possible to specify the maximum number of generational collections
before forcing a fullsweep even if there is still room on the old heap. Setting the number to zero effectively
disables the general collection algorithm, meaning that all live datais copied at every garbage collection.

Here are a few cases when it could be useful to change f ul | sweep_aft er. Firstly, if binaries that are no
longer used should be thrown away as soon as possible. (Set Nurrber to zero.) Secondly, a process that mostly
have short-lived datawill be full sweeped seldom or never, meaning that the old heap will contain mostly garbage.
To ensure a fullsweep once in awhile, set Nunber to a suitable value such as 10 or 20. Thirdly, in embedded
systems with limited amount of RAM and no virtual memory, one might want to preserve memory by setting
Nunber to zero. (The value may be set globally, see erlang: system flag/2.)

{m n_heap_si ze, Size}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

Gives a minimum heap size in words. Setting this value higher than the system default might speed up some
processes because less garbage collection is done. Setting too high value, however, might waste memory and
slow down the system due to worse data locality. Therefore, it is recommended to use this option only for fine-
tuning an application and to measure the execution time with various Si ze values.

{m n_bin_vheap_size, VSize}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

Gives aminimum binary virtual heap sizeinwords. Setting this value higher than the system default might speed
up some processes because | ess garbage collection isdone. Setting too high value, however, might waste memory.
Therefore, it is recommended to use this option only for fine-tuning an application and to measure the execution
time with various VSi ze values.

spawn_opt (Node, Mbdul e, Function, Args, Options) ->

pid() | {pid(), reference()}
Types:

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Node = node()
Modul e = nodul e()
Function = atom()
Args = [tern()]
Options = [Option]

Option = link

| nonitor

| {priority, Level}

| {fullsweep_after, Nunmber :: integer() >= 0}

| {m n_heap_size, Size :: integer() >= 0}

| {m n_bin_vheap_size, VSize :: integer() >= 0}
Level = low | normal | high

Returnsthe pid of anew process started by the application of Modul e: Funct i on to Ar gs on Node. If Node does
not exist, auseless pid is returned. Otherwise works like spawn_opt/4.

split_binary(Bin, Pos) -> {Binl, Bin2}
Types:
Bin = Binl = Bin2 = binary()
Pos = 0..byte_size(Bin)
Returns a tuple containing the binaries which are the result of splitting Bi n into two parts at position Pos. Thisisnot
adestructive operation. After the operation, there will be three binaries altogether.

> B = list_to_binary("0123456789").
<<"0123456789" >>

> byte_size(B).

10

> {Bl, B2} = split_binary(B,3).
{<<" 012" >>, <<" 3456789" >>}

> byte_size(B1).

3

> byte_size(B2).

7

erlang: start _timer(Tinme, Dest, Msg) -> TinerRef
Types:
Time = integer() >= 0
0 <= Tinme <= 4294967295
Dest = Local Pid | RegNane
Local Pid = pid() (of a process, alive or dead, on the |ocal node)
RegNane = atom()
Msg = term)
Ti mer Ref = reference()
Starts atimer which will send the message{ti neout, Ti ner Ref, Msg} toDest after Ti me milliseconds.

If Dest isanatom, it issupposed to be the name of aregistered process. The process referred to by the nameislooked
up at the time of delivery. No error is given if the name does not refer to a process.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

erlang

If Dest isapid, thetimer will be automatically canceled if the process referred to by the pid is not alive, or when the
process exits. This feature was introduced in erts version 5.4.11. Note that timers will not be automatically canceled
when Dest isan atom.

See also erlang:send_after/3, erlang:cancel_timer/1, and erlang:read_timer/1.

Failure: badar g if the arguments does not satisfy the requirements specified above.

statistics(Type) -> Res
Types:

Type, Res -- see bel ow
All times are in milliseconds unless otherwise specified.
Returns information about the system as specified by Type:
context _swi tches

Returns{ Cont ext Swi t ches, 0},whereCont ext Swi t ches isthetotal number of context switchessince
the system started.

exact _reductions
Returns{ Tot al _Exact _Reducti ons, Exact_ Reductions_Since Last_Call}.

Note:

statistics(exact_reductions) is a more expensive operation than statistics(reductions)
especialy on an Erlang machine with SM P support.

gar bage_col |l ection

Returns { Number _of GCs, Words_Recl ai ned, 0}. This information may not be valid for all
implementations.

> statistics(garbage_collection).
{85, 23961, 0}

Returns{{i nput, Input}, {output, CQutput}},wherel nput isthetota number of bytesreceived
through ports, and Qut put isthe total number of bytes output to ports.

reducti ons
Returns{ Tot al _Reducti ons, Reductions_Since_Last_Call}.

Note:

From ertsversion 5.5 (OTP release R11B) this value does not include reductions performed in current time
slices of currently scheduled processes. If an exact value is wanted, use statistics(exact_reductions).

> statistics(reductions).

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{2046, 11}

run_queue
Returns the length of the run queue, that is, the number of processes that are ready to run.
runtime

Returns{ Total _Run_Ti me, Tinme_Since_Last Call}. Notethat the run-timeis the sum of the run-
time for all threads in the Erlang run-time system and may therefore be greater than the wall-clock time.

> statistics(runtine).
{1690, 1620}

schedul er_wall tine

Returnsalist of tupleswith { Schedul er I d, ActiveTi nme, Total Ti ne},whereSchedul erldisan
integer id of the scheduler, Act i veTi ne isthe duration the scheduler has been busy, Tot al Ti ne isthe total
time duration since scheduler_wall_time activation. The time unit is not defined and may be subject to change
between releases, operating systems and system restarts. schedul er _wal | _ti me should only be used to
calculate relative values for scheduler-utilization. Act i veTi ne can never exceed Tot al Ti ne.

The definition of abusy scheduler iswhen it isnot idle or not scheduling (selecting) a process or port, meaning;
executing process code, executing linked-in-driver or NIF code, executing built-in-functions or any other runtime
handling, garbage collecting or handling any other memory management. Note, a scheduler may also be busy
even if the operating system has scheduled out the schedul er thread.

Returnsundef i ned if the system flag scheduler_wall_time is turned off.
Thelist of scheduler information is unsorted and may appear in different order between calls.

Using schedul er _wal | _ti e to calculate scheduler utilization.

> erl ang: system fl ag(schedul er_wal | _tinme, true).

fal se

> TsO0 = lists:sort(erlang:statistics(scheduler_wall_tinme)), ok.
ok

Some time later we will take another snapshot and cal culate schedul er-utilization per scheduler.

> Tsl = lists:sort(erlang:statistics(scheduler_wall_tine)), ok.
ok

> |lists:map(fun({{l, AO, TO}, {I, A1, T1}}) ->

{I, (AL - AO)/(T1 - TO)} end, lists:zip(TsO,Tsl)).

[{1,0.9743474730177548},
{2, 0. 9744843782751444} ,
{3, 0.9995902361669045} ,
{4,0.9738012596572161}
{5,0.9717956667018103} ,
{6,0.9739235846420741}
{7,0.973237033077876} ,
{8, 0.9741297293248656} |

Using the same snapshots to calculate atotal scheduler-utilization.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

erlang

> {A T} =lists:foldl (fun({{_, A0, TO}, {_, AL, T1}}, {A,Ti}) ->
(Al + (AL - AO), Ti + (T1 - TO)} end, {0, 0}, lists:zip(TsO,Tsl)), A/T.
0. 9769136803764825

Note:

schedul er_wal |l _tinme is by default disabled. Use
erl ang: system fl ag(schedul er _wal | _time, true) toenableit.

wal | _cl ock

Returns{ Total _Wal I cl ock_Tinme, Wallclock Tine_Since Last _Call}.wall _cl ockcanbe
used in the same manner asr unt i me, except that real time is measured as opposed to runtime or CPU time.

erl ang: suspend_process(Suspendee, OptList) -> bool ean()
Types.

Suspendee = pid()

OptList = [Opt]

Opt = atom)

Increasesthe suspend count on the processidentified by Sus pendee and putsit in the suspended stateif it isn't already
in the suspended state. A suspended process will not be scheduled for execution until the process has been resumed.

A process can be suspended by multiple processes and can be suspended multiple times by a single process.
A suspended process will not leave the suspended state until its suspend count reach zero. The suspend count
of Suspendee is decreased when erlang:resume_process(Suspendee) is called by the same process that called
erl ang: suspend_process(Suspendee) . All increased suspend counts on other processes acquired by a
process will automatically be decreased when the process terminates.

Currently the following options (Opt s) are available:

asynchronous
A suspend request is sent to the process identified by Suspendee. Suspendee will eventually suspend
unlessit isresumed before it was able to suspend. The caler of er | ang: suspend_pr ocess/ 2 will return
immediately, regardless of whether the Suspendee has suspended yet or not. Note that the point in time when
the Suspendee will actually suspend cannot be deduced from other eventsin the system. The only guarantee
givenisthat the Suspendee will eventually suspend (unlessit is resumed). If theasynchr onous option
has not been passed, the caller of er | ang: suspend_pr ocess/ 2 will be blocked until the Suspendee
has actually suspended.

unl ess_suspendi ng
The process identified by Suspendee will be suspended unless the calling process already is suspending the
Suspendee. If unl ess_suspendi ng is combined with theasynchr onous option, a suspend request
will be sent unless the calling process already is suspending the Suspendee or if a suspend request already
has been sent and isin transit. If the calling process already is suspending the Suspendee, or if combined
with theasynchr onous option and a send request already isin transit, f al se isreturned and the suspend
count on Suspendee will remain unchanged.

If the suspend count on the process identified by Suspendee was increased, t r ue is returned; otherwise, f al se
isreturned.

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Warning:
This BIF isintended for debugging only.

Failures:

badar g
If Suspendee isn't aprocessidentifier.
badar g
If the processidentified by Suspendee is same the process as the process calling
erl ang: suspend_pr ocess/ 2.
badar g
If the processidentified by Suspendee isnot alive.
badar g
If the process identified by Suspendee resides on another node.
badar g
If Opt Li st isn't aproper list of valid Opt s.
systemlimt
If the processidentified by Suspendee has been suspended more times by the calling process than can be
represented by the currently used internal data structures. The current system limit is larger than 2 000 000 000
suspends, and it will never be less than that.

erl ang: suspend_pr ocess(Suspendee) -> true
Types:
Suspendee = pid()

Suspends the process identified by Suspendee. The same as calling erlang: suspend_process(Suspendee, []). For
more information see the documentation of erlang: suspend_process/2.

Warning:
This BIF isintended for debugging only.

erl ang: system fl ag(Fl ag, Value) -> d dVal ue

Types.
Fl ag, Value, d dValue -- see bel ow
Warning:

The cpu_topology, and scheduler_bind_type Fl ags are deprecated and have been scheduled for removal in
erts-5.10/0TP-R16.

Sets various system properties of the Erlang node. Returns the old value of the flag.
erl ang: system fl ag(backtrace_dept h, Depth)
Sets the maximum depth of call stack back-tracesin the exit reason element of * EXI T tuples.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

erlang

erl ang: system fl ag(cpu_t opol ogy, CpuTopol ogy)

NOTE: This argument is deprecated and scheduled for removal in erts-5.10/OTP-R16. Instead of using this
argument you are advised to use the er | command line argument +sct. When this argument has been removed
afinal CPU topology to use will be determined at emulator boot time.

Sets the user defined CpuTopol ogy. The user defined CPU topology will override any automatically
detected CPU topology. By passing undefined as CpuTopol ogy the system will revert back
to the CPU topology automatically detected. The returned value equals the vaue returned from
erl ang: system i nf o(cpu_t opol ogy) before the change was made.

The CPU topology is used when binding schedulers to logical processors. If schedulers are already bound when
the CPU topology is changed, the schedulers will be sent arequest to rebind according to the new CPU topology.

The user defined CPU topology can also be set by passing the +sct command line argument to er | .

For information on the CpuTopology type and more, see the documentation of
erlang:system info(cpu_topology), and theer | +sct and +sbt command line flags.

erl ang: system fl ag(full sweep_after, Nunber)

Nunber isanon-negativeinteger which indicates how many times generational garbage collections can be done
without forcing a fullsweep collection. The value applies to new processes; processes aready running are not
affected.

Inlow-memory systems (especially without virtual memory), setting the valueto 0 can help to conserve memory.

An aternative way to set this value is through the (operating system) environment variable
ERL_FULLSWEEP_AFTER

erl ang: system flag(m n_heap_si ze, M nHeapSi ze)

Sets the default minimum heap size for processes. The sizeis given in words. The new ni n_heap_si ze only
effects processes spawned after the change of mi n_heap_si ze has been made. Them n_heap_si ze can
be set for individual processes by use of spawn_opt/N or process flag/2.

erl ang: system fl ag(ni n_bi n_vheap_si ze, M nBi nVHeapSi ze)

Sets the default minimum binary virtual heap size for processes. The size is given in words. The new
m n_bi n_vhheap_si ze only effects processes spawned after the change of m n_bi n_vhheap_si ze
has been made. The m n_bi n_vheap_si ze can be set for individua processes by use of spawn_opt/N or
process flag/2.

erl ang: system flag(nul ti _schedul i ng, Bl ockState)
Bl ockState = bl ock | unbl ock

If multi-scheduling is enabled, more than one scheduler thread is used by the emulator. Multi-scheduling can be
blocked. When multi-scheduling has been blocked, only one scheduler thread will schedule Erlang processes.

If Bl ockSt at e =: = bl ock, multi-schedulingwill beblocked. If Bl ockSt at e =: = unbl ock and no-one
elseisblocking multi-scheduling and this process has only blocked one time, multi-scheduling will be unblocked.
One process can block multi-scheduling multiple times. If a process has blocked multiple times, it hasto unblock
exactly as many times as it has blocked before it has released its multi-scheduling block. If a process that has
blocked multi-scheduling exits, it will release its blocking of multi-scheduling.

Thereturn valuesare di sabl ed, bl ocked, or enabl ed. Thereturned value describes the state just after the
cdltoerl ang: system fl ag(mul ti _schedul i ng, Bl ockSt at e) hasbeen made. Thereturn values
are described in the documentation of erlang: system info(multi_scheduling).

NOTE: Blocking of multi-scheduling should normally not be needed. If you feel that you need to block muilti-
scheduling, think through the problem at least a couple of times again. Blocking multi-scheduling should only be
used as alast resort since it will most likely be a very inefficient way to solve the problem.

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

See adso erlang:system info(multi_scheduling), erlang:system info(multi_scheduling_blockers), and
erlang: system_info(schedulers).

erl ang: system fl ag(schedul er _bi nd_t ype, How)

NOTE: This argument is deprecated and scheduled for removal in erts-5.10/OTP-R16. Instead of using this
argument you are advised to use the er | command line argument +sbt. When this argument has been removed
afinal scheduler bind type to use will be determined at emulator boot time.

Controlsif and how schedulers are bound to logical processors.

Whener | ang: system fl ag(schedul er _bi nd_type, How) iscalled, anasynchronoussignal issent
toall schedulersonlinewhich causesthemto try to bind or unbind asrequested. NOTE: If ascheduler failsto bind,
thiswill often be silently ignored. Thissinceitisn't always possibleto verify valid logical processor identifiers. If
an error isreported, it will bereportedtotheer r or _| ogger . If you want to verify that the schedulers actually
have bound as requested, call erlang: system info(scheduler_bindings).

Schedulers can currently only be bound on newer Linux, Solaris, FreeBSD, and Windows systems, but more
systems will be supported in the future.

In order for the runtime system to be able to bind schedulers, the CPU topology needsto be known. If the runtime
system fails to automatically detect the CPU topology, it can be defined. For more information on how to define
the CPU topology, seetheer | +sct command line flag.

The runtime system will by default not bind schedulersto logical processors.

NOTE: If the Erlang runtime system isthe only operating system process that binds threadsto logical processors,
this improves the performance of the runtime system. However, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a performance
penalty instead. In some cases this performance penalty might be severe. If thisis the case, you are advised to
not bind the schedulers.

Schedulers can be bound in different ways. The How argument determines how schedulers are bound. How can
currently be one of:

unbound

Sameastheer | command line argument +sbt u.
no_spread

Same astheer| command line argument +sbt ns.
t hread_spread

Same astheer| command line argument +sht ts.
processor _spread

Sameastheer | command line argument +sbt ps.
spread

Same astheer | command line argument +sht s.
no_node_t hread_spr ead

Same astheer | command line argument +sbt nnts.
no_node_processor_spread

Sameastheer | command line argument +sbt nnps.
t hread_no_node_processor_spread

Same astheer | command line argument +sbt tnnps.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

erlang

er

er

def aul t _bi nd

Same astheer | command line argument +sbt db.

The value returned egquals How before the schedul er _bi nd_t ype flag was changed.
Failure:

not sup

If binding of schedulersis not supported.

badar g

If Howisn't one of the documented alternatives.

badar g

If no CPU topology information is available.

The scheduler bind type can also be set by passing the +sbt command line argumenttoer | .

For more information, see erlang: system info(scheduler_bind type), erlang:system info(scheduler_bindings),
theer | +sbt and +sct command line flags.

ang: system fl ag(schedul er _wall _tine, Bool ean)

Turns on/off scheduler wall time measurements.

For more information see, erlang: statistics(scheduler_wall_time).

ang: system fl ag(schedul ers_online, Schedul ersOnli ne)

Sets the amount of schedulers online. Valid range is 1 <= Schedulerld <= erlang:system_info(schedulers).
For more information see, erlang: system_info(schedulers), and erlang: system info(schedulers_online).

erl ang: system fl ag(trace_control _word, TCW

Setsthe value of the node's trace control word to TCW TCWshould be an unsigned integer. For more information
see documentation of the set_tcw function in the match specification documentation in the ERTS User's Guide.

Note:

The schedul er s option has been removed as of erts version 5.5.3. The number of scheduler threads is
determined at emulator boot time, and cannot be changed after that.

erl ang: system.info(Type) -> Res
Types:

Type, Res -- see bel ow

Returns various information about the current system (emulator) as specified by Type:

al | ocat ed_areas

Returns alist of tuples with information about miscellaneous allocated memory areas.

Each tuple contains an atom describing type of memory asfirst element and amount of allocated memory in bytes
as second element. In those cases when there is information present about allocated and used memory, a third
element is present. This third element contains the amount of used memory in bytes.

erl ang: system.info(allocated_areas) is intended for debugging, and the content is highly
implementation dependent. The content of the results will therefore change when needed without prior notice.

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note: The sum of these valuesis not the total amount of memory allocated by the emulator. Some values are part
of other values, and some memory areas are not part of the result. If you are interested in the total amount of
memory allocated by the emulator see erlang: memory/0,1.

al | ocat or
Returns{ Al | ocat or, Version, Features, Settings}.
Types:
e Allocator = undefined | glibc
e Version = [integer()]
e Features = [atom()]
e Settings = [{Subsystem [{Paranmeter, Value}]}]
e Subsystem = atom()
e Paranmeter = atom()
e Value = term))

Explanation:

e All ocat or corresponds to the mal | oc() implementation used. If Al | ocat or equals undefi ned,
themal | oc() implementation used could not be identified. Currently gl i bc can be identified.

e Versionisalist of integers (but not a string) representing the version of themal 1 oc () implementation
used.

« Feat ures isalist of atoms representing allocation features used.

e Settings isalist of subsystems, their configurable parameters, and used values. Settings may differ
between different combinations of platforms, allocators, and allocation features. Memory sizes are givenin
bytes.

See also "System Flags Effecting erts alloc” in erts_alloc(3).
alloc util _allocators

Returns a list of the names of al allocators using the ERTS internal al | oc_ut i | framework as atoms. For
more information see the "the alloc_util framework" section in the erts_alloc(3) documentation.

{allocator, Alloc}

Returns information about the specified allocator. As of erts version 5.6.1 the return value is a list of
{instance, InstanceNo, |nstancel nfo} tupleswherel nst ancel nf o containsinformation about
a specific instance of the alocator. If Al | oc isnot arecognized allocator, undef i ned isreturned. If Al | oc
isdisabled, f al se isreturned.

Note: Theinformation returned is highly implementation dependent and may be changed, or removed at any time
without prior notice. It wasinitially intended as a tool when developing new allocators, but since it might be of
interest for othersit has been briefly documented.

The recognized allocators are listed in erts_alloc(3). After reading theerts_al | oc(3) documentation, the
returned information should more or less speak for itself. But it can be worth explaining some things. Call
counts are presented by two values. The first value is giga calls, and the second value is calls. nbcs, and
sbcs are abbreviations for, respectively, multi-block carriers, and single-block carriers. Sizes are presented
in bytes. When it is not a size that is presented, it is the amount of something. Sizes and amounts are often
presented by three values, the first is current value, the second is maximum value since the last call to
erl ang: system.info({allocator, Alloc}),andthethirdismaximum valuesincetheemulator was
started. If only one value is present, it is the current value. f i x_al | oc memory block types are presented by
two values. The first value is memory pool size and the second value used memory size.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

erlang

{all ocator_sizes, Alloc}

Returnsvarioussizeinformation for the specified allocator. Theinformation returnedisasubset of theinformation
returned by erlang:system info({allocator, Alloc}).
buil d_type

Returns an atom describing the build type of the runtime system. Thisis normally the atom opt for optimized.
Other possible return values are debug, puri fy, quanti fy, purecov, gcov, val gri nd, gpr of , and
| cnt . Possible return values may be added and/or removed at any time without prior notice.

c_conpil er _used

Returns a two-tuple describing the C compiler used when compiling the runtime system. The first element is an
atom describing the name of the compiler, or undef i ned if unknown. The second element is aterm describing
the version of the compiler, or undef i ned if unknown.

check io

Returns a list containing miscellaneous information regarding the emulators internal 1/0 checking. Note, the
content of the returned list may vary between platforms and over time. The only thing guaranteed is that a list
is returned.

conpat _rel

Returns the compatibility mode of the local node as an integer. The integer returned represents the Erlang/OTP
release which the current emulator has been set to be backward compatible with. The compatibility mode can be
configured at startup by using the command line flag +R, see erl(1).

cpu_t opol ogy

Returns the CpuTopol ogy which currently is used by the emulator. The CPU topology is used when binding

schedulers to logical processors. The CPU topology used is the user defined CPU topology if such exists;

otherwise, the automatically detected CPU topology if such exists. If no CPU topology exists, undef i ned is

returned.

Types:

e CpuTopol ogy = Level EntryLi st | undefined

e Level EntryList = [Level Entry] (al Level Entrysof aLevel EntryLi st must contain the
sameLevel Tag, except on thetop level where both node and pr ocessor Level Tagsmay co-exist)

e LevelEntry = {Level Tag, SublLevel} | {Level Tag, InfoList, SubLevel}
({Level Tag, SublLevel} == {Level Tag, []. SubLevel})

« Level Tag = node| processor| core|t hread (moreLevel Tagsmay beintroduced in the
future)

e SublLevel = [Level Entry] | Logical Cpuld

* Logical Cpuld = {logical, integer()}

e InfolList =[] (thel nfoLi st may be extended in the future)

node refersto NUMA (non-uniform memory access) hodes, andt hr ead refersto hardware threads (e.g. Intels
hyper-threads).

A level inthe CpuTopol ogy term can be omitted if only one entry exists and the | nf oLi st isempty.

t hr ead canonly beasublevel tocor e. cor e canbeasublevel toeither pr ocessor ornode. pr ocessor

can either be on the top level or a sub level to node. node can either be on the top level or a sub level to
processor . Thatis, NUMA nodes can be processor internal or processor external. A CPU topology can consist
of amix of processor internal and external NUMA nodes, aslong aseach logical CPU belongsto oneand only one
NUMA node. Cache hierarchy is not part of the CouTopol ogy type yet, but will be in the future. Other things
may also makeit into the CPU topology in the future. In other words, expect the CouTopol ogy typeto change.

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{cpu_t opol ogy, defined}

Returnsthe user defined CpuTopol ogy. For moreinformation seethe documentation of theer | +sct command
line flag, and the documentation of the cpu_topology argument.

{cpu_t opol ogy, detected}

Returns the automatically detected CpuTopol ogy. The emulator currently only detects the CPU topology on
some newer Linux, Solaris, FreeBSD, and Windows systems. On Windows system with more than 32 logical
processors the CPU topology is not detected.

For more information see the documentation of the cpu_topology argument.
{cpu_t opol ogy, used}

Returns the CpuTopol ogy which is used by the emulator. For more information see the documentation of the
cpu_topology argument.

creation

Returnsthe creation of thelocal node asan integer. The creation is changed when anodeisrestarted. The creation
of anodeis stored in process identifiers, port identifiers, and references. This makes it (to some extent) possible
to distinguish between identifiers from different incarnations of a node. Currently valid creations are integersin
the range 1..3, but this may (probably will) change in the future. If the node is not alive, O is returned.

debug _conpi | ed
Returnst r ue if the emulator has been debug compiled; otherwise, f al se.

di st
Returns a binary containing a string of distribution information formatted as in Erlang crash dumps. For more
information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.

dist_ctrl

Returns a list of tuples { Node, ControllingEntity}, one entry for each connected remote node.
The Node is the name of the node and the Control | i ngEntity is the port or pid responsible for the
communication to that node. More specifically, the Cont r ol | i ngEnt i ty for nodes connected via TCP/IP
(the normal case) is the socket actually used in communication with the specific node.

driver_version

Returns a string containing the erlang driver version used by the runtime system. It will be on the form "<major
ver>.<minor ver>".

dynami c_trace

Returns an atom describing the dynamic trace framework compiled into the virtual machine. It can currently be
either dt r ace, syst ent ap or none. For acommercia or standard build, thisisalwaysnone, the other return
valuesindicate a custom configuration (e.g. . / confi gure --wi t h-dynam c-trace=dtrace). Seethe
dyntrace manual page and the README. dt r ace/README. syst ent ap filesin the Erlang source code top
directory for more information about dynamic tracing.

dynani c_trace_probes

Returns a bool ean() indicating if dynamic trace probes (either dtrace or systemtap) are built into
the emulator. This can only be true if the virtua machine was built for dynamic tracing (i.e
system. i nfo(dynam c_trace) returnsdt r ace or syst ent ap).

elib_malloc

This option will be removed in a future release. The return value will always be f al se since the elib_malloc
allocator has been removed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erlang

di st_buf _busy lint

Returns the value of the distribution buffer busy limit in bytes. This limit can be set on startup by passing the
+zdbbl command lineflagtoer| .

full sweep_after

Returns{ful | sweep_after, integer()} whichistheful | sweep_aft er garbage collection setting
used by default. For more information see gar bage_col | ect i on described below.

gar bage_col |l ection

Returns a list describing the default garbage collection settings. A process spawned on the local node by a
spawn or spawn_I i nk will use these garbage collection settings. The default settings can be changed by use
of system flag/2. spawn_opt/4 can spawn a process that does not use the default settings.

heap_si zes

Returnsalist of integers representing valid heap sizesin words. All Erlang heaps are sized from sizesin thislist.
heap_t ype

Returns the heap type used by the current emulator. Currently only the following heap type exists:

private

Each process has a heap reserved for its use and no references between heaps of different processes are allowed.
M essages passed between processes are copied between heaps.

info
Returns a binary containing a string of miscellaneous system information formatted as in Erlang crash dumps.
For more information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.
ker nel _pol |
Returnst r ue if the emulator uses some kind of kernel-poll implementation; otherwise, f al se.
| oaded

Returns abinary containing a string of loaded module information formatted as in Erlang crash dumps. For more
information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.

| ogi cal _processors

Returnsthe detected number of logical processors configured on the system. Thereturn valueis either an integer,
or the atom unknown if the emulator wasn't able to detect logical processors configured.

| ogi cal _processors_avail abl e

Returns the detected number of logical processors available to the Erlang runtime system. The return value is
either an integer, or the atom unknown if the emulator wasn't able to detect logical processors available. The
number of logical processors available isless than or equal to the number of logical processorsonline.

| ogi cal _processors_online

Returns the detected number of logical processors online on the system. The return value is either an integer,
or the atom unknown if the emulator wasn't able to detect logical processors online. The number of logical
processors onlineis less than or equal to the number of logical processors configured.

machi ne
Returns a string containing the Erlang machine name.
m n_heap_si ze

Returns{m n_heap_si ze, M nHeapSi ze} where M nHeapSi ze isthe current system wide minimum
heap size for spawned processes.

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

m n_bi n_vheap_si ze

Returns { mi n_bi n_vheap_si ze, M nBi nVHeapSi ze} where M nBi nVHeapSi ze is the current
system wide minimum binary virtual heap size for spawned processes.

nmodi fied_timng_| evel

Returnsthe modified timing level (an integer) if modified timing has been enabled; otherwise, undef i ned. See
the +T command line flag in the documentation of the erl(1) command for more information on modified timing.

mul ti _schedul i ng
Returnsdi sabl ed, bl ocked, or enabl ed. A description of the return values:
di sabl ed

The emulator has only one scheduler thread. The emulator does not have SMP support, or have been started with
only one scheduler thread.

bl ocked

The emulator has more than one scheduler thread, but all scheduler threads but one have been blocked, i.e., only
one scheduler thread will schedule Erlang processes and execute Erlang code.

enabl ed

The emulator has more than one scheduler thread, and no scheduler threads have been blocked, i.e., all available
scheduler threads will schedule Erlang processes and execute Erlang code.

Seedsoerlang: system flag(multi_scheduling, BlockState), erlang: system_info(multi_scheduling_blockers), and
erlang: system_info(schedulers).

mul ti _schedul i ng_bl ockers

Returns alist of PI Ds when multi-scheduling is blocked; otherwise, the empty list. The Pl DsinthelistisPl Ds
of the processes currently blocking multi-scheduling. A Pl D will only be present once in the list, even if the
corresponding process has blocked multiple times.

See dso erlang:system flag(multi_scheduling, BlockSate), erlang:system info(multi_scheduling), and
erlang:system info(schedulers).

otp_rel ease
Returns a string containing the OTP release number.
process_count

Returns the number of processes currently existing at the local node as an integer. The same value as
| engt h(processes()) returns.

process_limt

Returns the maximum number of concurrently existing processes at the local node as an integer. This limit can
be configured at startup by using the command line flag +P, see erl(1).

procs

Returns a binary containing a string of process and port information formatted as in Erlang crash dumps. For
more information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.

schedul er _bi nd_t ype
Returns information on how user has requested schedulers to be bound or not bound.

NOTE: Even though user has requested schedulers to be bound, they might have silently failed to bind. In order
to inspect actual scheduler bindings call erlang: system_info(scheduler_bindings).

For more information, seetheer | +sht command line argument, and erlang: system_info(scheduler _bindings).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

erlang

schedul er _bi ndi ngs
Returnsinformation on currently used scheduler bindings.

A tuple of a size egual to erlang:system info(schedulers) is returned. The elements of the tuple are
integers or the atom unbound. Logical processor identifiers are represented as integers. The Nth
element of the tuple equals the current binding for the scheduler with the scheduler identifier equal
to N. E.g., if the schedulers have been bound, el ermrent (erl ang: syst em i nf o(schedul er _i d),
erl ang: syst em i nf o(schedul er _bi ndi ngs)) will return the identifier of the logical processor that
the calling process is executing on.

Note that only schedulers online can be bound to logical processors.
For more information, seetheer | +sbt command line argument, erlang: system info(schedulers_online).
scheduler_id

Returns the scheduler id (Schedul erld) of the scheduler thread that the calling process is
executing on. Schedul erld is a positive integer; where 1 <= Schedul erl d <=
erl ang: syst em i nf o(schedul er s) . See also erlang: system_info(schedulers).

schedul ers

Returns the number of scheduler threads used by the emulator. Scheduler threads online schedules Erlang
processes and Erlang ports, and execute Erlang code and Erlang linked in driver code.

The number of scheduler threads is determined at emulator boot time and cannot be changed after that. The
amount of schedulers online can however be changed at any time.

See dso erlang:system flag(schedulers online, SchedulersOnline), erlang:system info(schedulers online),
erlang:system info(scheduler_id), erlang: system flag(multi_scheduling, BlockSate),
erlang: system_info(multi_scheduling), and and erlang: system_info(multi_scheduling_blockers).

schedul ers_onli ne

Returns the amount of schedulers online. The scheduler identifiers of schedulers online satisfy the following
relationship: 1 <= Schedul erld <= erl ang: system. i nf o(schedul ers_online).

For more information, see erlang:system info(schedulers), and erlang:system flag(schedulers online,
SchedulersOnline).

snp_suppor t
Returnst r ue if the emulator has been compiled with smp support; otherwise, f al se.
system versi on
Returns a string containing version number and some important properties such as the number of schedulers.
system architecture
Returns a string containing the processor and OS architecture the emulator is built for.
t hr eads
Returnst r ue if the emulator has been compiled with thread support; otherwise, f al se isreturned.
t hread_pool _si ze

Returns the number of async threadsin the async thread pool used for asynchronous driver calls (driver_async())
as an integer.

trace_control _word

Returns the value of the node's trace control word. For more information see documentation of the function
get _t cwin"Match Specificationsin Erlang", ERTS User's Guide.

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

update_cpu_info

The runtime system rereads the CPU information available and updates its internally stored information about
the detected CPU topology and the amount of logical processors configured, online, and available. If the CPU
information has changed since the last time it was read, the atom changed is returned; otherwise, the atom
unchanged is returned. If the CPU information has changed you probably want to adjust the amount of
schedulers online. Y ou typically want to have as many schedulers online as logical processors available.

version

Returns a string containing the version number of the emulator.
wor dsi ze

Sameas{wor dsi ze, internal}.
{wor dsi ze, internal}

Returns the size of Erlang term words in bytes as an integer, i.e. on a 32-bit architecture 4 is returned, and on a
pure 64-hit architecture 8 is returned. On a halfword 64-bit emulator, 4 isreturned, asthe Erlang terms are stored
using avirtual wordsize of half the system's wordsize.

{wordsi ze, external}

Returns the true wordsize of the emulator, i.e. the size of a pointer, in bytes as an integer. On a pure 32-bit
architecture 4 is returned, on both a halfword and pure 64-bit architecture, 8 is returned.

Note:

The schedul er argument has changed name to schedul er _i d. This in order to avoid mixup with the
schedul er s argument. Theschedul er argument wasintroduced in ERTSversion 5.5 and renamed in ERTS
version 5.5.1.

erl ang: system nonitor() -> MonSettings
Types:
MonSettings -> {MonitorPid, Options} | undefined
MonitorPid = pid()
Options = [Option]
Option = {long_gc, Tine} | {large_heap, Size} | busy_port |
busy_di st_port
Time = Size = integer()
Returns the current system monitoring settings set by erlang: system monitor/2 as{ Moni t or Pi d, Opti ons}, or
undef i ned if there are no settings. The order of the options may be different from the one that was set.

erl ang: system nonitor (undefined | {MmitorPid, Options}) -> MnSettings
Types:

Moni tor Pid, Options, MnSettings -- see bel ow
When called with the argument undef i ned, al system performance monitoring settings are cleared.

Calling the function with {MonitorPid, Options} as argument, is the same as caling
erlang: system_monitor(MonitorPid, Options).

Returns the previous system monitor settings just like erlang: system _monitor/O.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

erlang

erl ang: system nonitor(MnitorPid, [Option]) -> MnSettings
Types.
MonitorPid = pid()
Option = {long_gc, Tine} | {large_heap, Size} | busy_port | busy_dist_port
Time = Size = integer()
MonSettings = {O dMbnitorPid, [Option]}
A dMvonitorPid = pid()
Sets system performance monitoring options. Moni t or Pi d isalocal pid that will receive system monitor messages,
and the second argument isalist of monitoring options:
{long_gc, Tine}

If a garbage collection in the system takes at least Ti ne wallclock milliseconds, a message { noni t or,
GcPid, long_gc, |Info} issentto MonitorPid. GePid isthe pid that was garbage collected and
I nfo isalist of two-element tuples describing the result of the garbage collection. One of the tuples is
{timeout, CcTine} whereCGcTi ne isthe actual time for the garbage collection in milliseconds. The other
tuples are tagged with heap_si ze, heap_bl ock_si ze, st ack_si ze, nbuf _si ze, ol d_heap_si ze,
andol d_heap_bl ock_si ze. Thesetuples are explained in the documentation of the gc_start trace message
(see erlang:trace/3). New tuples may be added, and the order of the tuplesin the | nf o list may be changed at
any time without prior notice.

{large_heap, Size}

If agarbage collection in the system resultsin the allocated size of aheap being at least Si ze words, a message
{moni tor, CcPid, |arge_heap, |nfo} issenttoMnitorPid.GcPidandlnfo arethesameas
for | ong_gc above, except that the tuple tagged witht i neout isnot present. Note: As of erts version 5.6 the
monitor message is sent if the sum of the sizes of all memory blocks allocated for all heap generations is equal
to or larger than Si ze. Previously the monitor message was sent if the memory block allocated for the youngest
generation was equal to or larger than Si ze.

busy_port

If a process in the system gets suspended because it sends to a busy port, a message { noni t or, SusPi d,
busy port, Port} issenttoMonitorPi d.SusPi d isthe pid that got suspended when sendingto Por t .

busy di st_port

If a process in the system gets suspended because it sends to a process on a remote node whose inter-node
communication was handled by a busy port, a message { noni tor, SusPid, busy_dist_port,
Port} issent to Moni t or Pi d. SusPi d isthe pid that got suspended when sending through the inter-node
communication port Por t .

Returns the previous system monitor settings just like erlang: system _monitor/O.

Note:

If amonitoring process getsso largethat it itself startsto cause system monitor messages when garbage collecting,
the messages will enlarge the process's message queue and probably make the problem worse.
Keep the monitoring process neat and do not set the system monitor limits too tight.

Failure: badar g if Moni t or Pi d does not exist.

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: systemprofile() -> ProfilerSettings

Types.
ProfilerSettings -> {ProfilerPid, Options} | undefined
ProfilerPid = pid() | port()

Options = [Option]

Option = runnabl e_procs | runnable_ ports | schedul er | exclusive

Returns the current system profiling settings set by erlang:system profile/2 as{ Profi |l er Pi d, Opti ons}, or
undef i ned if there are no settings. The order of the options may be different from the one that was set.

erl ang: system profile(ProfilerPid, Options) -> ProfilerSettings
Types:
ProfilerSettings -> {ProfilerPid, Options} | undefined
ProfilerPid = pid() | port()
Options = [Option]

Option = runnabl e_procs | runnable_ports | schedul er | exclusive

Sets system profiler options. Pr of i | er Pi d isalocal pid or port that will receive profiling messages. The receiver
is excluded from all profiling. The second argument isalist of profiling options:

runnabl e_procs

If aprocessisput into or removed fromtherun queueamessage, { profile, Pid, State, Ma, Ts},is
sent to Pr of i | er Pi d. Running processes that is reinserted into the run queue after having been preemptively
scheduled out will not trigger this message.

runnabl e_ports

If aport is put into or removed from the run queue amessage, { profile, Port, State, 0, Ts},is
sentto Profi | er Pi d.

schedul er

If ascheduler is put to sleep or awoken amessage, { profi |l e, scheduler, 1d, State, NoScheds,
Ts},issenttoProfil erPid.

excl usi ve

If a synchronous call to a port from a process is done, the calling process is considered not runnable during the
call runtime to the port. The calling process is notified asi nact i ve and subsequently act i ve when the port
callback returns.

Note:

erl ang: syst em profi | e isconsidered experimental and its behaviour may change in the future.

termto_binary(Term -> ext_binary()
Types:
Term = term)
Returns a binary data object which is the result of encoding Ter maccording to the Erlang external term format.

This can be used for avariety of purposes, for example writing aterm to afilein an efficient way, or sending an Erlang
term to some type of communications channel not supported by distributed Erlang.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

erlang

See also binary _to ternvi.

termto_binary(Term [Option]) -> ext_binary()
Types:
Term = term)
Option = conpressed | {conpressed, Level} | {m nor_version, Version}

Returns a binary data object which is the result of encoding Ter maccording to the Erlang external term format.

If the option conmpr essed is provided, the external term format will be compressed. The compressed format is
automatically recognized by bi nary_to_term 1inR7B and later.

It is also possible to specify acompression level by giving theoption{ conpr essed, Level } ,whereLevel isan
integer from O through 9. 0 means that no compression will be done (it is the same as not giving any conpr essed
option); 1 will take the least time but may not compress as well asthe higher levels; 9 will take the most time and may
produce asmaller result. Note the "mays" in the preceding sentence; depending on theinput term, level 9 compression
may or may not produce a smaller result than level 1 compression.

Currently, conpr essed givesthe sameresult as{ conpr essed, 6} .

The option { M nor _ver si on, Ver si on} can be use to control some details of the encoding. This option was
introduced in R11B-4. Currently, the allowed values for Ver si on are0 and 1.

{mM nor _ver si on, 1} forcesany floatsin the term to be encoded in a more space-efficient and exact way (namely
in the 64-bit IEEE format, rather than converted to a textual representation). bi nary_to_t erm 1 in R11B-4 and
later is able decode the new representation.

{m nor _ver si on, 0} iscurrently the default, meaning that floats will be encoded using a textual representation;
this option is useful if you want to ensure that releases prior to R11B-4 can decode resulting binary.

See also binary to ternvi.

t hr owm(Any)
Types.
Any = term))

A non-local return from afunction. If evaluated within acat ch, cat ch will return the value Any.

> catch throwm{hello, there}).
{hel | o, t here}

Failure: nocat ch if not evaluated within a catch.

time() -> {Hour, Mnute, Second}
Types:

Hour = M nute = Second = integer() >= 0
Returnsthe currenttimeas{ Hour, M nute, Second}.

The time zone and daylight saving time correction depend on the underlying OS.

> time().
{9, 42, 44}

156 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

tl(Listl) -> List2
Types.
Listl = List2 = [term()]
Returnsthetail of Li st 1, that is, the list minus the first element.

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.
Failure: badar g if Li st istheempty list[].

erl ang:trace(Pi dSpec, How, FlagList) -> integer() >= 0
Types:
Pi dSpec = pid() | existing | new | all
How = bool ean()
Fl agLi st = [Fl ag]
Flag -- see bel ow

Turnson (if How == true) or off (if How == f al se) thetraceflagsin FlI agLi st for the process or processes
represented by Pi dSpec.

Pi dSpec iseither apid for alocal process, or one of the following atoms:
exi sting
All processes currently existing.
new
All processes that will be created in the future.
al |
All currently existing processes and all processes that will be created in the future.

FI agLi st can contain any number of the following flags (the "message tags' refersto thelist of messagesfollowing
below):

al |
Set al trace flagsexcept {tracer, Tracer} andcpu_ti nest anp that arein their nature different than
the others.
send
Trace sending of messages.
Messagetags. send, send_t o_non_exi sti ng_process.
'receive'
Trace receiving of messages.
Messagetags. ' r ecei ve' .
procs

Trace process related events.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 157

erlang

Message tags: spawn, exit, register, unregister, link, unlink, getting_|linked,
getting_unlinked.

cal
Trace certain function calls. Specify which function callsto trace by calling erlang:trace pattern/3.
Messagetags. cal | ,return_from

si | ent

Used in conjunctionwiththecal | traceflag. Thecal | ,return_fromandr et urn_t o trace messagesare
inhibited if thisflag is set, but if there are match specs they are executed as normal.

Silent mode is inhibited by executing er | ang: trace(_, false, [silent|_]), or by amatch spec
executingthe{sil ent, fal se} function.

The si | ent trace flag facilitates setting up a trace on many or even all processes in the system. Then the
interesting trace can be activated and deactivated using the { si | ent , Bool } match spec function, giving a
high degree of control of which functions with which arguments that triggers the trace.

Messagetags: cal | ,return_fromret urn_to. Or rather, the absence of.
return_to

Used in conjunction with the cal | trace flag. Trace the actua return from atraced function back to its caller.
Only works for functions traced with thel ocal option to erlang:trace pattern/3.

The semantics is that a trace message is sent when a call traced function actually returns, that is, when a chain
of tail recursive callsis ended. There will be only one trace message sent per chain of tail recursive calls, why
the properties of tail recursiveness for function calls are kept while tracing with this flag. Using cal | and
r et ur n_t o trace together makes it possible to know exactly in which function a process executes at any time.

To get trace messages containing return values from functions, usethe {r et ur n_t r ace} match_spec action
instead.

Messagetags:. ret urn_t o.
runni ng
Trace scheduling of processes.
Messagetags. i n, and out .
exiting
Trace scheduling of an exiting processes.
Messagetags. i n_exi ti ng, out _exiting,andout exited.
gar bage_col |l ection
Trace garbage collections of processes.
Messagetags: gc_st art, gc_end.
ti mestanp

Include a time stamp in al trace messages. The time stamp (Ts) is of the same form as returned by
erl ang: now().

cpu_ti mestanp

A global trace flag for the Erlang node that makes al trace timestamps be in CPU time, not wallclock. It isonly
allowed with Pi dSpec==al | . If the host machine operating system does not support high resolution CPU time
measurements, t r ace/ 3 exitswith badar g.

158 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

arity

Used in conjunction withthecal | traceflag.{M F, Arity} will bespecifiedinsteadof {M F, Args}
in call trace messages.

set _on_spawn
Makes any process created by atraced process inherit itstrace flags, including theset _on_spawn flag.
set_on_first_spawn
Makesthefirst process created by atraced processinherititstraceflags, excludingtheset _on_first _spawn
flag.
set_on_Ilink
Makes any process linked by atraced process inherit its trace flags, including theset _on_1 i nk flag.
set_on_first _link

Makesthefirst processlinked to by atraced processinherit itstraceflags, excludingtheset _on_first _|ink
flag.
{tracer, Tracer}

Specify where to send the trace messages. Tr acer must be the pid of alocal process or the port identifier of a
local port. If thisflag is not given, trace messages will be sent to the process that called er | ang: t race/ 3.

The effect of combining set_on_first_link with set_on_link is the same as having
set _on_first_|inkaone Likewiseforset _on_spawn andset _on_first_spawn.

If theti mest anp flag is not given, the tracing process will receive the trace messages described below. Pi d isthe
pid of the traced process in which the traced event has occurred. The third element of the tuple is the message tag.

If thet i mest anp flag isgiven, thefirst element of the tuplewill bet r ace_t s instead and the timestamp is added
last in the tuple.

{trace, Pid, 'receive', Mg}
When Pi d receives the message Msg.
{trace, Pid, send, Msg, To}
When Pi d sends the message Msg to the process To.
{trace, Pid, send_to_non_existing _process, Mg, To}
When Pi d sends the message Ms g to the non-existing process To.
{trace, Pid, call, {M F, Args}}
When Pi d calls atraced function. The return values of calls are never supplied, only the call and its arguments.

Note that the trace flag ar i t y can be used to change the contents of this message, so that Ari ty is specified
instead of Ar gs.

{trace, Pid, return_to, {M F, Arity}}

When Pi d returns to the specified function. This trace message is sent if boththecal | andthereturn_to
flags are set, and the function is set to be traced on local function calls. The messageis only sent when returning
from a chain of tail recursive function calls where at least one call generated acal | trace message (that is, the
functions match specification matched and { nessage, fal se} wasnot an action).

{trace, Pid, return_from {M F, Arity}, ReturnValue}

When Pi d returns fromthe specified function. Thistrace messageissentif thecal | flagisset, and thefunction
has a match specification withar et urn_trace orexcepti on_trace action.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 159

erlang

{trace, Pid, exception_from {M F, Arity}, {d ass, Value}}

When Pi d exits from the specified function due to an exception. This trace message is sent if thecal | flagis
set, and the function has a match specification with an except i on_t r ace action.

{trace, Pid, spawn, Pid2, {M F, Args}}
When Pi d spawns anew process Pi d2 with the specified function call as entry point.
Note that Ar gs is supposed to be the argument list, but may be any term in the case of an erroneous spawn.
{trace, Pid, exit, Reason}
When Pi d exitswith reason Reason.
{trace, Pid, link, Pid2}
When Pi d linksto aprocess Pi d2.
{trace, Pid, unlink, Pid2}
When Pi d removes the link from a process Pi d2.
{trace, Pid, getting_linked, Pid2}
When Pi d getslinked to aprocess Pi d2.
{trace, Pid, getting_unlinked, Pid2}
When Pi d gets unlinked from a process Pi d2.
{trace, Pid, register, RegNane}
When Pi d gets the name RegNane registered.
{trace, Pid, unregister, RegNane}

When Pi d getsthe name RegNane unregistered. Note that thisis done automatically when aregistered process
exits.

{trace, Pid, in, {M F, Arity} | 0}

When Pi d isscheduled to run. The processwill runin function{M F, Arity}.Onsomerareoccasionsthe
current function cannot be determined, then the last element Ari t y isO.

{trace, Pid, out, {M F, Arity} | 0}

When Pi d is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions the
current function cannot be determined, then the last element Ari ty isO.

{trace, Pid, gc_start, |nfo}

Sent when garbage collection is about to be started. | nf o isalist of two-element tuples, where the first element
is akey, and the second is the value. Y ou should not depend on the tuples have any defined order. Currently,
the following keys are defined:

heap_si ze

The size of the used part of the heap.

heap_bl ock_si ze

The size of the memory block used for storing the heap and the stack.
ol d_heap_si ze

The size of the used part of the old heap.

ol d_heap_bl ock_si ze

The size of the memory block used for storing the old heap.

st ack_si ze

The actual size of the stack.

160 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

recent _size

The size of the data that survived the previous garbage collection.

nmbuf size

The combined size of message buffers associated with the process.

bi n_vheap_si ze

The total size of unique off-heap binaries referenced from the process heap.

bi n_vheap_bl ock_si ze

The total size of binaries, in words, allowed in the virtual heap in the process before doing a garbage collection.
bi n_ol d_vheap_si ze

The total size of unique off-heap binaries referenced from the process old heap.

bi n_vheap_bl ock_si ze

Thetotal size of binaries, in words, allowed in the virtual old heap in the process before doing a garbage
collection.

All sizesarein words.
{trace, Pid, gc_end, Info}

Sent when garbage collectionisfinished. | nf o containsthe samekind of list asinthegc_st art message, but
the sizes reflect the new sizes after garbage collection.

If the tracing process dies, the flags will be silently removed.
Only one process can trace a particular process. For this reason, attempts to trace an aready traced process will fail.

Returns: A number indicating the number of processesthat matched Pi dSpec. If Pi dSpec isapid, thereturn value
will be 1. If Pi dSpec isal | or exi sti ng the return value will be the number of processes running, excluding
tracer processes. If Pi dSpec isnew, the return value will be 0.

Failure: If specified arguments are not supported. For example cpu_t i mest anp isnot supported on all platforms.

erlang:trace_delivered(Tracee) -> Ref
Types:

Tracee = pid() | all

Ref = reference()

The delivery of trace messages is didocated on the time-line compared to other events in the system. If
you know that the Tr acee has passed some specific point in its execution, and you want to know when
at least al trace messages corresponding to events up to this point have reached the tracer you can use
erlang:trace_delivered(Tracee). A {trace_delivered, Tracee, Ref} message is sent
to the caller of erl ang: trace_del i vered(Tracee) when it is guaranteed that all trace messages have
been delivered to the tracer up to the point that the Tracee had reached at the time of the cal to
erlang:trace_del i vered(Tracee).

Notethatthet r ace_del i ver ed messagedoesnotimply that trace messageshave been delivered; instead, itimplies
that all trace messages that should be delivered have been delivered. It isnot an error if Tr acee isn't, and hasn't been
traced by someone, but if thisisthe case, no trace messages will have been delivered whenthet r ace_del i ver ed
message arrives.

Note that Tr acee has to refer to a process currently, or previously existing on the same node as the caller of
erlang:trace_del i vered(Tracee) resideson. The specia Tr acee atom al | denotes all processes that
currently are traced in the node.

An example: Process Aistracee, port Bistracer, and process Cisthe port owner of B. Cwantsto close B when A exits.
C can ensure that the trace isn't truncated by calling er | ang: t r ace_del i ver ed(A) when A exits and wait for
the{trace_delivered, A, Ref} messagebeforeclosingB.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 161

erlang

Failure: badar g if Tracee does not refer to a process (dead or alive) on the same node as the caller of
erl ang:trace_del i vered(Tracee) resideson.

erlang:trace_i nfo(Pi dOrFunc, Item) -> Res
Types:
Pi dOrFunc = pid() | new | {Mddule, Function, Arity} | on_| oad
Modul e = Function = atom()
Arity = arity()
I[tem Res -- see bel ow
Returns trace information about a process or function.

To get information about a process, Pi dOr Func should be a pid or the atom new. The atom new means that the
default trace state for processes to be created will be returned. | t emmust have one of the following values:

flags

Return a list of atoms indicating what kind of traces is enabled for the process. The list will be empty if
no traces are enabled, and one or more of the followings atoms if traces are enabled: send, ' recei ve',
set_on_spawn, call, return_to, procs, set_on_first_spawn, set_on_Ilink, running,
garbage_col |l ection,ti mestanp,andarity. Theorder isarbitrary.

tracer

Return the identifier for process or port tracing this process. If this process is not being traced, the return value
will be[].

To get information about a function, Pi dOr Func should be a three-element tuple: { Modul e, Functi on,
Arity} ortheatom on_| oad. No wildcards are allowed. Returns undef i ned if the function does not exist or
f al se if thefunctionisnot traced at al. | t emmust have one of the following values:

traced

Return gl obal if this function is traced on global function calls, | ocal if this function is traced on local
function calls (i.elocal and global function calls), and f al se if neither local nor global function calls are traced.

mat ch_spec

Return the match specification for this function, if it has one. If the function islocally or globally traced but has
no match specification defined, the returned valueis|[] .

met a

Return the meta trace tracer process or port for this function, if it has one. If the function is not meta traced the
returned value isf al se, and if the function is meta traced but has once detected that the tracer proc isinvalid,
the returned valueis|].

nmet a_nat ch_spec

Return the meta trace match specification for this function, if it has one. If the function is meta traced but has no
match specification defined, the returned valueis[] .

cal |l _count

Return the call count value for this function or t r ue for the pseudo function on_| oad if call count tracing is
active. Return f al se otherwise. See also erlang:trace pattern/3.

call _tinme

Return the call time values for this function or t r ue for the pseudo function on_I oad if call time tracing is
active. Returnsf al se otherwise. Thecall timevaluesreturned, [{ Pi d, Count, S, Us}],isalistof each
process that has executed the function and its specific counters. See also erlang:trace pattern/3.

162 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

al |

Return alist containingthe {1t em Val ue} tuplesfor all other items, or return f al se if no tracing is active
for this function.

The actual return valuewill be{ 1t em Val ue}, where Val ue isthe requested information as described above. I
apid for adead process was given, or the name of a non-existing function, Val ue will beundef i ned.

If Pi dOr Func istheon_| oad, theinformation returned refers to the default value for code that will be loaded.

erlang:trace_pattern(MA, MitchSpec) -> integer() >= 0
The same as erlang:trace_pattern(MFA, MatchSpec, []), retained for backward compatibility.

erlang:trace_pattern(MFA, MatchSpec, FlagList) -> integer() >=0
Types:
MFA, MatchSpec, FlagList -- see bel ow

This BIF is used to enable or disable call tracing for exported functions. It must be combined with erlang:trace/3 to
setthecal | traceflag for one or more processes.

Conceptually, call tracing works like this: Inside the Erlang virtual machine there is a set of processes to be traced
and a set of functions to be traced. Tracing will be enabled on the intersection of the set. That is, if a processincluded
in the traced process set calls afunction included in the traced function set, the trace action will be taken. Otherwise,
nothing will happen.

Use erlang:itrace/3 to add or remove one or more processes to the set of traced processes. Use
erl ang:trace_pattern/ 2 toadd or remove exported functions to the set of traced functions.

The erl ang: trace_pattern/3 BIF can aso add match specifications to an exported function. A match
specification comprises a pattern that the arguments to the function must match, a guard expression which must
evaluateto t r ue and an action to be performed. The default action is to send atrace message. If the pattern does not
match or the guard fails, the action will not be executed.

The MFA argument should be a tuple like { Modul e, Function, Arity} ortheatom on_| oad (described

below). It can be the module, function, and arity for an exported function (or a BIF in any module). The' ' atom
can be used to mean any of that kind. Wildcards can be used in any of the following ways:
{Modul e, Function,' '}
All exported functions of any arity named Funct i on in module Modul e.
{Module,' '," "}
All exported functions in module Modul e.
¢
All exported functionsin all loaded modules.
Other combinations, such as{ Modul e, ' ', Ari ty}, arenot allowed. Local functions will match wildcards only

if thel ocal optionisintheFl agLi st .

If the MFA argument is the atom on_| oad, the match specification and flag list will be used on all modules that are
newly loaded.

The Mat chSpec argument can take any of the following forms:
fal se

Disable tracing for the matching function(s). Any match specification will be removed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 163

erlang

true
Enable tracing for the matching function(s).
Mat chSpeclLi st

A list of match specifications. An empty list isequivalenttot r ue. Seethe ERTS User's Guide for a description
of match specifications.

restart

For the FI agLi st option cal | _count and cal | _ti ne: restart the existing counters. The behaviour is
undefined for other Fl agLi st options.

pause

For the FI agLi st option cal I _count and cal | _ti me: pause the existing counters. The behaviour is
undefined for other Fl agLi st options.

TheFl agLi st parameter isalist of options. The following options are allowed:
gl obal

Turn on or off call tracing for global function calls (that is, calls specifying the module explicitly). Only exported
functions will match and only global calls will generate trace messages. Thisis the default.

| ocal

Turn on or off cal tracing for al types of function calls. Trace messages will be sent whenever any of the
specified functions are called, regardless of how they are called. If ther et ur n_t o flag is set for the process, a
r et ur n_t o message will also be sent when this function returnsto its caler.

meta | {nmeta, Pid}

Turn on or off metatracing for all types of function calls. Trace messageswill be sent to the tracer process or port
Pi d whenever any of the specified functions are called, regardiess of how they are called. If no Pi d isspecified,
sel f () isused asadefault tracer process.

Metatracing traces all processes and does not care about the processtrace flagsset by t r ace/ 3, thetraceflags
areinstead fixedto[cal | , tinestanp].

The match spec function {r et urn_trace} works with meta trace and send its trace message to the same
tracer process.

call _count

Starts(Mat chSpec == true) or stops(Mat chSpec == f al se) call count tracing for all types of function
calls. For every function a counter is incremented when the function is called, in any process. No process trace
flags need to be activated.

If call count tracing is started while already running, the count is restarted from zero. Running counters can be
pausedwith Mat chSpec == pause. Paused and running counterscan berestarted from zerowith Mat chSpec
== restart.

The counter value can be read with erlang:trace_info/2.
call _tinme

Starts (Mat chSpec == true) or stops (Mat chSpec == f al se) cal timetracing for all types of function
calls. For every function a counter is incremented when the function is called. Time spent in the function is
accumulated in two other counters, seconds and micro-seconds. The counters are stored for each call traced
process.

164 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If call time tracing is started while already running, the count and time is restarted from zero. Running counters
can be paused with Mat chSpec == pause. Paused and running counters can be restarted from zero with
Mat chSpec == restart.

The counter value can be read with erlang:trace_info/2.

Thegl obal andl ocal optionsare mutually exclusiveand gl obal isthedefault (if no options are specified). The
cal | _count and et a options perform a kind of local tracing, and can also not be combined with gl obal . A
function can be either globally or locally traced. If global tracing is specified for a specified set of functions; local,
meta, call time and call count tracing for the matching set of local functionswill be disabled, and vice versa.

When disabling trace, the option must match the type of trace that is set on the function, so that local tracing must be
disabled with thel ocal option and global tracing with the gl obal option (or no option at all), and so forth.

There is no way to directly change part of a match specification list. If a function has a match specification, you can
replaceit with acompletely new one. If you need to change an existing match specification, usethe erlang:trace_info/2
BIF to retrieve the existing match specification.

Returns the number of exported functions that matched the MFA argument. Thiswill be zero if none matched at all.

trunc(Nurber) -> integer()
Types:

Number = nunber ()
Returns an integer by the truncating Nunber .

> trunc(5.5).
5

Allowed in guard tests.

tuple_size(Tuple) -> integer() >= 0
Types.
Tupl e = tuple()

Returns an integer which is the number of elementsin Tupl e.

> tupl e_size({norni, nulle, bwange}).
3

Allowed in guard tests.
tuple to list(Tuple) -> [term()]
Types:

Tupl e = tuple()
Returns alist which correspondsto Tupl e. Tupl e may contain any Erlang terms.

> tuple_to_list({share, {'Ericsson_B', 163}}).
[share, {' Ericsson_B', 163}]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 165

erlang

erl ang: uni versaltime() -> DateTinme
Types:
Dat eTi me = cal endar: datetine()
Returns the current date and time according to Universal Time Coordinated (UTC), also called GMT, in the form

{{Year, Month, Day}, {Hour, M nute, Second}} if supported by the underlying operating system. If
not, er | ang: uni versal tine() isequivalenttoer| ang: | ocal ti me().

> erl ang: uni versal time()
{{1996, 11, 6}, {14, 18, 43}}

erlang: universaltinme_to localtime({Datel, Tinel}) -> {Date2, Tine2}
Types.

Datel = Date2 cal endar: date()

Timel = Tinme2 = cal endar:tine()

ConvertsUniversal Time Coordinated (UTC) date and timeto local date and time, if thisis supported by the underlying
OS. Otherwise, no conversionisdone, and { Dat el, Ti mel} isreturned.

> erlang: universaltime_to |l ocaltime({{1996, 11, 6}, {14, 18,43}}).
{{1996, 11, 7}, {15, 18, 43}}

Failure: badar g if Dat el or Ti mel do not denote avalid date or time.

unlink(ld) -> true
Types:
Id = pid() | port()
Removesthelink, if thereis one, between the calling process and the process or port referred to by | d.
Returnst r ue and does not fail, even if thereisnolink to | d, or if | d does not exist.

Onceunl i nk(1 d) hasreturned it is guaranteed that the link between the caller and the entity referred to by | d has
no effect on the caller in the future (unless the link is setup again). If caler is trapping exits, an{' EXI T', 1d,

_} message due to the link might have been placed in the caller's message queue prior to the call, though. Note, the
{"EXIT, Id, _} messagecanbetheresultof thelink, but canalsobetheresultof | d callingexi t/ 2. Therefore,
it may be appropriate to cleanup the message queue when trapping exits after the call tounl i nk(1 d) , asfollow:

unl i nk(1d),
recei ve
{EXIT, Id, _} ->
true
after 0 ->
true
end

166 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

Prior to OTP release R11B (erts version 5.5) unl i nk/ 1 behaved completely asynchronous, i.e., the link was
active until the "unlink signal" reached the linked entity. This had one undesirable effect, though. Y ou could
never know when you were guaranteed not to be effected by the link.

Current behavior can be viewed astwo combined operations: asynchronously send an "unlink signal" to thelinked
entity and ignore any future results of the link.

unr egi st er (RegNane) -> true
Types:
RegNane = atom()
Removes the registered name RegNane, associated with a pid or a port identifier.

> unregi ster(db).
true

Users are advised not to unregister system processes.
Failure: badar g if RegNane isnot aregistered name.

wher ei s(RegNane) -> pid() | port() | undefined

Returns the pid or port identifier with the registered name RegNane. Returns undefi ned if the name is not
registered.

> wherei s(db).
<0. 43. 0>

erlang:yield() -> true

Voluntarily let other processes (if any) get a chance to execute. Using er | ang: yi el d() issimilar tor ecei ve
after 1 -> ok end,exceptthatyi el d() isfaster.

Warning:

Thereis seldom or never any need to use this BIF, especialy in the SMP-emulator as other processes will have a
chance to run in another scheduler thread anyway. Using this BIF without athorough grasp of how the scheduler
works may cause performance degradation.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 167

init

init

Erlang module

Thei ni t moduleis pre-loaded and containsthe code for thei ni t system process which coordinates the start-up of
the system. The first function evaluated at start-up is boot (Boot Ar gs) , where Boot Ar gs isalist of command
line arguments supplied to the Erlang runtime system from the local operating system. See erl(1).

i ni t readstheboot script which containsinstructionson how to initiate the system. See script(4) for moreinformation
about boot scripts.

i ni t also contains functions to restart, reboot, and stop the system.

Exports

boot (Boot Args) -> no_return()
Types.
Boot Args = [binary()]
Starts the Erlang runtime system. Thisfunction is called when the emulator is started and coordinates system start-up.
Boot Ar gs are all command line arguments except the emulator flags, that is, flags and plain arguments. See erl(1).

i nit itself interprets some of the flags, see Command Line Flags below. The remaining flags ("user flags")
and plain arguments are passed to the i nit loop and can be retrieved by calling get _ar gunent s/ 0 and
get pl ai n_argunent s/ 0, respectively.

get _argunent (Flag) -> {ok, Arg} | error
Types.

Flag = atom)

Arg = [Values :: [string()]]

Returnsall values associated with the command line user flag Fl ag. If Fl ag isprovided several times, each Val ues
isreturned in preserved order.

%erl -abc-ad
1> init:get_argunent(a).

{ok, [["b", "], ["d"]]}

There are also a number of flags, which are defined automatically and can be retrieved using this function:
r oot
The installation directory of Erlang/OTP, $ROOT.

2> init:get_argunent(root).
{ok,[["/usr/l|ocal/otp/rel eases/ ot p_beam sol ari s8_r 10b_pat ched"]] }

pr ogname
The name of the program which started Erlang.

168 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

3> init:get_argunent (prognane).

{ok,[["erl"]]}

hone
The home directory.

4> init:get_argunent (hone).
{ok,[["/home/harry"]]}

Returnser r or if thereisno value associated with Fl ag.

get _argunents() -> Fl ags
Types:
Flags = [{Flag :: aton{), Values :: [string()]}]
Returns all command line flags, as well as the system defined flags, seeget _ar gunent / 1.

get _plain_argunents() -> [Arg]
Types:
Arg = string()
Returns any plain command line arguments as a list of strings (possibly empty).

get _status() -> {Internal Status, Provi dedStatus}
Types:

Internal Status = internal _status()

Provi dedSt at us term))

internal _status() = starting | started | stopping

The current status of thei ni t process can be inspected. During system startup (initialization), | nt er nal St at us
isstarting,andProvi dedSt at us indicates how far the boot script has been interpreted. Each { pr ogr ess,

| nf o} term interpreted in the boot script affects Pr ovi dedSt at us, that is, Provi dedSt at us gets the value
of I nf o.

reboot () -> ok

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the- heart command line flag was given, thehear t program will try to reboot the system. Refer to hear t (3)
for more information.

To limit the shutdown time, the timei ni t is allowed to spend taking down applications, the - shut down_t i ne
command line flag should be used.

restart() -> ok

The system isrestarted inside the running Erlang node, which means that the emulator is not restarted. All applications
are taken down smoothly, all code is unloaded, and all ports are closed before the system is booted again in the same
way asinitialy started. The same Boot Ar gs are used again.

To limit the shutdown time, the timei ni t is allowed to spend taking down applications, the - shut down_t i ne
command line flag should be used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 169

init

script_id() ->1d
Types.
Id = tern()

Get the identity of the boot script used to boot the system. | d can be any Erlang term. In the delivered boot scripts,
I dis{Name, Vsn}.Name andVsn are strings.

stop() -> ok

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the - heart command line flag was given, the hear t program is terminated before the Erlang node terminates.
Refer to hear t (3) for more information.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, the - shut down_t i e
command line flag should be used.

stop(Status) -> ok
Types:
Status = integer() >= 0 | string()
All applications are taken down smoothly, all code is unloaded, and al ports are closed before the system terminates

by calling hal t (St at us) . If the- heart command line flag was given, the hear t program is terminated before
the Erlang node terminates. Refer to hear t (3) for more information.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, the - shut down_t i e
command line flag should be used.

Command Line Flags

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is

ready is t