| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2013 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 5.9.3.1
March 5 2013

Copyright © 1997-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 5 2013

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Installing the Binary Release

1 Installation Guide

How to install Erlang/OTP on UNIX or Windows.

1.1 Installing the Binary Release

1.1.1 UNIX

Introduction
The system is delivered as a single compressed tar file.
To browse the on-line HTML documentation, Netscape or an equivalent browser supporting framesis needed.

Installation Procedure

When installed, the entire system, except for a small start-up script, residesin asingle directory tree. The location of
this directory tree can be chosen arbitrarily by the installer, and it does not need to be in the user's $PATH. The only
reguirements are that the file system where it is placed has enough free space, and that the users who run Erlang/OTP
have read accessto it. In the example below, the directory tree is assumed to be located at / usr /| ocal / er | ang,
which is here called the top-level directory.

It is assumed that you have the compressed tar file, the name of which is <PREFI X>. t ar . gz, where <PREFI X>
isastring denoting the particular Erlang/OTP release, e.g. ot p_LXA 11930 _sunos5_R9B.

Wherever the string <PREFI X> is used below, it should be replaced by the actual name prefix of the compressed
ter file.

The tape archive file does not have one single directory in which all other files are rooted. Therefore the tape archive
file must be extracted into an empty (newly created) directory.

» |f thetop-level directory does not already exist, createit:

nmkdir /usr/local/erlang

e Changethe current directory to the top level directory:

cd /usr/local/erlang

» Createtheinstallation directory with an appropriate name. For example:

nkdir otp_r7b

e Changetotheinstallation directory, e.g.

cd otp_r7b

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Installation Verification

* Assuming the compressed tar file residesin the directory <SOVE- DI R>,. extract the compressed tar file into the
current directory:

gunzi p -c <SOMVE-DI R>/ <PREFI X>.tar.gz | tar xfp -

» Read the READVE file in the installation directory for last minute updates, before proceeding.

* Runthelnstall script in the installation directory, with the absolute path of the installation directory as
argument,

./lnstall /usr/local/erlang/otp_r7b

and supply answers to the prompts.

In most cases, thereisadefault answer in square brackets([]). If thedefault is satisfactory, just press<Ret ur n>.
In general you are only prompted for one thing:

e "Doyou want to use aminimal system startup instead of the SASL startup?”
In aminimal system, only the Kernel and STDLIB applications are loaded and started. If the SASL startup
isused, the SASL application isincluded as well. Normally, the minimal system is enough.

e Make Erlang/OTP available for users, either by putting the path / usr/ | ocal / erl ang/ ot p_r 7b/ bi nin
users SPATH variable, or link the executable/ usr /| ocal / er | ang/ ot p_r 7b/ bi n/ er | accordingly, e.g.:

In -s /usr/local/erlang/otp_r7b/bin/erl /usr/local/bin/erl

1.1.2 Windows

Introduction
The system isdelivered asasingle . exe file.
To browse the on-line HTML documentation, Netscape or an equivalent browser supporting framesis needed.

Installation Procedure

Theinstallation procedure isis automated. Double-click the . exe fileicon and follow the instructions.

1.2 Installation Verification

This chapter is about verifying your installation by performing afew simple tests to see that your system is properly
installed.

1.2.1 UNIX

e Start Erlang/OTP from the command line,

uni x> erl

Expect the following output:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.3 Building and Installing Erlang/OTP

Erl ang (BEAM enul ator version 5.0.1 [threads]

Eshell V5.0.1 (abort with ~"Q
1>

Start the GS-based toolbar from the Erlang shell,

1> tool bar:start().

and check that the toolbar window pops up.

Note: The trailing full stop (*. ") is an end marker for all commands in the Erlang shell, and must be entered
for acommand to begin execution.

Exit by entering the command hal t (),

2> hal t ().

which should end both the toolbar window and the command line window.

1.2.2 Windows

Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command line window to pop up with the following output,

Erl ang (BEAM emul ator version 5.0.1 [threads]

Eshell V5.0.1 (abort with *"Q
1>

Start the GS-based toolbar from the Erlang shell,

1> tool bar:start().

and check that the toolbar window pops up.

Note: The trailing full stop (". ") is an end marker for all commands in the Erlang shell, and must be entered
for acommand to begin execution.

Exit by entering the command hal t (),

2> hal t ().

which should end both the toolbar window and the command line window.

1.3 Building and Installing Erlang/OTP

Table of Contents

Introduction
Daily Build and Test

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Building and Installing Erlang/OTP

Versions Known NOT to Work

Required Utilities
e Unpacking
e Building

e Building Documentation
e Building in Git

e Installing

How to Build and Install Erlang/OTP
e Unpacking

e Configuring

e Building

e Installing

e ACloser Look at the individual Steps

e Configuring

e Building

e Installing

e Alternative Installation Procedures

e Symbalic Linksin --bindir
e Pre-built Source Release
e Building in Git
* makeand $ERL_TOP
The Erlang/OTP Documentation
e How to Build the Documentation

e Build Issues
e Howto Install the Pre-formatted Documentation
Support for SMP (Symmetric Multi Processing)
GS (Graphic System)
Using HiPE
Mac OS X (Darwin)
Building universal binaries on Mac OS X (obsolete information)
Building a fast Erlang VM on Mac OSLion
* Building with wxErlang
e Finishup
How to Build a Debug Enabled Erlang RunTime System
Authors
Copyright and License
More Information
Modifying This Document

1.3.1 Introduction

This document describes how to build and install Erlang/OTP-R15B03. Y ou are advised to read the whole document
before attempting to build and install Erlang/OTP. Y ou can find more information about Open Source Erlang/OTP at:

http://www.erlang.or g/

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href

1.3 Building and Installing Erlang/OTP

The source code for Erlang/OTP can also be found in a Git repository:
http://github.com/erlang/otp

Erlang/OTP should be possible to build from source on any Unix system, including Mac OS X. This document
describes how to native compile Erlang/OTP on Unix. For detailed instructions on how to

e cross compile Erlang/OTP, see the $ERL_TOP/INSTALL-CROSSmd document.
* build Erlang/OTP on Windows, see the $ERL_TOP/INSTALL-WIN32.md document.

Binary releases for Windows can be found at http://www.erlang.or g/download.html.

Before reading the above mentioned documents you arein any case advised to read this document first, sinceit covers
building Erlang/OTP in general aswell as other important information.

1.3.2 Daily Build and Test

 Solaris 8,9
e Sparc32
* Sparctd
e Solaris10
* Sparc32
* Sparctd
e x86
e SuSELinux/GNU 9.4,10.1
* Xx86
e SuSE Linux/GNU 10.0, 10.1, 11.0
e Xx86
* x86_64

* openSuSE 11.4 (Celadon)
e X86 64 (vagrind)

 Fedora7
PowerPC

 Fedoral4d
* Xx86 64

e Gentoo Linux/GNU 1.12.11.1
e x86

e Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.0
* Xx86 64

e MontaVistaLinux/GNU 4.0.1
 PowerPC

 FreeBSD 8.2
e X86

e OpenBSD 5.0
* Xx86 64

e MacOS X 10.5.8 (Leopard), 10.6.0 (Snow Leopard), 10.7.3 (Lion)
e x86

e Windows XP SP3, 2003, Vista, 7
e x86

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.3 Building and Installing Erlang/OTP

Windows 7

.« x86.64

We dso have the following "Daily Cross Builds':

SUSE Linux/GNU 10.1 x86 -> SUSE Linux/GNU 10.1 x86_64
SUSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests":

SUSE Linux/GNU 10.1 x86_64

1.3.3 Versions Known NOT to Work

Suselinux 9.1 isshipped with apatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3- 43 and
is not affected.

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had a bug which caused kqueue/pol | /sel ect tofail to detect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

e http://www.freebsd.or g/cgi/cvsweb.cgi/sr c/sys/kern/sys pipe.c

* http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September/006790.html

get cwd() on Solaris9 can cause an emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er | (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-
threads the only workaround available isto enable async-threads and increase the stack size of the async-threads.
Sun has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

e http://sunsolve.sun.com/sear ch/document.do?assetkey=1-21-112874-40-1& sear chclause=6448300
* http://sunsolve.sun.com/sear ch/document.do?assetk ey=1-21-114432-29-1& sear chclause=6448300

1.3.4 Required Utilities
These are the tools you will need in order to unpack and build Erlang/OTP.

Unpacking

GNU unzip, or amodern uncompress.
A TAR program that understands the GNU TAR format for long filenames (such as GNU TAR).

Building

GNU nake

gcc -- GNU C compiler

Perl 5

GNU m4 -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href
href
href
href

1.3 Building and Installing Erlang/OTP

e OpenSSL -- Optional, but needed for building the Erlang/OTP applicationsss| and cr ypt 0. You need
the "devel opment package" of OpenSSL, i.e. including the header files. For building the application ssl the
OpenSSL binary command program openss| isalso needed. At least version 0.9.8 of OpenSSL is required.
Can be downloaded from http://www.openssl.or g.

e SunJavajdk-1.5.0 or higher -- Optional but needed for building the Erlang/OTP applicationj i nt er f ace and
parts of i ¢ and or ber . Can be downloaded from http://java.sun.com. We have also tested IBM's JDK 1.5.0.

e X Windows -- Optional, but development headers and libraries are needed to build the Erlang/OTP application
gs on Unix/Linux.

» sed -- There seem to be some problems with some of the sed version on Solaris. Make sure/ bi n/ sed or/
usr/ bi n/ sed isused on the Solaris platform.

» fl ex -- Optional, headers and libraries are needed to build thef | ex scanner for the megaco application on
Unix/Linux.

Building Documentation

e Xsltproc -- XSLT processor. A tool for applying XSLT stylesheets to XML documents. Can be downl oaded
from http://xmlsoft.or g/X SL T/xdtproc2.html.

» fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.

Building in Git
e« GNU aut oconf of at least version 2.59. Note that aut oconf is not needed when building an unmodified
version of the released source.

Installing
« Aninstall program that can take multiple file names.

1.3.5 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $SERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Step 1: Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ gunzip -c otp_src_R15B03.tar.gz | tar xf -

aternatively:

$ zcat otp_src_R15B03.tar.gz | tar xf -

Step 2: Now cd into the base directory ($ERL_TCOP).

$ cd otp_src_R15B03

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href

1.3 Building and Installing Erlang/OTP

Configuring

Step 3: On some platforms Perl may behave strangely if certain locales are set, so optionally you may need to set
the LANG variable:

Bour ne shel |
$ LANG=C, export LANG

or

C Shel |
$ setenv LANG C

Step 4: Run the following commands to configure the build:

$./configure [options]

By default, Erlang/OTP will be installed in /usr/1ocal/{bin,lib/erlang}. To instead install in
<BaseDir>/{bin,|ib/erlang},usethe--prefix=<BaseDi r > option.

If you upgraded the source with some patch you may need to clean up from previous builds before the new build.
Before doing anmake cl ean, be sureto read the Pre-built Source Release section below.

Building
Step 5: Build the Erlang/OTP package.

$ nmake

Installing
Step 6: Install then Erlang/OTP package

$ make install

A Closer Look at the individual Steps
L et us go through them in some detail.
Configuring

Step 4 runs a configuration script created by the GNU autoconf utility, which checks for system specific features and
then creates a number of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for al
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis.. / confi gure --prefix=<Dir>.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

1.3 Building and Installing Erlang/OTP

Some of the available conf i gur e options are:

e --prefix=PATH- Specify installation prefix.

« --{enabl e, di sabl e} -t hreads - Thread support (enabled by default if possible)

« --{enabl e, di sabl e} - snp- support - SMP support (enabled by default if possible)

« --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)
--{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

e --enabl e-darw n-uni ver sal - Build universal binaries on darwin i386.

* --enabl e-darwi n-64bi t - Build 64-bit binaries on darwin

e --enabl e- n64- bui | d - Build 64-bit binariesusing the - n64 flagto (g) cc

e --enabl e- nB2- bui | d - Build 32-hit binariesusing the - n82 flagto (g) cc

e --{with,w thout}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, di sabl e}-shar ed- zl i b - Shared zlib library
* --wth-ssl =PATH- Specify location of OpenSSL include and lib
e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

e --with-libatom c_ops=PATH- Usethel i bat om c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from http://www.hpl.hp.com/r esear ch/linux/
atomic_opsg.

If you or your system has specia regquirements please read the Makef i | e for additional configuration information.
Building

Step 5 buildsthe Erlang/OTP system. On afast computer, thiswill take about 5 minutes. After completion of this step,
you should have a working Erlang/OTP system which you can try by typing bi n/ er | . This should start up Erlang/
OTP and give you a prompt:

$ bin/erl
Erl ang R15B03 (erts-5.9.3.1) [source] [snp:4:4] [rq:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.9.3.1 (abort with ~"Q
1> _
Installing

Step 6 is optional. It installs Erlang/OTP at a standardized location (if you change your mind about where you wish
to install you can rerun step 4, without having to do step 5 again).

Alternative I nstallation Procedures

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDI R=<tnp install dir> install

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.3 Building and Installing Erlang/OTP

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be set to | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA_PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/| ocal
make
make DESTDI R=/tnp/erlang-build install
cd /tnp/erlang-buil d/ opt/I ocal

gnu-tar is used in this exanple
tar -zcf /honme/ me/ nmy-erlang-build.tgz *
su -
Password: ***xx
$ cd /opt/l ocal
$ tar -zxf /hone/ me/ny-erlang-build.tgz

R R A T

Install using ther el ease target. Instead of doing meke i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstal using make i nstal | .All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

./ configure

make

make RELEASE ROOT=/ hone/ nme/ OTP r el ease
cd / hone/ ne/ OTP

./lnstall -mniml /hone/ne/ OTP

nkdir -p /home/ e/ bin

cd /hone/ ne/ bin

In -s /honme/ me/ OTP/ bin/erl erl

In -s /honme/me/ OTP/ bin/erlc erlc

In -s /honme/ ne/ OTP/ bi n/ escript escript

R R R e

Thel nst al | script should currently be invoked as follows in the directory where it resides (the top directory):

$./Install [-cross] [-mninmal|-sasl] <ERL_ROOT>

where:

e -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also startsup the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

1.3 Building and Installing Erlang/OTP

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

e Testinstall using EXTRA PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing make i nstal | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA _PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ 1 ocal / bi ntoal public Erlang/OTP executablesin/ usr/1 ocal /1i b/ er| ang/ bi n. Theinstallation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- pr ef i x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Warning:
Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing . / ot p_bui | d save_boot st r ap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing nake cl ean../otp_build save_boot st rap will
be invoked automatically when make is invoked from $ERL_ TOP with either the cl ean target, or the default
target. It is also automatically invoked if . / ot p_bui | d renove_prebuilt _fil es isinvoked.

Building in Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

The confi gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOP directory. The
conf i gur e scripts also have to be regenerated when aconf i gur e. i n or acl ocal . m4 file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you haveto run conf i gur e and build again.

Note:

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the rel eased source.

Other useful information can be found at our github wiki: http://wiki.github.com/er lang/otp

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Building and Installing Erlang/OTP

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Di r> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

1.3.6 The Erlang/OTP Documentation

How to Build the Documentation

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-R15B03 system in the $PATH.

$ export PATH=<Er| ang/ OTP- R15B03 bi n dir>: $PATH # Assumi ng bash/ sh

Build the documentation.

$ make docs

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e |If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing meke install.

$ make install-docs

* Ifyouhaveinstalled Erlang/OTPusingther el ease target, install thedocumentationusingther el ease_docs
target. You typically want to use the same RELEASE_ROOT aswhen invoking meke r el ease.

$ make rel ease_docs RELEASE ROOT=<r el ease dir>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

1.3 Building and Installing Erlang/OTP

Build I ssues

We have sometimes experienced problems with Sun'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xnx<Installed amount of RAMin MB>n{

More information can be found at http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded at http://www.erlang.or g/download.html.

For some graphical toolsto find the on-line help you have to install the HTML documentation on top of the installed
OTP applications, i.e.

$ cd <Rel easeDir>
$ gunzip -c otp_htnl _R15B03.tar.gz | tar xf -

Forer!l -man <page> towork the Unix manua pages haveto beinstaled in the sameway, i.e.

$ cd <Rel easeDir>
$ gunzip -c otp_man_R15B03.tar.gz | tar xf -

Where<Rel easeDi r > is

o <PrefixDir>/Iib/erlangifyouhaveinstaled Erlang/OTP using make i nstall.

e $DESTDI R<PrefixDir>/1ib/erlangif youhaveinstaled Erlang/OTP using make i nstal |
DESTDI R=<Tnpl nstal | Di r>.

* RELEASE_ROCT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r >.

1.3.7 Support for SMP (Symmetric Multi Processing)

An emulator with SMP support will be built by default on most platforms if a usable POSIX thread library or native
Windows threadsis found.

You can force building of an SMP emulator, by using . / confi gure --enabl e- snp- support . However, if
configure does not automatically enable SMP support, the build is very likely to fail.

Use./configure --disabl e-snp-support if youfor some reason do not want to have the emulator with
SMP support built.

If SMP support isenabled, support for threaded 1/0 will also be turned on (also in the emul ator without SM P support).

The er| command will automatically start the SMP emulator if the computer has more than one logical processor.
You can force a start of the emulator with SMP support by passing - snp enabl e as command line arguments to
erl, and you can force a start of the emulator without SMP support by passing - snp di sabl e.

1.3.8 GS (Graphic System)
GSnow Tcl/Tk 8.4. It will be searched for when starting GS.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

1.3 Building and Installing Erlang/OTP

1.3.9 Using HIPE

HiPE supports the following system configurations:
e x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

e Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler is emphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.
e MacOSX/Darwin; Darwin 9.8.0 in 32-bit mode should work.

e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and Mac OSX 10.4 are supported.
e SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
e ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
e X86in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, MacOSX

e SPARC: Linux

e ARM: Linux

On other supported systemsyou needto . / confi gure --enabl e- hi pe.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Mdul e, native).

or

1> c(Modul e, [native| G herOptions]).

Using the erlc program, write like this:

$ erlc +native Mdul e.erl

The native code will be placed into the beam file and automatically loaded when the beam file is loaded.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

1.3 Building and Installing Erlang/OTP

To add hipe options, write like this from the Erlang shell:

1> c(Mdul e, [native, {hipe, H peOpti ons}| MoreOpti ons]).

Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hi pe: hel p_options().

1.3.10 Mac OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host confi g).

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
fl at _namespace -undefined suppress. Youalsoinclude-f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

Usethe- - enabl e- dar wi n- 64bi t configure flag to build a 64-bit binaries on Mac OS X.

1.3.11 Building universal binaries on Mac OS X (obsolete information)
(Thisinformation was written when Mac OS X L eopard was the current release. It may no longer work.)

Universal 32bit binaries can be built on an Intel Mac using the- - enabl e- dar wi n- uni ver sal configure option.
There still may occur problems with certain applications using this option, but the base system should run smoothly.

When building universal binaries on a PowerPC Mac (at least on Tiger), you must point out a suitable SDK that
contains universal binaries. For instance, to build universal binaries for Tiger (10.4):

$ CFLAGS="-i sysroot /Devel oper/SDKs/ MacOSX10. 4u. sdk" \
LDFLAGS="-i sysroot [/ Devel oper/ SDKs/ MacOSX10. 4u. sdk" \
./ configure --enabl e-darw n-uni ver sal

Also, if you run Leopard, but want to build for Tiger, you must do by setting the MACOSX DEPLOYNMENT _TARGET
environmental variable.

$ export MACOSX DEPLOYMENT TARGET=10. 4

Experimental support for 64bit x86 darwin binaries can be enabled using the- - enabl e- dar wi n- 64bi t configure
flag. The 64bit binaries are best built and run on Leopard, but most of the system also works on Tiger (Tiger's 64bit
libraries are, however, limited; thereforee.g. odbc, cr ypt 0, ssl etc. are not supported in Tiger). 64bit PPC binaries
are not supported and we have no plans to add such support (no machines to test on).

Universal binaries and 64bit binaries are mutually exclusive options.

1.3.12 Building a fast Erlang VM on Mac OS Lion

Starting with Xcode 4.2, Apple no longer includes a "real” gcc compiler (not based on the LLVM). Building with
1 vm gcc or cl ang will work, but the performance of the Erlang run-time system will not be the best possible.

Notethat if you havegcc- 4. 2 installed and included in PATH (from apreviousversion of Xcode), conf i gur e will
automatically make surethat gcc- 4. 2 will be used to compilebeam _enu. c (the source file most in need of gcc).

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Building and Installing Erlang/OTP

If youdon't havegcc- 4. 2. and want to build a run-time system with the best possible performance, do like this:
Install Xcode from the AppStoreif it is not already installed.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Some tools may still be lacking or out-of-date, we recommend using Homebr ew or Macports to update those tools.
Install MacPorts (http://www.macports.org/). Then:

$ sudo port sel fupdate
$ sudo port install gcc45 +universal

Building with wxErlang

If you want to build the wx application, you will need to get wxMac-2.8.12 (wxMac- 2. 8. 12. t ar . gz from http://
sour cefor ge.net/pr oj ectswxwindows/files/2.8.12/) and install it.

Export the path for MacOSX10.6.sdk:
$ export SDK=/Devel oper/ SDKs/ MacOSX10. 6. sdk

In Xcode 4.3 the path has changed so use the following instead,

$ export SDK=/ Appli cati ons/ Xcode. app/ Cont ent s/ Devel oper/ Pl at f or ms/ MacOSX. pl at f or ml Devel oper / SDKs/ MacOSX10. 6.

Then configure and build wxMac:

$ arch_flags="-arch i 386" ./configure CFLAGS="$arch_flags" CXXFLAGS="$arch_flags" CPPFLAGS="$arch_flags" LDFI
$ make
$ sudo nmeke install

To link wx properly you will also need to build and install wxSt yl edText Ctr | :

$ cd contrib/src/stc
$ nmake
$ sudo make install

Finish up

Build Erlang with the MacPorts GCC as the main compiler (using ¢l ang for the Objective-C Cocoa code in the wx
application):

$ PATH=/ usr/| ocal / bi n: $PATH CC=/ opt /| ocal / bi n/ gcc-np-4.5 CXX=/opt/| ocal / bi n/ g++-np-4.5 ./configure --enable-1
$ sudo nmeke install

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href
href
href
href

1.3 Building and Installing Erlang/OTP

1.3.13 How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ ert s/ emul at or .

In this directory execute:

$ make debug FLAVOR=$FLAVOR

where $FLAVOR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles are installed along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL_TOP/ bi n/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systemsthat can be built as well using the similar steps just described.

$ nake $TYPE FLAVOR=$FLAVOR

where $TYPE is opt, gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

1.3.14 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ | i b/ */ AUTHORS and
$ERL_TOP/ er t s/ AUTHORS, not in the individual sourcefiles.

1.3.15 Copyright and License

Copyright Ericsson AB 1998-2012. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed on an "ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.3.16 More Information

More information can be found at http://www.erlang.org.

1.3.17 Modifying This Document
Before modifying this document you need to have alook at the $ERL_TOP/ READMVE. nd. t xt document.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 Cross Compiling Erlang/OTP

1.4 Cross Compiling Erlang/OTP
Table of Contents

e Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
» Build and Install Procedure
e Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
e Ingtalling
» Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Testing the cross compiled system
e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
* Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
e Cross System Root Locations
e Optional Feature, and Bug Tests
e Copyright and License
e Modifying This Document

1.4.1 Introduction

This document describes how to cross compile Erlang/OTP-R15B03. Note that the support for cross compiling Erlang/
OTP should be considered as experimental. As far as we know, the R15B03 release should cross compile fine, but
sincewe currently have avery limited set of cross compilation environments to test with we cannot be sure. The cross
compilation support will remain in an experimental state until we get a lot more cross compilation environments to
test with.

Y ou are advised to read the whole document before attempting to cross compile Erlang/OTP. However, before reading
thisdocument, you should read the SERL_TOP/INSTALL.md document which describesbuilding and installing Erlang/
OTPin general. $ERL_TOPR isthe top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

1.4 Cross Compiling Erlang/OTP

- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change a any time without prior notice.

Cross Configuration

The $ERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er | -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset all of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf . tenpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

e $ERL_TOP/ xconp/ erl - xconp-vars. sh
e S$ERL_TOP/erl-build-tool -vars. sh
« $ERL TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.4.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/INSTALL.md before proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.4 Cross Compiling Erlang/OTP

Building With configure/make Directly
D

Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build the documentation out of the same source tree as you are cross compiling in, you currently need
afull Erlang/OTP system of the same release as the one being built for the build machine. If thisis the case, build and
install one for the build machine (or use one already built) and add it to the SPATH before cross building, and building
the documentation. See the How to Build the Documentation section in the $ERL_TOP/INSTALL.md document for
information on how to build the documentation.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System

2

$./configure --enabl e-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
nmake boot st rap; otherwise, the whole system will be built.

Cross Building the System
©)

$./configure --host=<HOST> --buil d=<BU LD> [her Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If confi g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- OS triplet of the system that you build on. If you execute SERL_TOP/
erts/autoconf/config. guess,itwill in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

1.4 Cross Compiling Erlang/OTP

Note:

You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
Y ou can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Deter mined by configure

(4)

$ make install DESTDI R=<TEMPORARY_PREFI X>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - -exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/
I ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine asit should be executed from on the target machine.

When meke i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that the installation will only beworking on the target machine at the [ocation determined
by confi gure.

Installing Manually
®)

$ neke rel ease RELEASE ROOT=<RELEASE DI R>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE_DI R> iswhat by default endsupin/ usr/ 1 ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 Cross Compiling Erlang/OTP

$./Install [-cross] [-mninal|-sasl] <ERL_ROOT>

where:

e« -m ni nal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_RQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.
Y ou can now either do:

(6)
» Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DI R>
$./Install -cross [-mninal|-sasl] <ABSOLUTE_ | NSTALL_DI R_ON TARGET>

or:

()
e Packagetheinstallation in <RELEASE DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE | NSTALL_DI R_ON_TARGET>
$./Install [-mninmal|-sasl] <ABSOLUTE_| NSTALL_DI R_ON_TARGET>

Building With the otp_build Script
)

$ cd $ERL_TOP

9)

$./otp_build configure --xconp-conf=<FILE> [her Config Args]

aternatively:

$./otp_build configure --host=<HOST> --buil d=<BUI LD> [&t her Config Args]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

1.4 Cross Compiling Erlang/OTP

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)

$./otp_build boot -a

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)
$./otp_build rel ease -a <RELEASE DI R>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.4.3 Testing the cross compiled system

$ meke rel ease_tests

or

$./otp_build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in (9).

$ cd $ERL_TOP/rel ease/tests/test_server/
$ $ERL_TOP/ bootstrap/bin/erl -eval 'ts:install([{xconp,"<FILE>"}])"' -s ts conpile_testcases -s init stop

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previousy was$ERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s tsinstall -s ts run all _tests -s init stop

The configure should be skipped and al tests should hopefully pass. For more details about how to usetsrun er |
-s ts help -s init stop

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Cross Compiling Erlang/OTP

1.4.4 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_bui | d - Thebuild system used. Thisvaluewill be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

e erl_xconmp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
+ CC- Ccompiler.

e CFLAGS - C compiler flags.

* STATI C_CFLAGS - Static C compiler flags.

e CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LI BS- Libraries.

Dynamic Erlang Driver Linking

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

1.4 Cross Compiling Erlang/OTP

Note:
Either set all or none of the DED _LD* variables.

 DED_LD- Linker for Dynamically loaded Erlang Drivers.

e DED _LDFLAGS - Linker flagsto usewith DED_LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

LargeFile Support

Note:
Either set all or none of the LFS_* variables.

e LFS _CFLAGS - Largefile support C compiler flags.
e LFS LDFLAGS - Largefile support linker flags.
e LFS LI BS- Largefilesupport libraries.

Other Tools
e RANLIB-ranli b archiveindex tool.

* AR-ar archiving tool.

 CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

* erl_xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ss| applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

* erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests
Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set these variabl es.

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Cross Compiling Erlang/OTP

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will beissued.

e erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

e erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automaticaly.

« erl_xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian” format. If no, it has"regular" endianness.

e erl_xconmp_clock gettime_cpu_tine-yes|no.Defaultstono. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

 erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both IPv4 and I1Pv6.

e erl_xconp_gethrvtinme_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

e erl_xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack the mal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

e erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

e erl_xconmp_linux_clock gettine _correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

e erl_xconp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

« erl_xconp_linux_usabl e_sigal tstack-yes| no.Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

e erl_xconp_linux_usabl e_sigusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

« erl_xconp_poll -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

e erl_xcomp_reliable fpe-yes|no.Defaultstono.If yes, thetarget system must have reliable floating
point exceptions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

1.5 How to Build Erlang/OTP on Windows

1.4.5 Copyright and License
Copyright Ericsson AB 2009-2012. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed onan"ASI1S" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.4.6 Modifying This Document
Before modifying this document you need to have alook at the $ERL_TOP/ READMVE. nd. t xt document.

1.5 How to Build Erlang/OTP on Windows

Table of Contents

e Introduction

* Frequently Asked Questions

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

* Development

e UsingGIT

e Final Words

» Copyright and License

e Modifying This Document

1.5.1 Introduction

This file describes how to build the Erlang emulator and the OTP libraries on Windows. The instructions apply to
versions of Windows supporting the Cygwin emulated gnuish environment for Windows or the Msys ditto. We've built
on the following platforms. Windows 2003 server, Windows XP Home/Professional, Windows Vista and Windows
7 (32 and 64 bit). Y ou can probably build on Windows 2000, but you will not be able to install the latest Microsoft
SDK, so you have to go back to some earlier compiler. Any Windows95'ish platform will surely get you into trouble,
what I'm not sure of, but it certainly will...

The procedure described uses either Cygwin or Msys as a build environment, you run the bash shell in Cygwin/Msys
and use gnu make/configure/autoconf etc to do the build. The emulator C-source code is, however, mostly compiled
with Microsoft Visual C++™, producing a native Windows binary. Thisis the same procedure as we use to build the
pre-built binaries. The fact that we use V C++ and not gcc is explained further in the FAQ section.

| describe the build procedure to make it possible for open source customers to build the emulator, given that they
have the needed tools. The binary Windows releases is still a preferred alternative if one does not have Microsoft's
development tools and/or don't want to install Cygwin or Msys.

To use Cygwin/Msys, one needs basic experience from a Unix environment, if one does not know how to set
environment variables, run programs etc in a Unix environment, one will be quite lost in the Cygwin os Msys ditto.
I can unfortunately not teach all the world how to use Cygwin and bash, neither how to install Cygwin nor perform
basic tasks on a computer. Please refer to other documentation on the net for help, or use the binary release instead
if you have problems using the tools.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

However, if you feel comfortable with the environment and build system, and have all the necessary tools, you have
a great opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions and
patches to the appropriate mailing lists to let them find their way into the next version of Erlang. If making changes
to the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks,
so that your changes don't break other platforms. That of course goes for C-code too, system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/ w n32 and SERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ enul at or / beamdirectory isfor common code.

Before the RIC release of Erlang/OTP, the Windows rel ease was built partly on a Unix (Solaris) box and partly on a
Windows box, using Perl hacks to communicate and sync between the two machines. R9C was the first release ever
built solely on Windows, where no Unix machine is needed at all. Now we've used this build procedure for a couple
of releases, and it has worked fine for us. Still, there might be al sorts of troubles on different machines and with
different setups. I'll try to give hintswherever I've encountered difficulties, but please share your experiences by using
the erlang-questions mailing list. | cannot of course help everyone with all their problems, please try to solve the
problems and submit solutions/workarounds. Remember, it's al about sharing, not about demanding...

Starting with R15B, our build system runs both on Cygwin and Msys (MinGW's fork of an early cygwin version).
Msysis asmaller package to install and may on some machines run dlightly faster. If Cygwin gives you trouble, try
Msysinstead, and v.v. Beginning with R15B there is also a native 64bit version of Erlang for 64bit Windows 7 (only).
These instructions apply to both the 32bit VM and the 64bit ditto.

Note that even if you build a 64bit VM, most of the directories and files involved are still named win32. You can
view the name win32 as meaning any windows version not beeing 16bit. A few occurences of the name Win64 are
however present in the system, for example the installation file for a 64 bit windows version of Erlang is by default
named ot p_wi n64_<ver si on>. exe.

Letsgo then, I'll start with alittle FAQ, based on in house questions and misunderstandings.

1.5.2 Frequently Asked Questions
e Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. You'll need Microsoft's Visual C++ still, aBourne-shell script (cc.sh) wraps the Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 7.1 == Visual studio 2010).

e Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit's agood compiler - really! Actualy it's been possiblein late R11-rel eases to build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

* Q: OK, you need VC++, but now you've started to demand avery recent (and expensive) version of Visual studio,
not the old and stable VV C++ 6.0 that was used in earlier versions. Why?

A: Well, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and all the tools you need are there. The included debugger (WinDbg) is also quite usable, it's what
| used when porting Erlang to 64bit Windows. Another reason to use the latest Microsoft compilers is DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
V C++ version, why we should aim to use the latest freely available SDK and compiler.

e Q: Can/will I build a Cygwin binary with the procedure you describe?

A: No, theresult will be a pure Windows binary, and asfar as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are still some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

href
href

1.5 How to Build Erlang/OTP on Windows

some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary. Ericsson does however not pay me to do a Cygwin port, so such a port would have to happen in
spare time, which is alimited resource...

e Q: Hah, I saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam emu. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC, that particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

e Q: Sonow theresaMSVC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen, at least | will never make one. Clicking around in super-multi-tab'd dialogs to add afile or
compiler option when it's so much easier in amakefile is simply not my style.

e Q: Sohow doesit al work then?

A: Cygwin or Msysisthe environment, which closely resembles the environments found on any Unix machine.
It'salmost like you had avirtual Unix machine inside Windows. Configure, given certain parameters, then creates
makefiles that are used by the Cygwin/Msys gnu-make to built the system. Most of the actual compilers etc
are not, however, Cygwin/Msys tools, so I've written a couple of wrappers (Bourne-shell scripts), which reside
in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ wi n32/ nmsys_t ool s. They al do
conversion of parameters and switches common in the Unix environment to fit the native Windows tools. Most
notable is of course the paths, which in Cygwin/Msys are Unix-like paths with "forward dlashes" (/) and no
drive letters, the Cygwin specific command cygpat h is used for most of the path conversions in a Cygwin
environment, other tools are used (when needed) in the corresponding M sys environment. Luckily most compilers
accept forward slashesinstead of backslashes as path separators, but one still have to get the drive letters etc right,
though. The wrapper scripts are not general in the sense that, for example, cc.sh would understand and translates
every possible gcc option and passes correct optionsto cl.exe. The principleisthat the scripts are powerful enough
to allow building of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the
development of Erlang, that's one of the reasons | made them into shell-scripts and not Perl-scripts, | believe they
are easier to understand and change that way. | might be wrong though, cause another reason | didn't write them
in Perl is because I've never liked Perl and my Perl code is no pleasant reading...

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving all theright parameters
toconfi gur e/make and also helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin.

* Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat realy ethical?

A: No, not really, but seethisasastep intheright direction. I'm aiming at GCC compiled emulators and a Cygwin
version, but | really need to do other things aswell... In time, but don't hold your breath...
e Q: Can| build something that looks exactly asthe commercia release?

A: Yes, we use the exactly same build procedure.
e Q: Which version of Cygwin/Msys and other tools do you use then?

A: For Cygwin and Msys alike, we try to use the latest rel eases available when building. What versions you use
shouldn't really matter, | try to include workarounds for the bugs I've found in different Cygwin/Msys releases,
please help me add workarounds for new Cygwin/Msys-related bugs as soon as you encounter them. Also please
do submit bug reports to the appropriate Cygwin and/or Msys developers. The GCC we used for R15B03 was
version 4.7.0 (MinGW 64bit) and 4.3.4 (Cygwin 32bit). We used VC++ 10.0 (i.e. Visual studio 2010), Sun's JDK

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

1.5.0_17 (32bit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32 OpenSSL 0.9.8r. Please read the next
section for details on what you need.

Q: Can you help me setup X in Cygwin?

A: No, unfortunately | haven't got time to help with Cygwin related user problems, please read Cygwin related

web sites, newsgroups and mailing lists.

Q: Why istheinstruction so long? Isit really that complicated?

A: Partly it'slong because | babbletoo much, partly because I've described asmuch as| could about theinstallation

of the needed tools. Once the tools are installed, building is quite easy. | also have tried to make this instruction

understandable for people with limited Unix experience. Cygwin/Msys is a whole new environment to some

Windows users, why careful explanation of environment variables etc seemed to be in place. The short story, for

the experienced and impatient is:

e Get andinstal complete Cygwin (latest) or complete MinGW with msys

e Instal Microsofts Windows SDK 7.1 (and .Net 4)

e Getandinstall Sun'sJDK 1.5.0 or higher

e Getandinstal NSIS 2.01 or higher (up to 2.46 tried and working)

o Get, build and install OpenSSL 0.9.8r or higher (up to 1.0.0atried & working) with static libs.

e GettheErlang sourcedistribution (from http://www.er lang.or g/download.html) and unpack with Cygwin's
tar.

e Set ERL_TOPR to where you unpacked the source distribution

* $ cd $ERL_TOP

e Get (from http://www.erlang.or g/download/tcltk85 win32_bin.tar.gz) and unpack the prebuilt TCL/TK
binaries for windows with cygwin tar, standing in $ERL_TOP

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_ TOP, issue the following commands:

eval “./otp_build env_w n32°

./ otp_build autoconf

./lotp_build configure

./otp_build boot -a

./otp_build rel ease -a
./lotp_build installer_w n32

rel ease/ wi n32/ ot p_wi n32_R15B03 /S

L2 IR R AR o AR o

Voilal St art->Prograns->Erl ang OTP R15B03- >Er | ang starts the Erlang Windows shell.

1.5.3 Tools you Need and Their Environment

Y ou need some tools to be able to build Erlang/OTP on Windows. Most notably you'll need Cygwin or Msys and
Microsofts Windows SDK, but you also might want a Java compiler, the NSIS install system and OpenSSL. Well'
here'sthelist:

Cygwin, thevery latest isusually best. Get all the devel opment toolsand of courseall the basic ditto. Infact getting
the complete package might be a good idea, as you'll start to love Cygwin after a while if you're accustomed to
Unix. Make sureto get jar and also make sure not to install a Cygwin'ish Java... The Cygwin jar command is used
but Sun's Java compiler and virtual machine...

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href
href
href

1.5 How to Build Erlang/OTP on Windows

Get the installer from the web site and use that to install Cygwin. Be sure to have fair privileges. If you're on a
NT domain you should consider running nkpasswd - d and mkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

When you start you first bash shell, you will get an awful prompt. You might also have a PATH environment
variable that contains backslashes and such. Edit $HOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
and setacorrect PATH. Alsodoaexport SHELL in. prof i | e.For somenon-obviousreason the environment
variable $SHELL is not exported in bash. Also note that . profi | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . profi | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). | personally usually do like this
attheendof . profil e:

ENV=$HOVE/ . bashr c
export ENV
. $ENV

Y ou might also, if you're ahard core type of person at least, want to setup X-windows (XFree86), that might be
as easy as running startx from the command prompt and it might be much harder. Use Google to find help...

If you don't use X-windows, you might want to setup the Windows console window by selecting properties in
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especially setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear...

If you want to use (t)csh instead of bash you're on your own, | haven't tried and know of no one that has. | expect
that you use bash in al shell examples.

» Alternatively you download MinGW and Msys. You'll find the latest installer at:
URL: http://sour cefor ge.net/pr oj ects/mingwi/files/I nstaller /mingw-get-inst/
Make sureto install everything they've got.
To be able to build the 64bit VM, you will aso need the 64bit MinGW compiler from:

URL: http://sour cefor ge.net/pr oj ects/mingw-w64/files/ T ool chains% 20tar getting% 20Win64/Automated
% 20Builds/

The latest version should do it. Make sure you download the m ngw w64-bin_i 686-
m ngw_<somet hi ng>. zi p, not alinux version. Y ou unzip the package on top of your MinGW installation
(c:\' M nGW and that'siit.
Setting up your environment in Msysis similar to setting it up in Cygwin.

e Microsofts Windows SDK version 7.1 (corresponding to VC++ 10.0 and Visua Studio 2010). You'll find it here:
URL: http://www.micr osoft.com/download/en/details.aspx?id=8279
but before you install that, you need to have .Net 4 installed, you'll find that here:
URL: http://www.micr osoft.com/download/en/details.aspx?id=17851

Usethe web installer for the SDK, at least when | tried downloading the whole package as an image, | got SDK
7.0 instead, which is not what you want...

There will be a Windows command file in “%°ROGRAMFI LES% M r osoft SDKs\ W ndows\ v7. 1\ Bi n
\ Set Env. cnd that set's the appropriate environment for a Windows command prompt. Thisis not appropriate
for bash, so you'll need to convert it to bash-style environments by editing your . bash_pr of i | e. In my case,
where the SDK is installed in the default directory and °ROGRAMFI LES%is C: \ Progr am Fi | es, the
commands for setting up a 32bit build environment (on a 64bit or 32bit machine) look like this (in cygwin):

32| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href

1.5 How to Build Erlang/OTP on Windows

Some conmon pat hs
C DRV=/ cygdrive/c
PRG FLS=$C DRV/ Programl Fil es

nsis

NSI S_BI N=$PRG_FLS/ NSI S

java

JAVA Bl N=$PRG FLS/ Java/jdkl.6.0_16/bin

##
M5 SDK
##

CYGW N=nowi nsynl i nks

MS10="$PRG FI LES/ M crosoft Visual Studio 10.0"

W N_MWS10="C:\\ Program Fi | es\\ M crosoft Visual Studio 10.0"
SDK10="$PRG _FI LES/ M cr osoft SDKs/ W ndows/v7. 1"

W N_SDK10="C:\\ Program Fi | es\\ M crosoft SDKs\\W ndows\\v7. 1"

PATH="$NSI S_BI N: \

$MVS10/ Conmon7/ | DE: \

$MS10/ Conmon7/ Tool s: \

$MWS10/ VT Bi n: \

$MVS10/ VT Bi n/ VCPackages: \

$SDK10/ Bi n/ NETFX 4.0 Tool s:\
$SDK10/ Bi n: \

[usr /| ocal /bin:/usr/bin:/bin:\

[cygdri vel c/ W NDONS/ syst enB2: / cygdri ve/ c/ W NDOAS: \
[cygdri vel/ c/ W NDONS/ syst enB2/ Whem \
$JAVA BI N'

LI BPATH=" $W N_MvS10\\ VQ\\ LI B"
LI B="$W N_MWS10\\ VQ\\ LI B; $W N_SDK10\\ L| B"
| NCLUDE="$W N_MvS10\\ VC\ \ | NCLUDE; $W N_SDK10\ \ | NCLUDE; $W N_SDK10\ \ | NCLUDE\\ gl "

export CYGN N PATH LI BPATH LI B | NCLUDE

If you're using Msysinstead, the only thing you need to change isthe C_DRV setting, which would read:

C DRV=/c

And of course you might need to change C: \ Progr am Fi | es etc if you're using a non-english version of
Windows (XP). Notethat in later versions of Windows, the national adoptions of the program files directories etc
are not on the file system but only in the explorer, so even if explorer says that your programs reside in e.g. C:
\ Pr ogr am they might still residein C: \ Pr ogr am Fi | es inredlity...

If you are building a 64 bit version of Erlang, you should set up PATHs etc alittle differently. | use the following
script to make things work in both Cygwin and Msys:

make_wi npat h()
P=$1

if ["$INCYGAN' = "true"]; then
cygpath -d "$P"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

1.5 How to Build Erlang/OTP on Windows

el se
(cd "$P" && /bin/cmd //C "for % in (".") do @cho %fsi")
fi
}

make_upat h()

P=$1

if ["$INCYGANN' = "true"]; then
cygpath "$P"

el se

echo "$P" | /bin/sed 's, M\ ([a-zA-Z]\):\\,/\L\1/,;s,\\,/,¢d"
fi
}

Some conmon pat hs
if [-x /usr/bin/nsysinfo]; then
Wthout this the path conversion won't work
COVBPEC=' C: \ W ndows\ SysWOW64\ cnd. exe’
MBYSTEM=M NGAB2
export MSYSTEM COVSPEC
I N_CYGW N=f al se
el se
CYGWN N=nowi nsyml i nks
export CYGA N
I N_CYGW N=t r ue
fi

if ["$INCYGNN' = "true"]; then

PATH=/ usr /1 ocal / bi n: / usr/ bi n: / bi n: / usr/ X11R6/ bi n: \

/ cygdri vel/ ¢/ wi ndows/ syst enB2: / cygdri ve/ c/wi ndows: / cygdri ve/ c/ wi ndows/ syst en82/ Whem
el se

PATH=/ usr /1 ocal / bi n: / mi ngw/ bi n: / bi n: / ¢/ W ndows/ syst enB2: / ¢/ W ndows: \

/ ¢/ W ndows/ Syst en82/ Woem
fi

if ["$INCYGANN' = "true"]; then
C _DRV=/ cygdrivelc

el se
C DRV=/c¢c

fi

PRG FLS64=$C DRV/ Program Fil es

PRG _FLS32=$C DRV/ Program Files\ \(x86\)

VI SUAL_STUDI O_ROOT32=$PRG _FLS32/ M crosoft\ Vi sual\ Studio\ 10.0
M5_SDK_ROOT64=$PRG FLS64/ M crosoft\ SDKs/W ndows/v7. 1

Ckay, now mangl e the paths and get rid of spaces by using short nanes
W N_VCROOT32="make_wi npat h " $VI SUAL_STUDI O ROOT32" "

VCROOT32="nmake_upat h $W N_VCROOT32"

W N_SDKROOT64="nake_wi npath "$M5_SDK ROOT64""

SDKROOT64=" make_upat h $W N_SDKROOT64"

W N_PROGRAMFI LES32="nmake_wi npat h " $PRG FLS32""

PROGRAMFI LES32="make_upat h $W N_PROGRAMFI LES32

W N_PROGRAVFI LES64=" make_wi npat h " $PRG FLS64""
PROGRAMF| LES64="nake_upat h $W N_PROGRANFI LES64°

nsis

NSI S_BI N=$PROGRAMFI LES32/ NSI S

java

JAVA Bl N=$PROGRAMFI LES64/ Java/j dk1. 7. 0_01/bin

The PATH variabl e should be Unix'ish
VCPATH=$VCROOT32/ Conmon7/ | DE: $VCROOT32/ VC/ Bl N/ and64: $VCROOT32/ Common7/ Tool s: \

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

$VCROOT32/ VC/ VCPackages: $SDKROOT64/ bi n/ NETFX4~1. 0TQ x64: $SDKROOT64/ bi n/ x64: \
$SDKROOT64/ bi n

M crosoft SDK libs

LI BPATH=$W N_VCROOT32\\ VQ\\ LI B\ \ and64

LI B=$W N_VCROOT32\\ VC\\ LI B\ \ and64\ ; $W N_SDKROOT64\ \ LI B\ \ X64

| NCLUDE=$W N_VCROOT32\ \ VC\ \ | NCLUDE\ ; $W N_SDKROOT64\ \ i ncl ude\ ; \
$W N_SDKROOT64\ \ i ncl ude\\ gl

Put nsis, c conpiler and java in path
PATH=$NSI S_BI N: $VCPATH: $PATH: $JAVA BI N

Make sure LIB and I NCLUDE is avail able for others
export PATH LI BPATH LI B | NCLUDE

All thisis derived from the SetEnv.cmmd command file mentioned earlier. The bottom line is to set the PATH so
that NSIS and Microsoft SDK is found before the Msys/Cygwin tools and that Javaislast in the PATH.

Make a simple hello world (maybe one that prints out si zeof (voi d *)) and try to compile it with the cl
command from within bash. If that does not work, your environment needs fixing. Also remember to fix up the
PATH environment, especially old Erlang installations might have inserted quoted paths that Cygwin/Msys does
not understand. Remove or correct such paths. There should be no backslashesin your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

Sun's Java JDK 1.5.0 or higher. Our Java code (jinterface, ic) is written for JDK 1.5.0. Get it for Windows and
install it, the JRE isnot enough. If you don't care about Java, you can skip this step, theresult will be that jinterface
is not built.

URL: http://java.sun.com

Add javac LAST to your path environment in bash, in my case this means:

" PATH="$PATH: / cygdri ve/ c/ Program Fi | es/ Java/j dk1. 5. 0_17/ bi n""

No CLASSPATH or anything is needed. Typej avac at the bash prompt and you should get alist of available
Javaoptions. Make sure by typingt ype j ava that you use the Javayou installed. Note however that Cygwin's
j ar . exe isused, that's why the JDK bin-directory should be added last in the PATH.

Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases as well from R9C an on.

URL: http://www.nullsoft.com/free/nsis

Install the lot, especialy the modern user interface components, asit's definitely needed. Put makensi s inyour
path, in my case:

PATH=/ cygdri ve/ c/ Program Fil es/ NSI S: $PATH

type makensis at the bash prompt and you should get alist of options if everything is OK.

OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries
available, but | strongly recommend building this yourself. It's quite easy.

First get the source from
URL.: http://openssl.or g/sour ce/

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

href
href
href

1.5 How to Build Erlang/OTP on Windows

| would recommend using 0.9.8r.

Download the tar file and unpack it (using your bash prompt) into a directory of your choise.
Y ou will need a Windowish Perl for the build. ActiveState has one:

URL: http://www.activestate.com/activeper|/downloads

Download and install that. Disable options to associate it with the .pl suffix and/or adding things to PATH, they
are not needed.

Now fire up the Microsoft Windows SDK command prompt in REL EASE mode for the architecture you are going
to build. The easiest is to copy the shortcut from the SDKs start menu item and edit the command line in the
shortcut (Right click->Properties) to end with / Rel ease. Make sure the banner when you double click your
shortcut (thetext intheresulting command window) saysTar get i ng W ndows XP x64 Rel ease if youare
going to do a64 bit build and Tar geti ng W ndows XP x86 Rel ease if you arebuilding a32 bit version.

Now cd to where you unpacked the OpenSSL source using your Release Windows command prompt (it should
be on the same drive as where you are going to install it if everything isto work smothly).

C:\> cd <sone dir>

Add ActiveState (or some other windows perl, not cygwins) to your PATH:

C\...\> set PATH=C:.\ Perl\ bi n; %°ATH%

Or if you installed the 64bit perl:

C\...\> set PATH=C:\ Perl 64\ bi n; %°ATH%

Configure OpenSSL for 32 bit:

C\...\> perl Configure VC-WN32 --prefix=/COpenSSL

Or for 64 hit:

C\...\> perl Configure VC-W N64A --prefix=/OpenSSL-W n64

Do some setup (for 32 hit):

C\...\> ns\do_ns

The same for 64 bit:

C\...\> ns\do_wi n64da

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.5 How to Build Erlang/OTP on Windows

Then build static libraries and install :

.\> nmake -f ns\nt.nak
.\> nmake -f ns\nt.nmak install

C\..

C\..
That's it - you now have your perfectly consistent static build of opensd. If you want to get rid of any possibly
patented algorithmsin the lib, just read up on the OpenSSL FAQ and follow the instructions.

Theinstallation locations chosen are where configure will ook for OpenSSL, so try to keep them asiis.

Building with wxWidgets. Download wxWidgets-2.8.9 or higher patch release (2.9.* isadeveloper release which
currently does not work with wxErlang).

Install or unpack it to DRI VE: / PATH cygwi n/ opt /| ocal / pgm

edit: C:\cygwi n\opt\local \ pgm wxMSW 2. 8. 11\ i ncl ude\ wx\ mswh set up. h enable
wx USE_GLCANVAS, wx USE_POSTSCRI PT and wx USE_GRAPHI CS_CONTEXT

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

...\>cd C\cygw n\opt\I ocal \ pgm wxMSW 2. 8. 11\ bui | d\ nsw
...\'> nmeke BUI LD=rel ease SHARED=0 UNI CODE=1 USE_OPENGL=1 USE_GCDI PLUS=1 DI R SUFFI X_CPU= -f makefile. vc
...\>cd C\cygw n\opt\I ocal \ pgm wxMSW 2. 8. 11\ contri b\ bui | d\stc

..\> nneke BU LD=rel ease SHARED=0 UNI CODE=1 USE_OPENGL=1 USE_GCDI PLUS=1 DI R_SUFFI X_CPU= -f makefile. vc

Or - if building a 64bit version:

...\>cd C\cygw n\opt\local\ pgm wxMSW 2. 8. 11\ bui | d\ nsw
...\> nneke TARGET_CPU=and64 BUI LD=rel ease SHARED=0 UNI CODE=1 USE_OPENGL=1 USE_GDI PLUS=1 DI R_SUFFI X_CF
...\>cd C\cygw n\opt\local\ pgm wxMSW 2. 8. 11\ contri b\ bui I d\ stc

..\> nneke TARGET_CPU=and64 BUI LD=r el ease SHARED=0 UNI CODE=1 USE_OPENGL=1 USE_GDI PLUS=1 DI R_SUFFI X_CF

The Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix platforms.
Preferably use tar from within Cygwin to unpack the sourcetar.gz (t ar zxf ot p_src_R15B03. tar. gz).

set the environment ERL__ TOP to point to theroot directory of the source distribution. Let'ssay | stood in SHOVE/
sr ¢ and unpacked ot p_src_R15B03. t ar. gz, | then add the followingto . profi | e:

ERL_TOP=$HOME/ sr c/ ot p_src_R15B03
export S$ERL_TOP

The TCL/TK binaries. You could compile Tcl/Tk for windows yourself, but you can get a stripped down version
from our website which is suitable to include in the final binary package. If you want to supply tcl/tk yourself,
read the instructions about how the tcl/tk tar file used in the build is constructed under $ERL_TOP/ | i b/ gs/
t cl . The easy way isto download http://www.erlang.or g/download/tcltk85 win32_bin.tar.gz and unpack it
standing inthe $ERL_ TOP directory. Thiswill createthefilewi n32. tar. gz in$ERL_TOP/ i b/ gs/tcl/
bi nari es.

One last aternativeisto create afile named SKI Pinthe $ERL_TOP/ | i b/ gs/ after configureis run, but that
will give you an erlang system without gs (which might be okay as you probably will use wx anyway).

Notethat thereisno special 64bit version of TCL/TK needed, you can use the 32bit program even for a64bit build.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

href
href

1.5 How to Build Erlang/OTP on Windows

1.5.4 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally aPATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should also have an ERL_TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script SERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might doit...

$ cd $ERL_TOP
$ eval "./otp_build env_w n32

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL_TOP
$ eval $(./otp_build env_wi n32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL_TOP
$ eval “./otp_build env_wi n32 x64°

This should do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_wi n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ er t s/ et ¢/ wi n32/
cygwi n_tool s/vc and$SERL_TOP/ ert s/ et c/wi n32/ cygw n_t ool areadded firstinthe PATH.

Try now atype erl c. That should result in the erlc wrapper script (which does not have the .sh extension, for
reasons best kept untold...). It should residein SERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s or $ERL_TOP/
erts/etc/w n32/ msys_t ool s. Youcouldasotry whi ch cc. sh,whichar. sh etc.

Now you're ready to build...

1.5.5 Building and Installing

Now it's assumed that you have executed eval ~./otp_build env_win32" or eval "./otp_build
env_wi n32 x64° for thisparticular shell...

Building is easiest using the ot p_bui | d script. That script takes care of running configure, bootstrapping etc on
Windowsinasimpleway. Theot p_bui | d script is the utility we use ourselves to build on different platforms and
it therefore contains code for al sorts of platforms. The principle is, however, that for non-Unix platforms, one uses
.lotp_build env_<target > to set up environment and then the script knows how to build on the platform "by
itself". You've aready run. / ot p_bui | d env_w n32 in the step above, so now it's mostly like we build on any
platform. OK, here are then steps; Assuming you will want to build afull installation executable with NSIS, you can
omit<i nstal |l ati on direct ory>andthereleasewill becopiedto $ERL_TOP/ r el ease/ wi n32: and there
iswhere the packed self installing executable will reside too.

38| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

*HBH B BH B

./lotp_build autoconf # Ignore the warning bl ob about versions of autoconf
./lotp_build configure <optional configure options>

./otp_build boot -a

./otp_build release -a <installation directory>

./otp_build installer_w n32 <installation directory> # optional

Now you will have a file called ot p_wi n32_R12B. exe in the <installation directory>, ie
$ERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

$./otp_build autoconf - This step rebuilds the configure scripts to work correctly in the cygwin
environment. In anideal world, thiswould not be needed, but alas, we have encountered several incompatibilities
between our distributed configure scripts (generated on a Linux platform) and the cygwin environment over the
years. Running autoconf on cygwin ensures that the configure scripts are generated in a cygwin-compatible way
and that they will work well in the next step.

$./otp_build confi gure-Thisrunsthe newly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wrapsMSVC+
+, so al configure tests regarding the C compiler getsto run the right compiler. A lot of the tests are not needed on
Windows, but | thought it best to run the whole configure anyway. The only configure option you might want to
supply is- - wi t h- ssl , which might be needed if you have built your own OpenSSL distribution. The Shining
Lights distribution should be found automatically by conf i gur e, if that fails, add a- - wi t h- ssl =<di r >
that specifiesthe root directory of your OpenSSL installation.

$./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/

boot st r ap) to build a complete OTP system. It first builds an emulator and sets up a minimal OTP system
under $ERL_TOP/ boot st r ap, then starts to compile the different OTP compilers to make the $SERL_TOP/

boot st rap system potent enough to be able to compile al Erlang code in OTP. Then, al Erlang and C
code under $ERL_TOP/ | i b is built using the bootstrap system, giving a complete OTP system (although not
installed). When this is done, one can run Erlang from within the source tree, just type $ERL_TOP/ bi n/ er |

and you should have a prompt. If you omit the -a flag, you'll get a smaller system, that might be useful during
development. Now exit from Erlang and start making a release of the thing:

$./otp_build rel ease -a -Buildsacommercia release tree from the source tree, default is to put
itin SERL_TOP/ r el ease/ wi n32, you can give any directory as parameter (Cygwin style), but it doesn't
really matter if you're going to build a self extracting installer too. Y ou could of course build release to the final
directory and thenrun. /I nst al | . exe standing in the directory where the release was put, that will create a
fully functional OTP installation. But let's make the nifty installer:

$./otp_build installer_w n32 - Create the self extracting installer executable. The executable
ot p_w n32_R15B03. exe will be placed in the top directory of the release created in the previous step. If
no release directory is specified, the release is expected to have been built to $ERL_TOP/ r el ease/ wi n32,
which aso will be the place where the installer executable will be placed. If you specified some other directory
fortherelease(i.e.. /ot p_buil d rel ease -a /tnp/erl _rel ease), you're expected to give the same
parameter here, (i.e. . /otp_build installer_w n32 /tnp/erl_release). You need to have a
full NSIS installation and makensi s. exe in your path for this to work of course. Once you have created the
installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow the steps
in the installation wizard. To get all default settings in the installation without any questions asked, you run the
executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ rel ease/ wi n32/ ot p_wi n32_R15B03 /S

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

1.5 How to Build Erlang/OTP on Windows

or

$ cd $ERL_TOP
$ rel ease/ wi n32/ ot p_wi n64_R15B03 /S

and after awhile Erlang/OTP-R15B03 will havebeeninstalledinC: \ Program Fi | es\ er| 5. 9. 3. 1\, with
shortcuts in the menu etc.

The necessary setup of an Erlang installation is actually done by the program | nst al | . exe, which residesin
thereleasetop. That program creates. i ni -filesand copiesthe correct boot scripts. If one hasthe correct directory
tree(likeaftera. /ot p_buil d rel ease -a),onlytherunningof | nst al | . exe isnecessary to get afully
functional OTP. What the self extracting installer addsis (of course) the possibility to distribute the binary easily,
together with adding shortcuts to the Windows start menu. There is also some adding of entries in the registry,
to associate . er | and . beamfiles with Erlang and get nifty icons, but that's not something you'll really need
to run Erlang. The registry is also used to store uninstall information, but if one has not used the self extracting
installer, one cannot (need not) do any uninstall, one just scratches the release directory and everything is gone.
Erlang/OTP does not need to put anything in the Windows registry at al, and does not if you don't use the self
extracting installer. In other words the installer is pure cosmetics.

Note:

Beginning with R9C, the Windows installer does not add Erlang to the system wide path. If one wants to have
Erlang in the path, one hasto add it by hand.

1.5.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you also can run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also usesal the OTP libraries in the source tree.

If you hack the emulator, you can then build the emulator executable by standing in $ERL_TOP/ er t s/ enul at or
and doasimple

$ neke opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") inthe particular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ emul at or)

$ make TESTROOT=/tnp/erl _rel ease rel ease

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dlI | (the actual runtime system) and
erl exec. dl | . Dolikethis

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

cd $ERL_TOP

rm bi n/ wi n32/ erl exec. dl |
cd erts/enul at or

make debug

cd ../etc

make debug

R R e T

and sometimes

$ cd $ERL_TOP
$ make | ocal _setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do &

1> erl ang: system i nfo(system version).

in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

$ cd $ERL_TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ neke opt

Note that you're expected o have a fresh Erlang in your path when doing this, preferably the plain R15B03 you
have built in the previous steps. Y ou could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding
specific libraries, that would give you a good enough Erlang system to compile any OTP erlang code. Setting up the
path correctly is alittle bit tricky, you still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygw n_t ool s/ vc
and SERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s before the actual emulator in the path. A typical setting of
the path for using the bootstrap compiler would be:

$ export PATH=$ERL_TOP/ erts/etc/w n32/cygw n_t ool s/ vc\
:$ERL_TOP/ ert s/ et c/ wi n32/ cygw n_t ool s: $ERL_TOP/ boot st rap/ bi n: $PATH

That should make it possible to rebuild any library without hassle...

If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:
$ cd $ERL_TOP/lib/stdlib

$ make TESTROOT=/tnp/erlang_rel ease rel ease

Remember that:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

1.5 How to Build Erlang/OTP on Windows

* Windows specific C-code goes in the $SERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32or $ERL_TOP/ ert s/ et c/ wi n32.

« Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of

{wi n32, } ->
do_wi ndows_specific();
O her ->

do_fall back_or_exit()
end,

That's basically all you need to get going.

1.5.7 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in cygwin, but not
in Msys. Thereisaproject MsysGIT:

URL:http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
Msys command prompt for building. Also all test suites cannot be built as MsysGIT/Msys does not handle symbolic
links. To build test suites on Windows, you will need Cygwin for now. Hopefully all symbolic links will disappear
from our repository soon and this issue will disappear.

1.5.8 Final Words

The first build system for Erlang using Cygwin on Windows was created by Per Bergkvist. | haven't used his build
system, but it's rumored to be good. The idea to do this came from his work, so credit iswell deserved.

Of course this would have been completely impossible without the excellent Cygwin. The guys at Cygnus solutions
and Redhat deserve ahuge THANKS! aswell as al the other people in the free software community who have hel ped
in creating the magnificent software that constitutes Cygwin.

Also the people devel oping the alternative command prompt M sysand the MinGW compiler areworth huge THANKS!
The 64bit port would have been impossible without the 64bit MinGW compiler.

Good luck and Happy Hacking, Patrik, OTP

1.5.9 Copyright and License
Copyright Ericsson AB 2003-2012. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed onan"ASI1S" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.5.10 Modifying This Document
Before modifying this document you need to have alook at the $ERL_TOP/ READMVE. nd. t xt document.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.1 System Principles

2 System Principles

2.1 System Principles
2.1.1 Starting the System

An Erlang runtime system is started with the command er | :

% erl
Erl ang (BEAM emul ator version 5.2.3.5 [hipe] [threads:0]

Eshell V5.2.3.5 (abort with ~"Q
1>

er | understands a number of command line arguments, seeer | (1) . A number of them are also described in this
chapter.

Application programs can access the values of the command line arguments by caling one of the functions
init:get_argunment(Key),orinit:get _argunments().Seeinit(3).
2.1.2 Restarting and Stopping the System

The runtime system can be halted by calling hal t/ 0, 1. Seeer | ang(3) .
Themodulei ni t contains function for restarting, rebooting and stopping the runtime system. Seei ni t (3) .

init:restart()
init:reboot ()
init:stop()

Also, the runtime system will terminate if the Erlang shell is terminated.

2.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command line flag - boot . The extension . boot should be omitted.
Example, using the boot script st art _al | . boot :

% erl -boot start_all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts below.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

2.1 System Principles

The command line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

% erl -init_debug

{progress, prel oaded}

{progress, kernel _| oad_conpl et ed}
{progress, nodul es_| oaded}
{start, heart}

{start,error_| ogger}

Seescri pt (4) for adetailed description of the syntax and contents of the boot script.

Default Boot Scripts
Erlang/OTP comes with two boot scripts:
start _cl ean. boot
L oads the code for and starts the applications Kernel and STDLIB.
start _sasl . boot
L oads the code for and starts the applications Kernel, STDLIB and SASL.

Which of start_cl ean and st art _sasl to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, then st art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st ar t . boot and placed in the ROOT/ bi n directory.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

It is possible to write a boot script manually. The recommended way to create a boot script, however, is to generate
the boot script from arelease resource file Nane. r el , using the function syst ool s: make_scri pt/ 1, 2. This
requires that the source code is structured as applications according to the OTP design principles. (The program does
not have to be started in terms of OTP applications but can be plain Erlang).

Read more about . r el filesin OTP Design Principlesandr el (4) .

The binary boot script file Nanme. boot is generated from the boot script file Name. scri pt using the function
syst ool s: script2boot (File).

2.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
lineflag - node.

% erl -node enbedded

Default modeisi nt er acti ve.

* Inembedded mode, all code isloaded during system start-up according to the boot script. (Code can aso be
loaded later by explicitly ordering the code server to do so).

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Error Logging

* Ininteractive mode, code is dynamically loaded when first referenced. When a call to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and loads the module into the
system.

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT istheinstallation directory of Erlang/OTP. Directories can be named Name[- Vsn] and the code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optional. If an ebi n directory exists under the Name[- Vsn] directory, it is this directory which is
added to the code path.

The code path can be extended by using the command lineflags-pa Directories and-pz Directori es.
Thesewill add Di r ect or i es to the head or end of the code path, respectively. Example

% erl -pa /home/arne/ mycode

The code server module code contains a number of functions for modifying and checking the search path, see
code(3).

2.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

module .erl Erlang Reference Manual
include file .hrl Erlang Reference Manual
release resourcefile .rel rel (4)

application resource file . app app(4)

boot script .script script(4)

binary boot script . boot -

configuration file .config config(4)

application upgrade file . appup appup(4)

release upgradefile relup rel up(4)

Table 1.1: File Types

2.2 Error Logging

2.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating due to an uncaught error
exception, is by default written to terminal (tty):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

2.2 Error Logging

=ERROR REPORT==== 9- Dec-2003::13: 25: 02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{mf, 1}, {shell, eval _| oop, 2}]}

The error information is handled by the error logger, a system process registered aser r or _| ogger . This process
receivesall error messages from the Erlang runtime system and al so from the standard behaviours and different Erlang/
OTP applications.

The exit reasons (such as badar g above) used by the runtime system are described in Errors and Error Handling
in the Erlang Reference Manual.

The process err or _| ogger and its user interface (with the same name) are described in error_logger(3). It is
possible to configure the system so that error information is written to file instead/as well as tty. Also, it is possible
for user defined applications to send and format error information using er r or _| ogger .

2.2.2 SASL Error Logging

The standard behaviors (supervi sor, gen_server, etc) sends progress and error information to
error _| ogger . Ifthe SASL applicationisstarted, thisinformation iswrittento tty aswell. See SASL Error Logging
inthe SASL User's Guide for further information.

% erl -boot start_sasl
Erl ang (BEAM emul ator version 5.4.13 [hipe] [threads: 0] [kernel-poll]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _safe_sup}
started: [{pid,<0.33.0>},
{nane, al ar m handl er},
{nfa, {alarmhandl er,start_link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _safe_sup}
started: [{pid, <0.34.0>},

{nane, over | oad},
{nfa, {overload,start _link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid,<0.32.0>},
{nane, sasl _saf e_sup},
{nfa, {supervi sor,
start_link,
[{l ocal , sasl _saf e_sup}, sasl, safe]}},
{restart _type, permanent},
{shut down, i nfinity},
{chil d_type, supervisor}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid, <0.35.0>},

{nane, rel ease_handl er},
{nfa,{rel ease_handl er,start _link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
application: sasl
started_at: nonode@ohost
Eshel|l V5.4.13 (abort with ~"Q
1>

2.3 Creating a First Target System

2.3.1 Introduction

When creating a system using Erlang/OTP, the most simple way is to install Erlang/OTP somewhere, install the
application specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application specific code.

Often it is not desirable to use an Erlang/OTP system as is. A developer may create new Erlang/OTP compliant
applications for a particular purpose, and several original Erlang/OTP applications may be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed, and a set of new applications are included. Documentation and source code is
irrelevant and is therefore not included in the new system.

This chapter is about creating such a system, which we call atarget system.
In the following sections we consider creating target systems with different requirements of functionality:

* abasictarget systemthat can be started by calling the ordinary er | script,
« asimpletarget system where also code replacement in run-time can be performed, and

« an embedded target system where thereis also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

We only consider the case when Erlang/OTP is running on a UNIX system.

In the sas!| application there is an example Erlang module t ar get _syst em er | that contains functions for
creating and installing atarget system. This module is used in the examples below, and the source code of the module
islisted at the end of this chapter.

2.3.2 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP Design Principles.

Sep 1. First createa. r el file(seer el (4)) that specifiestheer t s version and lists all applications that should be
included in the new basic target system. An example isthe following mysystem r el file:

%6 nysystem rel

{rel ease,

{"MYSYSTEM', "FIRST"},
{erts, "5.1"},
[{kernel, "2.7"},
{stdlib, "1.10"},
{sasl, "1.9.3"},
{pea, "1.0"}]}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applicationsthat you have
written yourself (here examplified by the application pea).
Sep 2. From the directory wherethenmysyst em r el filereside, start the Erlang/OTP system:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2.3 Creating a First Target System

os> erl -pa /hone/user/target_systenl nyapps/ pea-1. 0/ ebin

where also the path to the pea- 1. 0 ebin directory is provided.

Sep 3. Now create the target system:

1> target_systemcreate("nysystent).

Thet arget _system cr eat e/ 1 function does the following:

Readsthemmysyst em r el file and createsanew filepl ai n. r el whichisidentical to former, except that it
only liststheker nel and st dl i b applications.

Fromthemysystem rel andpl ai n. rel filescreatesthefilesmysyst em scri pt, mysystem boot,
pl ai n.script,andpl ai n. boot through acall tosyst ool s: make_scri pt/ 2.

Creates the file nysystem tar. gz by acall to syst ool s: make_tar/ 2. That file has the following
contents:

erts-5.1/bin/

rel eases/ FI RST/ start . boot
rel eases/ FI RST/ nysystem rel
rel eases/ mysystemrel

l'i b/ kernel -2.7/
l'ib/stdlib-1.10/

l'i b/sasl-1.9.3/

|'i b/ pea-1. 0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

The release resource file nysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory in order to make it possible for ther el ease_handl er to extract thisfile separately.
After unpacking the tar file, r el ease_handl er would automatically copy the fileto r el eases/ FI RST.
However, sometimes the tar file is unpacked without involving ther el ease_handl er (e.g. when unpacking
the first target system) and therefore the file is now instead duplicated in the tar file so no manua copying is
necessary.

Creates the temporary directory t nmp and extractsthe tar filemysyst em t ar . gz into that directory.
Deletestheer| andst art filesfromt np/ ert s-5. 1/ bi n. Thesefileswill be created again from source
when installing the release.

Creates the directory t np/ bi n.

Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

Copiesthefilesepnd, run_erl ,andt o_er | fromthedirectoryt np/ ert s-5. 1/ bi n to the directory

t np/ bi n.

Createsthefilet np/ r el eases/ start _er| . dat a with the contents"5.1 FIRST". Thisfileisto be passed
asdatafiletothestart _erl script.

Recreatesthefilemysyst em t ar . gz from the directoriesin the directory t np, and removest np.

2.3.3 Installing a Target System
Sep 4. Install the created target system in a suitable directory.

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

2> target_systeminstall ("nmysystenl, "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 doesthe following:

e Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ | ocal / erl -t ar get .

* Inthetarget directory readsthefiler el eases/ start _er| . dat a inorder to find the Erlang runtime
system version ("5.1").

e Substitutes %I NAL_ROOTDI RY%and ¥&EMJ%for / usr/ | ocal / erl -t ar get and beam respectively, in
thefileserl.src,start.src,andstart _erl.src of thetargetert s- 5. 1/ bi n directory, and puts
theresulting fileser | ,start,andrun_er| inthetarget bi n directory.

* Finalythetargetr el eases/ RELEASES fileis created from datain ther el eases/ nysystem rel file.

2.3.4 Starting a Target System
Now we have atarget system that can be started in various ways.
We start it as abasic target system by invoking

os> /usr/local/erl-target/bin/erl

where only the ker nel and st dl i b applications are started, i.e. the system is started as an ordinary devel opment
system. There are only two files needed for all this to work: bi n/ er| file (obtained from erts-5. 1/ bi n/
erl.src)andthebi n/start. boot file(acopy of pl ai n. boot).

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe origina nysyst em r el file, usethe- boot flag asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/rel eases/FlIRST/start

We start a simple target system as above. The only difference isthat also thefiler el eases/ RELEASES is present
for code replacement in run-time to work.

To start an embedded target systemthe shell script bi n/ st art isused. That shell script callsbi n/ run_er | ,which
inturncallsbi n/ start _er!| (roughly,start _erl isanembedded variant of er |).

The shell script st art isonly an example. You should edit it to suite your needs. Typically it is executed when the
UNIX system boots.

run_erl isawrapper that provides logging of output from the run-time system to file. It aso provides a simple
mechanism for attaching to the Erlang shell (t o_er).

start _erl requires the root directory ("/usr/1ocal/erl-target"), the releases directory ("/usr/
| ocal /erl-target/rel eases"),andthelocation of thest art _er| . dat afile. It readstherun-time system
version (" 5. 1") andreleaseversion (" FI RST") fromthest art _er | . dat a file, startsthe run-time system of the
version found, and provides- boot flag specifying the boot file of therelease version found (" r el eases/ FI RST/
start. boot").

start _erl aso assumes that there is sys. confi g in release version directory ("r el eases/ Fl RST/
sys. confi g"). That isthetopic of the next section (see below).

Thestart _er| shel script should normally not be altered by the user.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

2.3 Creating a First Target System

2.3.5 System Configuration Parameters

As was pointed out above st art _er| requiresasys. confi g in the release version directory ("r el eases/
FI RST/ sys. confi g"). If thereisno such afile, the system start will fail. Hence such afile hasto be added aswell.

If you have system configuration data that are neither file location dependent nor site dependent, it may be
convenient to create the sys. confi g early, so that it becomes a part of the target system tar file created by
target _system create/ 1. Infact, if you create, in the current directory, not only the mysyst em r el file,
but dsoasys. confi g file, that latter file will be tacitly put in the apropriate directory.

2.3.6 Differences from the Install Script

The above i nstal | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering location dependent files.

2.3.7 Listing of target_system.erl

This module can also be found in the exanpl es directory of thesas!| application.

-modul e(target _system).
-export([create/1l, create/2, install/2]).

%b Not e: Rel Fil eName below is the *stent without trailing .rel,
%6 . script etc.
%86

%% cr eat e(Rel Fi | eNane)

9%

create(Rel Fil eNane) ->
create(Rel Fil eNane, []).

creat e(Rel Fi | eNane, Syst ool sOpts) ->
RelFile = Rel Fil eNane ++ ".rel",
Dir = fil enane: di rnane(Rel Fi |l eNang),
Pl ai nRel Fi l eNane = filenane:join(Dir,"plain"),
PlainRel File = PlainRel Fil eNane ++ ".rel",

io:fwite("Reading file: ~p ...~n", [RelFile]),

{ok, [Rel Spec]} = file:consult(RelFile),

io:fwite("Creating file: ~p from~p ...~n",
[PlainRel File, RelFile]),

{rel ease,

{Rel Nane, Rel Vsn},

{erts, ErtsVsn},

AppVsns} = Rel Spec,

Pl ai nRel Spec = {rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},

lists:filter(fun({kernel, _}) ->
true;
({stdlib, _}) ->
true;
() ->
fal se

end, AppVsns)
b
{ok, Fd} = file:open(PlainRelFile, [wite]),

io:fwite(Fd, "~p.~n", [Pl ainRel Spec]),
file:close(Fd),

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

io:fwite("Making \"~s.script\" and \"~s.boot\" files ...~n",
[Pl ai nRel Fi | eNane, Pl ai nRel Fi | eNane]),
make_scri pt (Pl ai nRel Fi | eNane, Syst ool sOpt s) ,

io:fwite("Making \"~s.script\" and \"~s.boot\" files ...~n",
[Rel Fi | eNane, Rel FileNane]),
make_scri pt (Rel Fi | eNane, Syst ool sOpt s) ,

TarFil eName = filenanme:join(Dr, Rel Fil eName ++ ".tar.gz"),
io:fwite("Creating tar file ~p ...~n", [TarFileNane]),
make_t ar (Rel Fi | eNane, Syst ool sOpt s) ,

TmpDir = filenanme:join(Dir,"tm"),
io:fwite("Creating directory ~p ...~n",[TnpDir]),
file:make_dir(TnpDir),

io:fwite("Extracting ~p into directory ~p ...~n", [TarFileName, TnpDir]),
extract_tar(TarFil eName, TrpDir),

TmpBinDir = filenanme:join([TmpDir, "bin"]),

ErtsBinDir = filenane:join([TnpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwite("Deleting \"erl\" and \"start\" in directory ~p ...~n",
[ErtsBinDir]),

file:delete(filenane:join([ErtsBinDir, "erl"])),

file:delete(filenane:join([ErtsBinDir, "start"])),

io:fwite("Creating tenporary directory ~p ...~n", [TnmpBinDir]),
file:make_dir(TnpBinDir),
io:fwite("Copying file \"~s.boot\" to ~p ...~n",

[Pl ai nRel Fi | eNarme, filenane:join([TmpBinDir, "start.boot"])]),
copy_fil e(Pl ai nRel Fi | eName++".boot", fil enane:join([TnpBinDir, "start.boot"])),

io:fwite("Copying files \"epnd\", \"run_erl\" and \"to_erl\" from\n"
"~-pto ~p ...~n",
[ErtsBinDir, TnpBinDir]),
copy_file(filename:join([ErtsBinDir, "epmd"]),
filenane:join([TrpBinDir, "epnd"]), [preserve]),
copy_file(filename:join([ErtsBinDir, "run_erl"]),
filenane:join([TmpBinDir, “run_erl"]), [preserve]),
copy_file(filename:join([ErtsBinDir, "to_erl"]),
filenane:join([TrpBinDir, "to_erl"]), [preserve]),

StartErl DataFile = filenane:join([TnpDir, "rel eases", "start_erl.data"]),

io:fwite("Creating ~p ...~n", [StartErl DataFile]),

StartErlData = io_lib:fwite("~s ~s~n", [ErtsVsn, RelVsn]),

wite file(StartErlDataFile, StartErlData),

io:fwite("Recreating tar file ~p fromcontents in directory ~p ...~n",
[Tar Fi | eNane, TnpDir]),

{ok, Tar} = erl _tar:open(TarFileNanme, [wite, conpressed]),

%6 {ok, Omd} = file:get_cwd(),

Wofile:set_cwd("tnmp"),

ErtsDir = "erts-"++ErtsVsn,

er|l _tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),

erl _tar:add(Tar, filenanme:join(TnpDir,ErtsDir), ErtsDir, []),

erl _tar:add(Tar, filenane:join(TnpDir,"rel eases"), "rel eases", []),

er|l _tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),

erl _tar:close(Tar),

Wofile:set_cwd(Ond),

io:fwite("Renoving directory ~p ...~n",[TmpDir]),

remove _dir_tree(TnpDir),

ok.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

2.3 Creating a First Target System

instal |l (Rel Fi|l eName, RootDir) ->
TarFile = Rel Fil eName ++ ".tar.gz",

io:fwite("Extracting ~p ...~n", [TarFile]),
extract _tar(TarFile, RootDir),
StartErl DataFile = filenane:join([RootDir, "rel eases", "start_erl.data"]),

{ok, StartErlData} = read_txt file(StartErlDataFile),

[Erl Vsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filenane:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filenane:join([RootDir, "bin"]),

io:fwite("Substituting in erl.src, start.src and start_erl.src to "

"formerl, start and start_erl ...\n"),

subst _src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDr,
[{"FINAL_ ROOTDIR', RootDir}, {"EMJ', "beani}],
[preserve]),

io:fwite("Creating the RELEASES file ...\n"),

create RELEASES(RootDir, filenane:join([RootDir, "rel eases",

fil enane: basenane(Rel Fil eNane)])).

%% LOCALS

%% make_scri pt (Rel Fi | eName, Opt s)
9o
make_scri pt (Rel Fi | eNane, Opts) ->
syst ool s: make_scri pt (Rel Fil eNane, [no_nodul e_tests,
{outdir, fil enane: di rname(Rel Fi | eNane) }

| Opts]).

%% make_t ar (Rel Fi | eNane, Opt s)
9%
make_tar (Rel Fi | eNane, Opts) ->
RootDir = code:root _dir(),
systool s: make_tar(Rel Fil eNanme, [{erts, RootDir},
{outdir, filenane: di rname(Rel Fi | eNane) }

| Opts]).

%Woextract _tar(TarFile, DestDir)
9%
extract _tar(TarFile, DestDir) ->
erl _tar:extract(TarFile, [{cwd, DestDir}, conpressed]).

create RELEASES(DestDir, Rel Fil eNane) ->
rel ease_handl er: creat e RELEASES(DestDir, Rel FileNane ++ ".rel").

subst _src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst _src_script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst _src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst _file(filename:join([SrcDir, Script ++ ".src"]),
filenane:join([DestDir, Script]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read_txt file(Src),
NConts = subst (Conts, Vars),
wite file(Dest, NConts),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} = file:read file_info(Src),
filecwite_file_info(Dest, Filelnfo);
fal se ->
ok

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

end.

%6 subst (Str, Vars)
Wb Vars = [{Var, Val}]
9%bVar = Val = string()
%6 Substitute all occurrences of War%for Val in Str, using the list
%% of variables in Vars.
%o
subst (Str, Vars) ->
subst (Str, Vars, []).

subst ([$% C| Rest], Vars, Result) when $A =< C, C =< $Z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when $a =< C, C =< $z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when C==$% ->
subst _var([C Rest], Vars, Result, []);

subst ([C] Rest], Vars, Result) ->
subst (Rest, Vars, [C] Result]);

subst ([], _Vars, Result) ->
lists:reverse(Result).

subst _var([$% Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case |ists: keysearch(Key, 1, Vars) of
{val ue, {Key, Value}} ->
subst (Rest, Vars, lists:reverse(Value, Result));
fal se ->
subst (Rest, Vars, [$% VarAcc ++ [$% Result]])
end;
subst _var([C Rest], Vars, Result, VarAcc) ->
subst _var(Rest, Vars, Result, [C VarAcc]);
subst _var([], Vars, Result, VarAcc) ->
subst ([], Vars, [VarAcc ++ [$% Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
{ok, _} = file:copy(Src, Dest),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} =file:read file_info(Src),
filecwite_file_info(Dest, Filelnfo);
fal se ->
ok
end.

wite fil e(FNane, Conts) ->
{ok, Fd} = file:open(FNane, [wite]),
file:wite(Fd, Conts),
file:close(Fd).

read_txt_file(File) ->
{ok, Bin} = file:read_file(File),
{ok, binary_to_list(Bin)}.

remove dir_tree(Dir) ->
renove_all _files(".", [Dir]).

renove_al |l _files(Dir, Files) ->
l'ists:foreach(fun(File) ->
FilePath = filenane:join([Dir, File]),
case filelib:is_dir(FilePath) of
true ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

2.3 Creating a First Target System

{ok, DirFiles} = file:list_dir(FilePath),
renove_al |l _files(FilePath, DirFiles),
file:del _dir(FilePath);
->
file:del ete(FilePath)
end
end, Files).

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

3 Embedded Systems User's Guide

This manual describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Note that thisis a supplementary document. Y ou still need to read the Installation Guide.
There is aso target architecture specific information in the top level README file of the Erlang distribution.

3.1 Embedded Solaris

This chapter describes the OS specific parts of OTP which relate to Solaris.

3.1.1 Memory Usage

Solaris takes about 17 Mbyte of RAM on a system with 64 Mbyte of total RAM. This leaves about 47 Mbyte for the
applications. If the system utilizes swapping, these figures cannot beimproved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceis of limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2 Disk Space Usage

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
Mbyte of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved may not be justified.

3.1.3 Installation
This section is about installing an embedded system. The following topics are considered,

» Creation of user and installation directory,
¢ Installation of embedded system,

« Configuration for automatic start at reboot,
e Making a hardware watchdog available,

e Changing permission for reboot,

* Patches,

« Configuration of the OS_Mon application.

Several of the procedures described below require expert knowledge of the Solaris 2 operating system. For most of
them super user privilege is needed.

Creation of User and Installation Directory

It is recommended that the Embedded Environment is run by an ordinary user, i.e. a user who does not have super
user privileges.

Throughout this section we assume that the user nameis ot puser , and that the home directory of that user is,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

3.1 Embedded Solaris

/ expor t/ hone/ ot puser

Furthermore, we assume that in the home directory of ot puser, there is a directory named ot p, the full path of
whichis,

/ expor t / hone/ ot puser/ ot p

This directory istheinstallation directory of the Embedded Environment.

Installation of an Embedded System

The procedure for installation of an embedded system does not differ from that of an ordinary system (see the
Installation Guide), except for the following:

» the (compressed) tape archive file should be extracted in the installation directory as defined above, and,
» thereisno need to link the start script to a standard directory like/ usr/ | ocal / bi n.
Configuration for Automatic Start at Boot

A true embedded system has to start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications will start automatically if the script file shown below is added to the /
et ¢/ r c3. d directory. The file must be owned and readable by r oot , and its name cannot be arbitrarily assigned.
The following name is recommended,

S750t p. system

For further details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#!'/ bi n/ sh

#

File nane: S75o0tp.system

Purpose: Autonatically starts Erlang and applications when the
system starts

Aut hor: janne@r| ang. eri csson. se

Resides in: /etc/rc3.d

#

if [! -d /usr/bin]
t hen # /usr not nounted
exit

killproc() { # kill the named process(es)
pi d="/usr/bin/ps -e |
[usr/bin/grep -w $1 |
[usr/bin/sed -e "s/* *[]'" -e 's/] .*[]"'"
["$pid* I=""1 & kill $pid
}

Start/stop processes required for Erlang
case "$1" in

"start')
Start the Erlang enul ator

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

#
su - otpuser -c "/export/hone/otpuser/otp/bin/start" &

'stop')
ki |l proc beam

*)
echo "Usage: $0 { start | stop }"

esac
The file / export/ hone/ ot puser/ ot p/ bi n/ start referred to in the above script, is precisely the script

start described in the section Sarting Erlang below. The script variable OTP_ROOT in that st art script
corresponds to the example path

/ expor t / hone/ ot puser/ ot p

used in this section. The st ar t script should be edited accordingly.

Use of theki | | pr oc procedure in the above script could be combined withacal toer| _cal | , eg.

$SOVE_PATH erl _call -n Node init stop

In order to take Erlang down gracefully seetheer| cal | (1) reference manua page for further details on the use
of erl _cal | . That however requires that Erlang runs as a distributed node which is not always the case.

Theki | | pr oc procedure should not be removed: the purpose is here to move from run level 3 (multi-user mode
with networking resources) to run level 2 (multi-user mode without such resources), in which Erlang should not run.

Hardware Watchdog

For Solaris running on VME boards from Force Computers, there is a possihility to activate the onboard hardware
watchdog, provided aVME bus driver is added to the operating system (see also Installation Problems below).

Seeasotheheart (3) reference manual pagein Kernel.

Changing Permissions for Reboot

If the HEART_COMVAND environment variableisto be set in the st ar t script in the section, Starting Erlang, and if
the value shall be set to the path of the Solarisr eboot command, i.e.

HEART _COMMAND=/ usr / sbi n/ r eboot

the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows,
chown 0 /usr/sbin/reboot

chnod 4755 /usr/ sbin/reboot

Seealsotheheart (3) reference manual pagein Kernel.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

3.1 Embedded Solaris

The TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript the TERMenvironment
variable has to be set. The following isaminimal setting,

TERM=sun

which should be added to the st ar t script described in the section.

Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version specific patch with number
103640-02 must be added to the operating system. There may be other patches needed, see the release README file
<ERL_| NSTALL_DI R>/ README.

Installation of Module os_sup in Application OS_Mon
The following four installation procedures require super user privilege.

Installation
» Make a copy the Solaris standard configuration file for syslogd.
* Make acopy the Solaris standard configuration file for syslogd. Thisfileis usualy named sysl og. conf
and found inthe/ et c directory.
» Thefile name of the copy must be sysl og. conf . ORI Gbut the directory location is optional. Usualy it
is/ etc.

A simple way to do thisisto issue the command

cp /etc/syslog.conf /etc/syslog.conf.OR G

e Make an Erlang specific configuration file for syslogd.

e Make an edited copy of the back-up copy previously made.
* Thefilename must besysl og. conf . OTP and the path must be the same as the back-up copy.

« The format of the configuration file is found in the man page for sysl og. conf (5), by issuing the
command man sysl og. conf.

e Usudly alineis added which should stete:

e which types of information that will be supervised by Erlang,
» the name of the file (actually a named pipe) that should receive the information.

e |If eg. only information originating from the unix-kernel should be supervised, the line should begin with
ker n. LEVEL (for the possible values of LEVEL seesysl og. conf (5)).

« After at least one tab-character, the line added should contain the full name of the named pipe where
syslogd writes its information. The path must be the same as for the sysl og. conf. ORI G and
sysl og. conf . OTPfiles. Thefile name must be sysl og. ot p.

» |If the directory for the sysl og. conf. ORI G and sysl og. conf. OTP files is / et ¢ the line in
sysl og. conf. OTP will look like:

kern. LEVEL [etc/ sysl og. ot p

e Check thefile privileges of the configuration files.

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

e Theconfiguration files should haver w-r - - r - - file privileges and be owned by root.
e A simpleway to do thisisto issue the commands

chnod 644 /etc/sysl og. conf
chnod 644 /etc/syslog.conf. ORI G
chnod 644 /etc/syslog.conf. OTP

* Note: If thesysl og. conf. ORI Gand sysl og. conf . OTP filesare not in the / et ¢ directory, the file
path in the second and third command must be modified.

Modify file privileges and owner ship of the mod_syslog utility.
« Thefile privileges and ownership of the nod_sysl og utility must be modified.

e Thefull name of the binary executable fileis derived from the position of the os__non application if thefile
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus

<OTP_ROOT>/ | i b/ os_non- <REV>/ pri v/ bi n/ nod_sysl og

Example: If the path to the otp-root is/ usr / ot p, thusthe path to the os_rmon applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/ os_non-1.0/priv/bin/nmod_sysl og.

« Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the setuid
bit of user must be set.

* A simpleway to do thisisto issue the commands

cd <OTP_ROOT>/1i b/ os_non- <REV>/ pri v/ bi n/ mod_sysl og
chnod 4755 nod_sysl og
chown root nod_sysl og

Testing the Application Configuration File

The following procedure does not require root privilege.

Ensure that the configuration parameters for the os_sup moduleinthe os_rmon application are correct.
Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the OS_Mon application if the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus

<OTP_ROOT>/ | i b/ os_non- <REV>/ ebi n/ os_non. app

Example: If the path to the otp-rootis/ usr / ot p, thusthe pathtotheos _non applicationis/ usr/ ot p/ | i b/
os_non-1. 0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/ | i b/
os_non- 1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters are bound to the correct values.

Parameter Function Sandard value

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

3.1 Embedded Solaris

t r uefor thefirst instance on the
hardware; f al sefor the other
instances.

Specifiesif os_sup will be started or

start_os_sup ot

The directory for (1)the back-
0S_sup_own up copy, (2) the Erlang specific "letc"
configuration file for syslogd.

The full name for the Solaris

0s_sup_syslogconf standard configuration file for "/etc/sysl og.conf"
syslogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system.

Table 1.1: Configuration Parameters

If the values listed in the os_non. app do not suit your needs, you should not edit that file. Instead you should
override valuesin a system configuration file, the full pathname of which is given on the command linetoer | .

Example: The following is an example of the contents of an application configuration file.

[{os_non, [{start_os_sup, true}, {os_sup_own, "/etc"},
{os_sup_sysl ogconf, "/etc/syslog.conf"}, {os_sup_errortag, std_error}]}].

Related Documents
Seeasotheos _non(3),application(3) anderl (1) reference manua pages.

Installation Problems

The hardware watchdog timer whichiscontrolled by thehear t port program requiresthe FORCEv ne package, which
contains the VME bus driver, to be installed. This driver, however, may clash with the Sun ntp driver and cause the
system to completely refuse to boot. To cure this problem, the following lines should be added to / et ¢/ syst em

e« exclude: drv/ntp
e exclude: drv/ntpzsa
e« exclude: drv/ntpp

Warning:

It isrecommended that these lines be added to avoid the clash described, which may makeit compl etely impossible
to boot the system.

3.1.4 Starting Erlang

This section describes how an embedded system is started. There are four programs involved, and they all normally
reside in the directory <ERL_| NSTALL_DI R>/ bi n. The only exception is the program st ar t , which may be
located anywhere, and also is the only program that must be modified by the user.

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

In an embedded system there usually is no interactive shell. However, it is possible for an operator to attach to the
Erlang system by giving the command t o_er | . He is then connected to the Erlang shell, and may give ordinary
Erlang commands. All interaction with the system through this shell islogged in a special directory.

Basically, the procedureis as follows. The program st ar t is called when the machineis started. It callsrun_er | ,
which sets things up so the operator can attach to the system. It callsst art _er | which calls the correct version of
erl exec (whichislocated in <ERL_| NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g
files.

3.1.5 Programs

start

This program is called when the machine is started. It may be modified or re-written to suit a specia system. By
default, it must becalled st art andresidein<ERL_| NSTALL_DI R>/ bi n. Ancther start program can be used, by
using the configuration parameter st art _pr g in the application sasl .

The start program must call run_er | as shown below. It must also take an optional parameter which defaults to
<ERL_I NSTALL_DI R>/rel eases/ start _erl . dat a.

This program should set static parameters and environment variables such as- snane Name and HEART_COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keepsinformation
about releases. Seer el ease_handl er (3) intheapplication sas!| for further information.

The following script illustrates the default behaviour of the program.

#!'/ bi n/ sh

Usage: start [DataFile]
#

ROOTDI R=/ usr/ | ocal / ot p

if [-z "$RELDIR"]
t hen

RELDI R=$ROCTDI R/ r el eases
fi

START_ERL_DATA=$%${1: - $RELDI R/ start _er| . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and the environment variables
HEART_COMVAND and TERMhave been added to the above script.

#1 / bi n/ sh

Usage: start [DataFil €]

#

HEART _COMMAND=/ usr / sbi n/ r eboot
TERMFsun

export HEART_COMVAND TERM
ROOTDI R=/ usr/ | ocal / ot p
if [-z "$RELDIR"]

t hen
RELDI R=$ROCTDI R/ r el eases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

3.1 Embedded Solaris

fi
START ERL_DATA=${1:-$RELDI R/start_erl . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA -heart -snane cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client nodeisabout to start thest art _er | . dat a fileislocated in the client directory
at the master node. Thus, the START _ERL_DATA line should look like:

CLI ENTDI R=$ROOTDI R/ cl i ent s/ cl i ent nane
START_ERL_DATA=${1: - $CLI ENTDI R/ bi n/ start _er| . dat a}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe_dir/ log_dir "exec command [paraneters ...]"

Where pi pe_di r/ should be/t np/ (t o_er!| uses this name by default) and | og_di r is where the log files
are written. command [par anet er s] is executed, and everything written to stdin and stdout is logged in the
log dir.

Inthel og_di r, log filesare written. Each logfile has aname of theform: er | ang. | og. Nwhere N isageneration
number, ranging from 1to 5. Each logfile holds up to 100kB text. Astime goes by the following logfileswill be found
in the logfile directory

erlang.log. 1

erlang.log.1, erlang.!log.2

erlang.log.1, erlang.log.2, erlang.log.3

erlang.log.1, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1

with the most recent logfile being the right most in each row of the above list. That is, the most recent file is the one
with the highest number, or if there are already four files, the one before the skip.

When alogfile is opened (for appending or created) atime stamp is written to the file. If nothing has been written to
thelog files for 15 minutes, arecord isinserted that says that we're till alive.

to_erl

This program is used to attach to arunning Erlang runtime system, started withr un_er | .

Usage: to_erl [pipe_nanme | pipe_dir]

Where pi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Windows NT

start_erl

Thisprogram startsthe Erlang emulator with parameters- boot and- conf i g set. It readsdataabout wherethesefiles
arelocated from afilecaled st art _er| . dat a whichislocated in the <RELDI R>. Each new release introduces a
new datafile. Thisfileis automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program.

#!'/ bi n/ sh

This programis called by run_erl. It starts

the Erlang enmul ator and sets -boot and -config paraneters.
It should only be used at an enbedded target system

Usage: start_erl RootDir RelDir DataFile [ErlFlags ...]

H o o H O HH®

ROOTDI R=$1
shift

RELDI R=$1
shift

Dat aFi | e=$1
shift

ERTS_VSN="awk '{print $1}' $DataFile’
VSN="awk '{print $2}' $DataFile’

Bl NDI R=$ROOTDI R/ er t s- $ERTS_VSN bi n
EMJ=beam

PROGNAME="echo $0 | sed 's/.*\///'"
export EMJ

export ROOTDI R

export BINDI R

export PROGNAME

export RELDI R

exec $BINDI R/ erl exec -boot $RELDI R/ $VSN start -config $RELDI R/ $VSN sys $*

If adisklessand/or read-only client nodewiththesasl| configuration parameter st ati ¢_enul at or settotrueis
about to startthe- boot and- conf i g flagsmust bechanged. Assuchaclientcannotreadanewst art _erl . dat a
file (the file is not possible to change dynamically) the boot and config files are aways fetched from the same place

(but with new contents if a new release has been installed). Ther el ease_handl er copies this files to the bi n
directory in the client directory at the master nodes whenever anew release is made permanent.

Assuming the same CLI ENTDI R as above the last line should look like:

exec $BINDI R/ erl exec -boot $CLIENTDI R/ bin/start \
-confi g $CLI ENTDI R/ bi n/ sys $*

3.2 Windows NT
This chapter describes the OS specific parts of OTP which relate to Windows NT.

3.2.1 Introduction
A normal installation of NT 4.0, with service pack 4 or later, isrequired for an embedded Windows NT running OTP.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

3.3 VxWorks

3.2.2 Memory Usage

RAM memory of 96 MBytes is recommended to run OTP on NT. A system with less than 64 Mbytes of RAM is
not recommended.

3.2.3 Disk Space Usage

A minimum NT installation with networking needs 250 M B, and an additional 130 MB for the swap file.

3.2.4 Installation

Normal NT installation is performed. No additional application programs are needed, such as Internet explorer or web
server. Networking with TCP/IP is required.
Service pack 4 or later must beinstalled.

Hardware Watchdog

For Windows NT running on standard PCs with |SA and/or PCI bus there is a possibility to install an extension card
with a hardware watchdog.

Seeasotheheart (3) reference manual pagein Kernel.

3.2.5 Starting Erlang

On an embedded system, the er | sr v module should be used, to install the erlang process as a Windows system
service. This service can start after NT has booted. See documentation for er | srv.

3.3 VxWorks

This chapter describes the OS specific parts of OTP which relate to VxWorks.

3.3.1 Introduction

The Erlang/OTP distribution for VxWorks s limited to what Switchboard requires (Switchboard is a general purpose
switching hardware devel oped by Ericsson).

Please consult the README file, included at root level in the installation, for latest information on the distribution.

3.3.2 Memory Usage
Memory required is 32 Mbyte.

3.3.3 Disk Usage
The disk space required is 22 Mbyte, the documentation included.

3.3.4 Installation

OTP/VxWorksissuppliedin adistribution file named <PREFI X>. t ar . gz;i.e. atar archivethat is compressed with
gzip. <PREFI X> represents the name of the release, e.g. ot p_LXA12345 vxwor ks_cpu32_R42A. Assuming
you areinstalling to a Solaris file system, the installation is performed by following these steps: <

e Changeto the directory where you want to install OTP/VxWorks (<ROOTDI R>): cd <ROOTDI R>
e Makeadirectory to put OTP/VxWorksin: mkdi r ot p_vxwor ks_cpu32 (or whatever you want to cal it)
» Change directory to the newly created one: cd ot p_vxwor ks_cpu32

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 VxWorks

Copy the distribution file there from where it is located (<RELDI R>): cp <RELDI R>/
<PREFI X>.tar.gz .

Unzip the distribution file: gunzi p <PREFI X>.tar. gz

Untar <PREFI X>. tar:tar xvf <PREFI X>.tar

Create abin directory: mkdi r bin

Copy the VxWorks Erlang/OTP start-up script to the bin directory: cp erts-Vsn/ bin/erl bin/.
Copy the example start scriptsto the bin directory: cp rel eases/ RA2A/ *. boot bin/.

If you use VxWorks nfs mounting facility to mount the Solaris file system, this installation may be directly used. An
other possibility isto copy the installation to alocal VxWorks DOS file system, from where it is used.

3.3.5 OS Specific Functionality/Information

There are a couple of filesthat are unique to the VxWorks distribution of Erlang/OTP, these files are described here.

README - thisfiles has some information on VxWorks specifics that you are advised to consult. Thisincludes
the latest information on what parts of OTP are included in the VxWorks distribution of Erlang/OTP. If you
want us to include more parts, please contact us to discuss this.

erts-Vsn/bin/resolv.conf - A resolver configuration EXAMPLE file. Y ou have to edit thisfile.
erts-Vsn/bin/erl - Thisisan EXAMPLE start script for VxWorks. Y ou have to edit thisfile to suit your needs.

erts-Vsn/bin/erl_io - One possible solution to the problem of competing Erlang and VxWorks shell. Contains
the function 'start_erl’ called by the erl script. Also contains the function 'to_erl* to be used when connecting to
the Erlang shell from VxWorks' shell.

erts-Vsn/bin/erl_exec - Rearranges command line arguments and starts Erlang.

erts-Vsn/bin/vxcall - Allows spawning of standard VxWorks shell functions (which isjust about any function in
the system...) from open_port/2. E.g. open_port({ spawn, 'vxcall func argl arg2'}, []) will cause the output that
'func argl, arg2' would have given in the shell to be received from the port.

erts-Vsn/bin/rdate - Set the time from a networked host, like the SunOS command. Nothing Erlang-specific, but
niceif you want date/O and time/O to give meaningful values (you also need a TIMEZONE environment setting
if GMT isn't acceptable). For example: put env " TI MEZONE=CET: : - 60: 033002: 102603" sets central

european time.

erts-Vsn/src - Contains source for the above files, and additionally config.c, driver.h, preload.c and reclaim.h.
Reclaim.h defines the interface to a simple mechanism for "resource reclamation” that is part of the Erlang
runtime system - may be useful to "port program" writers (and possibly others). Take careful note of the caveats
listed in the file!

3.3.6 Starting Erlang

Start (and restart) of the system depends on what file system isused. To be able to start the system from anfs mounted
file system you can use VxWorks start script facility to run a start script similar to the example below. Note that the
Erlang/OTP start-up script is run at the end of this script.

H O HHH

H* H H*

start.script v1.0 1997/09/08 patrik
File nane: start.script
Pur pose: Starting the VxWrks/cpu32 erl ang/ OTP

Aut hor ; patri k@ri x. eri csson. se
Resi des in: ~tornado/w nd/target/config/ads360/

Set shell pronpt

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

3.3 VxWorks

shel | Pronpt Set ("sauron-> ")

#

Set default gateway

#

host Add "router-20","150. 236. 20. 251"
rout eAdd "0", "router-20"

#

Mount /hone from gandal f

#

host Add "gandal f", " 150. 236. 20. 16"

user gr oup=10

nf sAut hUni xSet (" gandal f", 452, 10, 1, &usergroup)
nf sMount ("gandal f", "/export/hone", "/hone")

#

Load and run rdate.o to set correct date on the target

#

Id < /hone/ gandal f/t ornado/ w nd/target/confi g/ ads360/rdate. o
rdat e("gandal f")

#

Setup tinmezone information (Central European tine)
#

put env " Tl MEZONE=CET: : - 60: 033002: 102603"

#

Run the Erlang/ OTP start script

#

cd "/hone/ gandal f/tornado/w nd/target/erlang_cpu32_R42A/ bi n"
<erl

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Introduction

4 Getting Started With Erlang

4.1 Introduction

4.1.1 Introduction

Thisisa"kick start" tutorial to get you started with Erlang. Everything here is true, but only part of the truth. For
example, I'll only tell you the simplest form of the syntax, not all esoteric forms. Where I've greatly oversimplified
things I'll write *manual* which means there islots more information to be found in the Erlang book or in the Erlang
Reference Manual.

| also assume that thisisn't the first time you have touched a computer and you have a basic idea about how they are
programmed. Don't worry, | won't assume you're awizard programmer.

4.1.2 Things Left Out

In particular the following has been omitted:

* References

e Local error handling (catch/throw)

* Singledirection links (monitor)

* Handling of binary data (binaries/ bit syntax)
e List comprehensions

e How to communicate with the outside world and/or software written in other languages (ports). Thereis
however a separate tutorial for this, Interoperability Tutorial

* Very few of the Erlang libraries have been touched on (for example file handling)

e OTP hasbeen totally skipped and in consequence the Mnesia database has been skipped.
e Hashtablesfor Erlang terms (ETS)

» Changing code in running systems

4.2 Sequential Programming

4.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, Unix and Linux have many, Windows has the Command
Prompt. Erlang hasits own shell where you can directly write bits of Erlang code and evaluate (run) them to see what
happens (see shell(3)). Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your
operating system and typing er | , you will see something like this.

% erl
Erl ang R15B (erts-5.9.1) [source] [snp:8:8] [rq:8] [async-threads: 0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with "G
1>

Now typein "2+ 5." as shown below.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

4.2 Sequential Programming

1> 2 + 5.
7
2>

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1> 2>) and that it has correctly told
you that 2 + 5is 7! Also notice that you have to tell it you are done entering code by finishing with a full stop "."
and a carriage return. If you make mistakes writing things in the shell, you can delete things by using the backspace
key as in most shells. There are many more editing commands in the shell (See the chapter "tty - A command line
interface" in ERTS User's Guide).

(Note: you will find alot of line numbers given by the shell out of sequence in this tutoria as it was written and the
code tested in several sessions).

Now let's try a more complex calculation.

2> (42 + 77) * 66 | 3.
2618. 0

Here you can see the use of brackets and the multiplication operator "*" and division operator "/", just as in normal
arithmetic (see the chapter " Arithmetic Expressions” in the Erlang Reference Manual).

To shutdown the Erlang system and the Erlang shell type Control-C. Y ou will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (I)oaded
(v)ersion (k)ill (D)yb-tables (d)istribution

a

%

Type"a" to leave the Erlang system.
Another way to shutdown the Erlang system isby entering hal t () :

3> halt().
%

4.2.2 Modules and Functions

A programming language isn't much use if you can just run code from the shell. So here is a small Erlang program.
Enteritintoafilecalledt ut . er| (thefilenamet ut . er| isimportant, also make surethat itisin the sasmedirectory
as the one where you started er |) using a suitable text editor. If you are lucky your editor will have an Erlang mode
which will makeit easier for you to enter and format your code nicely (see the chapter "The Erlang mode for Emacs"
in Tools User's Guide), but you can manage perfectly well without. Here's the code to enter:

-nmodul e(tut).
-export ([double/1]).

doubl e(X) ->
2 * X

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

It's not hard to guess that this "program” doubles the value of numbers. I'll get back to the first two lines later. Let's
compile the program. This can be done in your Erlang shell as shown below:

3> c(tut).
{ok, tut}

The{ ok, t ut} tellsyou that the compilation was OK. If it said "error" instead, you have made some mistake in the
text you entered and there will also be error messages to give you some idea as to what has gone wrong so you can
change what you have written and try again.

Now lets run the program.

4> tut: doubl e(10).
20

As expected double of 10is 20.

Now let's get back to thefirst two lines. Erlang programs are written in files. Each file contains what we call an Erlang
module. Thefirst line of code in the module tells us the name of the module (see the chapter "Modules" in the Erlang
Reference Manual).

-nmodul e(tut).

Thistellsusthat the moduleiscaled tut. Notethe"." at the end of theline. Thefileswhich are used to store the module
must have the same name as the module but with the extension ".erl". In our case the file nameist ut . er| . When
we use afunction in another module, we use the syntax, modul e_nane: f uncti on_nane(ar gunent s) . So

4> tut: doubl e(10).

means call function doubl e in modulet ut with argument "10".

The second line:

-export ([double/1]).

saysthat the module t ut contains afunction called doubl e which takes one argument (X in our example) and that
thisfunction can be called from outside the modulet ut . More about thislater. Again notethe"." at the end of theline.

Now for amore complicated example, the factorial of anumber (e.g. factorial of 4is4* 3* 2* 1). Enter thefollowing
codeinafilecaledtut 1. erl .

-nmodul e(tutl).
-export([fac/1]).

fac(1) ->
1;
fac(N ->
N * fac(N - 1).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

4.2 Sequential Programming

Compilethefile
5> c(tutl).
{ok, tut1}

And now calculate the factorial of 4.

6> tutl:fac(4).

24
Thefirst part:
fac(1) ->
1;

says that the factorial of 1is1. Note that we end this part with a";" which indicates that there is more of this function
to come. The second part:

fac(N ->
N * fac(N - 1).

saysthat the factorial of N isN multiplied by the factoria of N - 1. Note that this part endswith a"." saying that there
are no more parts of this function.

A function can have many arguments. L et's expand the module t ut 1 with the rather stupid function to multiply two
numbers:

-nmodul e(tutl).
-export([fac/1, nmult/2]).

fac(1) ->
1;
fac(N) ->

N * fac(N - 1).

mult(X, Y) ->
X * Y.

Note that we have also had to expand the - expor t line with the information that there is another function nmul t
with two arguments.

Compile:
7> c(tutl).

{ok, tut 1}

and try it out:

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

8> tutl:mult(3,4).
12

In the example above the numbers are integers and the arguments in the functions in the code, N, X, Y are called
variables. Variables must start with a capital letter (see the chapter "Variables' in the Erlang Reference Manual).
Examples of variable could be Nunber , ShoeSi ze, Age etc.

4.2.3 Atoms

Atoms are another datatypein Erlang. Atoms start with asmall letter ((seethe chapter "Atom" in the Erlang Reference
Manual)), for example: char | es, centi net er, i nch. Atoms are simply names, nothing else. They are not like
variables which can have avalue.

Enter the next program (file: t ut 2. er |) which could be useful for converting from inches to centimeters and vice
versa

-nmodul e(tut2).
-export([convert/2]).

convert(M inch) ->
M/ 2.54;

convert (N, centineter) ->
N * 2.54.

Compile and test:

9> c(tut2).

{ ok, tut 2}

10> tut 2: convert (3, inch).
1.1811023622047243

11> tut2: convert(7, centineter).
17.78

Notice that | have introduced decimals (floating point numbers) without any explanation, but | guess you can cope
with that.

See what happens if | enter something other than centimeter or inch in the convert function:

12> tut2: convert (3, miles).
** exception error: no function clause matching tut2:convert(3,nmles) (tut2.erl, line 4)

The two parts of the convert function are called its clauses. Here we see that "miles’ is not part of either of the
clauses. The Erlang system can't match either of the clauses so we get an error message f unct i on_cl ause. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/ 1:

13> v(12).

{"EXIT ,{function_cl ause, [{tut2, convert,
[3,mles],
[{file,"tut2.erl"},{line, 4}]},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

4.2 Sequential Programming

{erl _eval ,do_apply, 5 [{file,"erl_eval.erl"}, {line, 482}]},
{shell,exprs, 7, [{file, "shell.erl"}, {line, 666}]},

{shel |l ,eval _exprs,7,[{file,"shell.erl"}, {line, 621}]},
{shel |l ,eval _| oop, 3,[{file, "shell.erl"}, {line 606}]}]}}

4.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:

tut2: convert (3, inch).

Doesthismean that 3isininches? or that 3isin centimeters and we want to convert it to inches? So Erlang hasaway to
group thingstogether to make things more understandable. We call these tuples. Tuplesare surrounded by "{" and "}".

So we can write {i nch, 3} to denote 3inchesand { cent i net er, 5} to denote 5 centimeters. Now let's write a
new program which converts centimeters to inches and vice versa. (filet ut 3. er |).

-nmodul e(tut3).
-export([convert_length/1]).

convert_length({centinmeter, X}) ->
{inch, X/ 2.54};

convert_l ength({inch, Y}) ->
{centineter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ok, tut 3}

15> tut 3: convert _length({inch, 5}).

{centineter, 12. 7}

16> tut 3: convert | ength(tut3: convert_|ength({inch, 5})).
{inch, 5.0}

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the original value.
|.e the argument to a function can be the result of another function. Pause for a moment and consider how line 16
(above) works. The argument we have given the function { i nch, 5} isfirst matched against the first head clause of
convert _lengthi.econvert | ength({centineter, X}) whereitcanbeseenthat { centi neter, X}
doesnot match {i nch, 5} (the head isthe bit before the "->"). This having failed, we try the head of the next clause
i.e.convert _| engt h({inch, Y}),thismatchesand Y get the value 5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain any valid
Erlang term. For example, to represent the temperature of various cities of the world we could write

{nmoscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of things in them. We call each thing in atuple an element. So in the tuple { nbscow,

{c,-10}},element lisnmoscowand element 2is{ c, - 10} . | have chosen ¢ meaning Centigrade (or Celsius) and
f meaning Fahrenheit.

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

425 Lists

Whereas tuples group thingstogether, we also want to be ableto represent lists of things. Listsin Erlang are surrounded
by "[" and "]". For example alist of the temperatures of various cities in the world could be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Note that thislist was so long that it didn't fit on oneline. This doesn't matter, Erlang allowsline breaks at all "sensible
places’ but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, isby using "[". Thisis best explained by an example using the shell.

17> [First |TheRest] = [1,2,3,4,5].
[1,2 3,4, 5]

18> First.

1

19> TheRest .

[2,3,4,5]

We use | to separate the first elements of the list from the rest of the list. (Fi r st has got value 1 and TheRest
vaue[2,3,4,9]).

Another example:

20> [E1l, E2 | R =1[1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> El.

1

22> E2.

2

23> R

[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more elements from the
list than there are elements in the list we will get an error. Note also the special case of the list with no elements|].

24> [A B| C =1[1, 2].
[1,2]

25> A

1

26> B.

2

27> C.

[

In al the examples above, | have been using new variable names, not reusing the old ones. Fi r st , TheRest , E1,
E2, R A B, C. Thereason for thisisthat a variable can only be given avaue once in its context (scope). I'll get back
to thislater, it isn't so peculiar asit sounds!

The following example shows how we find the length of alist:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

4.2 Sequential Programming

-modul e(tut4).
-export([list_length/1]).
list_length([]) ->

0;

list length([First | Rest]) ->
1 + list_|length(Rest).

Compile (filet ut 4. er |) and test:

28> c(tutd).

{ ok, tut4}

29> tut4:list_length([1,2,3,4,56,7]).
7

Explanation:
list_length([]) ->
0;
The length of an empty list is obviously O.

list length([First | Rest]) ->
1 + list_|length(Rest).

The length of alist with the first element Fi r st and the remaining elements Rest is1 + the length of Rest .
(Advanced readers only: Thisis not tail recursive, there is a better way to write this function).

In general we can say we use tuples where we would use "records" or "structs' in other languages and we use lists
when we want to represent things which have varying sizes, (i.e. where we would use linked listsin other languages).

Erlang does not have a string date type, instead strings can be represented by lists of ASCII characters. So the list
[97, 98, 99] isequivalentto"abc". The Erlang shell is"clever" and guessesthe what sort of list we mean and outputs
itin what it thinks is the most appropriate form, for example:

30> [97, 98,99].
"abc"

4.2.6 Standard Modules and Manual Pages

Erlang has a lot of standard modules to help you do things. For example, the module i o contains a lot of functions
to help you do formatted input/output. To look up information about standard modules, the command er| - man
can be used at the operating shell or command prompt (i.e. at the same place as that where you started er |). Try the
operating system shell command:

%erl -man io
ERLANG MODULE DEFI NI TI ON i o(3)

MODULE

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

io - Standard I/ O Server |nterface Functions

DESCRI PTI ON
This nodul e provides an interface to standard Erlang |O
servers. The output functions all return ok if they are suc-

If this doesn't work on your system, the documentation is included as HTML in the Erlang/OTP release, or you can
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercia Erlang)
or www.erlang.org (open source), for example for release R9B:

http://ww erl ang. or g/ doc/ r 9b/ doc/ i ndex. ht

4.2.7 Writing Output to a Terminal

It's nice to be able to do formatted output in these example, so the next example shows a simple way to use to use
thei o: f or mat function. Of course, just like all other exported functions, you can test thei o: f or mat function
in the shell:

31> io:format("hello world~n", []).

hello world

ok

32> io:format("this outputs one Erlang term ~w-n", [hello]).

this outputs one Erlang term hello

ok

33> io:format ("this outputs two Erlang terns: ~w-w-n", [hello, world]).
this outputs two Erlang terns: helloworld

ok

34> jo:format("this outputs two Erlang terns: ~w ~w-n", [hello, world]).
this outputs two Erlang terns: hello world

ok

Thefunctionf or mat / 2 (i.e.f or mat with two arguments) takestwo lists. Thefirst oneisnearly alwaysalist written
between " ". This list is printed out as it stands, except that each ~w is replaced by a term taken in order from the
second list. Each ~n isreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which we will show later. As an exercise,
try to makei o: f or mat crash, it shouldn't be difficult. But notice that although i o: f or mat crashes, the Erlang
shell itself does not crash.

4.2.8 A Larger Example

Now for alarger example to consolidate what we have learnt so far. Assume we have a list of temperature readings
from a number of cities in the world. Some of them are in Celsius (Centigrade) and some in Fahrenheit (as in the
previous list). First let's convert them all to Celsius, then let's print out the data neatly.

%6 This nodule is in file tut5.erl

-nmodul e(tuth).
-export([format _tenps/1]).

%WoOnly this function is exported
format _temps([])-> % No output for an enpty Ilist

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

4.2 Sequential Programming

ok;

format _temps([City | Rest]) ->
print_tenp(convert _to_celsius(Gty)),
format _tenps(Rest).

convert_to_cel sius({Nane, {c, Tenp}}) -> % No conversi on needed
{Nane, {c, Tenp}};

convert_to_cel sius({Nane, {f, Tenp}}) -> % Do the conversion
{Nanme, {c, (Tenp - 32) * 5/ 9}}.

print_tenmp({Nanme, {c, Tenp}}) ->
io:format ("~-15w ~w c~n", [Nanme, Tenp]).

35> c(tuth).

{ok, tut 5}

36> tut5: format_tenmps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

Before we look at how this program works, notice that we have added afew commentsto the code. A comment starts
with a % character and goes on to the end of the line. Note as well that the - export ([format _tenps/1]).
line only includes the function f or mat _t enps/ 1, the other functions are local functions, i.e. they are not visible
from outside the module t ut 5.

Note as well that when testing the program from the shell, | had to spread the input over two lines as the line was
too long.

When we call f or mat _t enps thefirst time, G t y getsthe value { moscow, { ¢, - 10} } and Rest istherest of
thelist. Sowe call thefunction pri nt _tenp(convert _to_cel sius({nmoscow, {c,-10}})).

Here we see afunction call asconvert to_cel si us({noscow, {c, - 10}}) asthe argument to the function
print_tenp. When we nest function calls like this we execute (evaluate) them from the inside out. l.e. we
first evaluateconvert to_cel sius({noscow, {c, - 10}}) whichgivesthevalue{ noscow, {c, - 10} } as
the temperature is aready in Celsius and then we evaluate pri nt _t enp({nmoscow, { ¢, - 10} }) . The function
convert to_cel si us worksinasimilar way totheconvert | engt h function in the previous example.

print_tenpsimply calsi o: f or mat inasimilar way to what has been described above. Note that ~-15w saysto
print the "term™ with afield length (width) of 15 and left justify it. (io(3)).

Now we call format _t enps(Rest) with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Yes, this is recursion, but don't let that worry you). So the same
format _t enps function is called again, thistime Ci t y getsthe value {cape_t own, {f, 70} } and we repeat
the same procedure as before. We go on doing this until the list becomes empty, i.e. [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

4.2.9 Matching, Guards and Scope of Variables

It could be useful to find the maximum and minimum temperature in lists like this. Before extending the program to
do this, let'slook at functions for finding the maximum value of the elementsin alist:

- modul e(tut6).
-export([list_max/1]).

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

li st_max([Head| Rest]) ->
i st_max(Rest, Head).

list_max([], Res) ->
Res;

list_max([Head| Rest], Result_so far) when Head > Result_so far ->
i st_max(Rest, Head);

list_max([Head| Rest], Result_so _far) ->
list_max(Rest, Result_so far).

37> c(tuté).

{ ok, t ut 6}

38> tut6:list_max([1,2 3,4,5 7,4 3,2,1]).
7

First note that we have two functions here with the same namel i st _max. However each of these takes a different
number of arguments (parameters). In Erlang these are regarded as completely different functions. Where we need to
distinguish between these functions we write nane/ ar i t y, where nane isthe name of the functionandarity is
the number of arguments, inthiscasel i st _nmax/ 1 andli st_max/ 2.

This is an example where we walk through a list "carrying” a value with us, in this case Result _so_far.
Iist_nmax/1simply assumesthat the max valueof thelist isthe head of thelistand callsl i st _max/ 2 withtherest
of thelist and thevalue of the head of thelist, intheabovethiswouldbel i st _max([2, 3,4,5,7,4,3,2,1],1).
If wetriedtousel i st _nmax/ 1 with an empty list or tried to use it with something whichisn't alist at all, we would
cause an error. Note that the Erlang philosophy is not to handle errors of this type in the function they occur, but to
do so elsewhere. More about this later.

In Iist_nmax/2 we wak down the list and use Head instead of Result _so far when Head >
Resul t _so_far.when isaspecia word we use before the -> in the function to say that we should only use this
part of the function if the test which follows is true. We call tests of this type a guard. If the guard isn't true (we say
the guard fails), we try the next part of the function. In this caseif Head isn't greater than Resul t _so_f ar thenit
must be smaller or equal to is, so we don't need a guard on the next part of the function.

Some useful operatorsin guards are, < less than, > greater than, == equal, >= greater or equal, =< less or equal, /= not
equal. (see the chapter "Guard Sequences' in the Erlang Reference Manual).

To change the above program to one which works out the minimum value of the element in alist, all we would need
to do isto write < instead of >. (But it would be wise to change the name of the functionto | i st _mi n :-).

Remember that | mentioned earlier that avariable could only be given avalue onceinits scope? | nthe above we see, for
example, that Resul t _so_f ar hasbeen given several values. Thisis OK since every timewecall | i st _nax/ 2
we create a new scope and one can regard the Resul t _so_f ar asacompletely different variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if | writeM = 5, a
variable called Mwill be created and given the value 5. If, in the same scope | then write M = 6, I'll get an error.
Try this out in the shell:

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side value 6
41> M= M + 1.

** exception error: no match of right hand side value 6
42> N = M+ 1.

6

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

4.2 Sequential Programming

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f, 28}}

44> X

paris

45> Y

{f, 28}

Here we see that X getsthevaluepari s and Y{f, 28}.
Of courseif wetry to do the same again with another city, we get an error:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side val ue {london, {f, 36}}

Variables can also be used to improve the readability of programs, for example, inthel i st _nmax/ 2 function above,
we could write:

i st_max([Head| Rest], Result_so _far) when Head > Result_so far ->
New result _far = Head
list_max(Rest, New result _far)

which is possibly alittle clearer.

4.2.10 More About Lists
Remember that the | operator can be used to get the head of alist:

47> [ML| T1] = [paris, |ondon, rone].
[paris, | ondon, rone]

48> ML

paris

49> T1

[ondon, r one]

The | operator can also be used to add ahead to alist:

50> L1 = [madrid | T1].
[madri d, | ondon, r one]
51> L1

[madri d, | ondon, r one]

Now an example of thiswhen working with lists - reversing the order of alist:

-nmodul e(tut8).
-export([reverse/1])

reverse(List) ->

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

reverse(List, []).

reverse([Head | Rest], Reversed List) ->
reverse(Rest, [Head | Reversed_List]);
reverse([], Reversed List) ->
Rever sed_Li st .

52> c(tut8).

{ ok, tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st isbuilt. It startsas[], wethen successively take off the heads of thelist to bereversed
and add them to thethe Rever sed_Li st , as shown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1][]])

reverse([2]|3], [1]) =>
reverse([3], [2|[1])

reverse([3|[]], [2,1]) =>
reverse([], [3|[2 1]])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s containsalot of functions for manipulating lists, for example for reversing them, so before you
write alist manipulating function it is agood ideato check that oneisn't already written for you. (see lists(3)).

Now lets get back to the cities and temperatures, but take a more structured approach thistime. First let's convert the
whole list to Celsius as follows and test the function:

-nmodul e(tut7).
-export([format _tenps/1]).

format _tenmps(List_of _cities) ->
convert _list_to_c(List_of_cities).

convert_list_to_c([{Nane, {f, F}} | Rest]) ->
Converted_City = {Name, {c, (F -32)* 5/ 9}},
[Converted_City | convert_list_to_c(Rest)];

convert _list_to c([City | Rest]) ->
[Cty | convert_list_to_c(Rest)];

convert _list_to c([]) ->

(1.

54> c(tut7).

{ok, tut7}.

55> tut7: format _tenps([{nmscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{rmoscow, {c, -10}},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

4.2 Sequential Programming

{cape_town, {c, 21.11111111111111}},
{stockhol m{c, -4}},
{paris,{c,-2.2222222222222223}},
{l ondon, {c, 2. 2222222222222223}}]

Looking at this bit by bit:

format _tenps(List_of _cities) ->
convert_list_to_c(List_of_cities).

Here we see that f or mat _tenps/ 1 callsconvert list_to_c/1.convert |ist_to_c/1 takes off the
head of theLi st _of _ci ti es, convertsit to Celsiusif needed. The | operator is used to add the (maybe) converted
to the converted rest of thelist:

[Converted_City | convert_list_to_c(Rest)];

or

[Cty | convert list to c(Rest)];

We go on doing this until we get to the end of thelist (i.e. the list is empty:

convert _list_to c([]) ->

(1.

Now we have converted the list, we add a function to print it:

-nmodul e(tut 7).
-export([format _tenps/1]).

format _tenmps(List_of _cities) ->
Converted_List = convert _list_to_c(List_of _cities),
print_tenp(Converted_List).

convert_list_to_c([{Nane, {f, F}} | Rest]) ->
Converted_City = {Name, {c, (F -32)* 5/ 9}},
[Converted_City | convert_list_to_c(Rest)];

convert _list_to c([City | Rest]) ->
[Cty | convert_list_to_c(Rest)];

convert _list_to c([]) ->

(1.

print_tenmp([{Name, {c, Tenmp}} | Rest]) ->
io:format("~-15w ~w c~n", [Nanme, Tenp]),
print_tenp(Rest);

print_tenmp([]) ->
ok.

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

56> c(tut7).
{ok, tut 7}

57> tut7: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},

{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

We now have to add a function to find the cities with the maximum and minimum temperatures. The program below
isn't the most efficient way of doing this as we walk through the list of cities four times. But it is better to first strive

for clarity and correctness and to make programs efficient only if really needed.

-nmodul e(tut?).
-export([format_tenps/1]).

format _tenps(List_of _cities) ->
Converted_List = convert_list_to c(List_of_cities),
print_tenp(Converted_List),
{Max_city, Mn_city} = find_nmnax_and_m n(Converted_List),
print_max_and_m n(Max_city, Mn_city).

convert_list_to_c([{Name, {f, Tenp}} | Rest]) ->
Converted_City = {Nane, {c, (Tenp -32)* 5/ 9}},
[Converted City | convert |list_to c(Rest)];

convert_list_to c([Cty | Rest]) ->
[City | convert_list to c(Rest)];

convert _list_to c([]) ->

(1.

print_tenp([{Nanme, {c, Tenp}} | Rest]) ->
io:format ("~-15w ~w c~n", [Nane, Tenp]),
print_tenp(Rest);

print_tenp([]) ->
ok.

find_max_and_mn([Cty | Rest]) ->
find_nmax_and_mi n(Rest, CGty, Gty).

find_max_and_m n([{Nane, {c, Tenp}} | Rest],
{Max_Nane, {c, Max_Tenp}},
{Mn_Nare, {c, Mn_Tenp}}) ->
if
Tenmp > Max_Tenp ->

Mex_City = {Nane, {c, Tenp}}; % Change
true ->
Max_City = {Max_Nane, {c, Max_Tenp}} % Unchanged
end,
if
Temp < M n_Tenp ->
Mn_Cty = {Nane, {c, Tenp}}; % Change
true ->
Mn_ Gty = {Mn_Nane, {c, Mn_Tenp}} % Unchanged
end,

find_max_and_mi n(Rest, Max_City, Mn_Gity);

find_max_and_mn([], Max_Cty, Mn_Cty) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

4.2 Sequential Programming

{Max_City, Mn_City}.

print_max_and_m n({Max_nane, {c, Max_tenmp}}, {Mn_name, {c, Mn_tenp}}) ->
io:format ("Max tenperature was ~w ¢ in ~w-n", [Max_tenp, Mix_nane]),
io:format ("M n tenperature was ~w ¢ in ~wn", [Mn_tenp, Mn_nane]).

58> c(tut7).

{ok, tut7}

59> tut7: format_tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢

Max tenperature was 21.11111111111111 c in cape_t own
Mn tenperature was -10 ¢ in nobscow
ok

4211 If and Case

Thefunctionf i nd_rmax_and_mi n works out the maximum and minimum temperature. We have introduced a new
congtruct herei f . If works asfollows:

Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4
end

Notethereisno";" before end! Conditions are the same as guards, tests which succeed or fail. Erlang starts at the top
until it findsacondition which succeeds and then it eval uates (performs) the action following the condition and ignores
all other conditions and action before the end. If no condition matches, there will be arun-time failure. A condition
which alwaysis succeeds isthe atom, t r ue and thisis often used last in ani f meaning do the action following the
t rue if al other conditions have failed.

The following is a short program to show the workings of i f .

-nmodul e(tut9).
-export([test_if/2]).

test_if(A B) ->
i f

A == ->
io:format ("A == 5~n", []),
a_equal s_5;

B == ->
io:format ("B == 6~n", []),
b_equal s_6;

A==2 B==23-> % .e. Aequals 2 and B equals 3
io:format("A == 2, B == 3~n", []),

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

a_equal s_2 b_equal s_3;
A==1; B==17 -> % .e. Aequals 1 or B equals 7
io:format("A ==1; B ==7~-n", []),
a_equals_1 or_b_equals_7
end.

Testing this program gives:

60> c(tut9).

{ ok, tut9}

61> tut9:test_if(5, 33).

A==5

a_equal s_5

62> tut9:test_if(33,6).

B==26

b_equal s_6

63> tut9:test_if(2, 3).

A == 2’ B ==3

a_equal s_2_b_equal s_3

64> tut9:test_if(1, 33).

A==1 ; B ==7

a_equal s_1_or_b_equal s_7

65> tut9:test_if (33, 7).

A==1 ; B ==7

a_equal s_1_or_b_equal s_7

66> tut9:test_if (33, 33).

** exception error: no true branch found when eval uating an if expression
in function tut9:test_if/2 (tut9.erl, line 5)

Notice that t ut 9: test _i f (33, 33) did not cause any condition to succeed so we got the run time error
i f_cl ause, here nicely formatted by the shell. See the chapter "Guard Sequences' in the Erlang Reference
Manual for details of the many guard tests available. case is another construct in Erlang. Recall that we wrote the
convert _| engt h function as:

convert | ength({centineter, X}) ->
{inch, X/ 2.54};

convert _length({inch, Y}) ->
{centineter, Y * 2.54}.

We could also write the same program as.

- modul e(tut 10).
-export([convert_length/1]).

convert_| engt h(Length) ->
case Length of
{centineter, X} ->
{inch, X/ 2.54};
{inch, Y} ->
{centineter, Y * 2.54}
end.

67> c(tut10).
{ ok, t ut 10}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

4.2 Sequential Programming

68> tut 10: convert | ength({inch, 6}).
{centineter, 15. 24}

69> tut10: convert | ength({centinmeter, 2.5}).
{inch, 0.984251968503937}

Noticethat bothcase andi f havereturnvalues, i.e. inthe above example case returned either { i nch, X/ 2. 54}
or{centineter, Y*2. 54} . The behaviour of case can also be modified by using guards. An example should
hopefully clarify this. The following example tells us the length of amonth, given the year. We need to know the year
of course, since February has 29 daysin aleap year.

-nmodul e(tut11).
-export ([rmonth_|l ength/2]).

nont h_| engt h(Year, Month) ->
%6 Al years divisible by 400 are | eap
%% Years divisible by 100 are not |eap (except the 400 rul e above)
%hb Years divisible by 4 are | eap (except the 100 rul e above)
Leap = i f
trunc(Year / 400) * 400 == Year ->
| eap;
trunc(Year / 100) * 100 == Year ->
not _| eap;
trunc(Year / 4) * 4 == Year ->
| eap;
true ->
not _| eap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb when Leap == leap -> 29;
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31;
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31
end.

70> c(tutll).

{ok, tut11}

71> tut11: nont h_| engt h(2004, feb).
29

72> tut11: nont h_| engt h(2003, feb).
28

73> tut11l: nont h_| engt h(1947, aug).
31

4.2.12 Built In Functions (BIFs)

Built in functions BIFs are functions which for some reason is built in to the Erlang virtua machine. BIFs often
implement functionality that is impossible to implement in Erlang or is to inefficient to implement in Erlang. Some

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

BIFs can be called by use of the function name only but they are by default belonging to the erlang module so for
examplethe call tothe BIF t r unc below is equivalent with acall toer | ang: t runc.

Asyou can see, we first find out if ayear isleap or not. If ayear is divisible by 400, it is aleap year. To find this
out we first divide the year by 400 and use the built in function t r unc (more later) to cut off any decimals. We then
multiply by 400 again and see if we get back the same value. For example, year 2004:

2004 / 400 = 5.01
trunc(5.01) =5
5 * 400 = 2000

and we can see that we got back 2000 which is not the same as 2004, so 2004 isn't divisible by 400. Y ear 2000:

2000 / 400 = 5.0
trunc(5.0) =5
5 * 400 = 2000

so we have aleap year. The next two tests if the year is divisible by 100 or 4 are done in the same way. Thefirst i f
returns| eap or not _| eap which lands up in the variable Leap. We use this variable in the guard for f eb in the
following case which tells us how long the month is.

This example showed the use of t r unc, an easier way would be to use the Erlang operator r emwhich gives the
remainder after division. For example:

74> 2004 rem 400
4

so instead of writing

trunc(Year / 400) * 400 == Year ->
| eap;

we could write

Year rem 400 == 0 ->
| eap;

There are many other built in functions (BIF) such ast r unc. Only afew built in functions can be used in guards,
and you cannot use functions you have defined yourself in guards. (see the chapter "Guard Sequences' in the Erlang
Reference Manual) (Aside for advanced readers. Thisisto ensure that guards don't have side effects). Let's play with
afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5. 6) .

6

77> length([a,b,c,d]).
4

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

4.2 Sequential Programming

78> float (5).

5.0

79> is_aton(hello).

true

80> is_aton("hello").

fal se

81> is_tuple({paris, {c, 30}}).
true

82> is_tuple([paris, {c, 30}]).
fal se

All the above can be used in guards. Now for some which can't be used in guards:

83> atomto_list(hello)

"hel | 0"

84> |ist_to_aton("goodbye")
goodbye

85> integer_to_list(22)
wogu

The 3 BIFs above do conversions which would be difficult (or impossible) to do in Erlang.

4.2.13 Higher Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher order functions. We start with an example
using the shell:

86> Xf = fun(X) -> X * 2 end
#Fun<er| _eval . 5. 123085357>
87> Xf(5).

10

What we have done here is to define a function which doubles the value of number and assign this function to a
variable. Thus Xf (5) returned the value 10. Two useful functions when working with lists are f or each and map,
which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->

[Fun(First)| map(Fun, Rest)];
map(Fun, []) ->

[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element inthelist, map createsanew list by applying afun to every element in alist. Going back to the shell, we start
by using map and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end
#Fun<er| _eval . 5. 123085357>

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

89> |ists:map(Add 3, [1,2, 3]).
[4,5, 6]

Now lets print out the temperaturesin alist of cities (yet again):

90> Print_City = fun({Cty, {X Tenp}}) ->io:format("~- 15w ~w ~w~n",
[Cty, X, Tenp]) end.

#Fun<er| _eval . 5. 123085357>

91> lists:foreach(Print_City, [{mpscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow c -10
cape_t own f 70
st ockhol m c -4
paris f 28
| ondon f 36
ok

We will now define a fun which can be used to go through alist of cities and temperatures and transform them all
to Celsius.

-modul e(tut 13).
-export([convert list_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Nanme, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Nanme, {c, Tenp}}.

convert _list_to_c(List) ->
l'ists: map(fun convert_to_c/1, List).

92> tut13:convert _list_to_c([{mscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c, - 10} },

{cape_town, {c, 21}},

{stockhol m{c, -4}},

{paris,{c,-2}},
{l ondon, {c, 2}}]

Theconvert to_c functionisthe same as before, but we use it asafun:

lists: map(fun convert_to_c/1, List)

When we use afunction defined elsewhere asafun we canrefer toitasFuncti on/ Ari ty (rememberthat Arity
= number of arguments). So in the map call wewritel i st s: map(fun convert_to_c/1, List).Asyou
canseeconvert |ist_to_c becomesmuch shorter and easier to understand.

The standard modulel i st s also containsafunctionsort (Fun, Li st) where Fun isafun with two arguments.
Thisfunshould returnt r ue if the thefirst argument isless than the second argument, or elsef al se. We add sorting
totheconvert list to c:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

4.3 Concurrent Programming

-nmodul e(tut13).
-export([convert_list_to_c/1]).

convert _to_c({Nane, {f, Tenp}}) ->

{Name, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Nane, {c, Tenp}}.

convert _list to c(List) ->
New |list = lists:map(fun convert_to c/1, List),
lists:sort(fun({_, {c, Tenpl}}, {_, {c, Tenmp2}}) ->
Tenpl < Tenp2 end, New |ist).

93> c(tut13).

{ok, tut 13}

94> tutl13:convert_list_to_c([{rmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c, -10}},

{stockhol m{c, -4}},

{paris,{c,-2}},
{l ondon, {c, 2}},
{cape_town, {c, 21}}]

Insort we usethefun:

fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) -> Tenpl < Tenp2 end,

Here we introduce the concept of an anonymous variable"_". Thisis simply shorthand for a variable which is going
to get avalue, but we will ignore the value. This can be used anywhere suitable, not just in fun's. Tenpl < Tenp2
returnst r ue if Tenpl islessthan Tenp2.

4.3 Concurrent Programming

4.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency we mean programs which can handle several threads of execution at
the same time. For example, modern operating systems would alow you to use a word processor, a spreadsheet, a
mail client and aprint job all running at the same time. Of course each processor (CPU) in the system is probably only
handling one thread (or job) at atime, but it swaps between the jobs a such arate that it gives the illusion of running
them all at the sametime. It is easy to create parallel threads of execution in an Erlang program and it is easy to alow
these threads to communicate with each other. In Erlang we call each thread of execution a process.

(Aside: the term "process' is usually used when the threads of execution share no data with each other and the term
"thread" when they share data in some way. Threads of execution in Erlang share no data, that's why we call them
processes).

The Erlang BIF spawn is used to create a new process: spawn(Modul e, Exported_Function, List of
Ar gurrent s) . Consider the following module:

- modul e(tut 14).

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

-export([start/0, say_sonething/2]).

say_sonet hi ng(What, 0) ->
done

say_sonet hi ng(What, Tines) ->
io:format ("~p~n", [Wat]),
say_sonet hi ng(What, Tines - 1).

start() ->
spawn(tut 14, say_sonething, [hello, 3]),
spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

5> c(tutl4).

{ ok, tut 14}

6> tut 14: say_sonet hi ng(hel l o, 3).
hel |l o

hel |l o

hel |l o

done

We can see that function say_somet hi ng writes its first argument the number of times specified by second
argument. Now look at the function st ar t . It starts two Erlang processes, one which writes "hello" three times and
one which writes "goodbye" three times. Both of these processes use the function say_sonet hi ng. Note that a
function used in this way by spawn to start a process must be exported from the module (i.e. in the - export at
the start of the module).

9> tutld:start()
hel | o

goodbye

<0. 63. 0>

hel | o

goodbye

hel | o

goodbye

Noticethat it didn't write "hello" three times and then "goodbye" three times, but the first process wrote a"hello", the
second a "goodbye”, the first another "hello” and so forth. But where did the <0.63.0> come from? The return value
of afunction is of course the return value of the last "thing" in the function. Thelast thing in the function st art is

spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

spawn returns a processidentifier, or pid, which uniquely identifies the process. So <0.63.0> isthe pid of the spawn
function call above. We will see how to use pids in the next example.

Note as well that we have used ~p instead of ~w ini o: f or mat . To quote the manua: "~p Writes the data with
standard syntax in the same way as~w, but breaks termswhose printed representation islonger than onelineinto many
lines and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings'.

4.3.2 Message Passing

In the following example we create two processes which send messages to each other a number of times.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

4.3 Concurrent Programming

- nmodul e(tut 15).
-export([start/0, ping/2, pong/0]).

pi ng(0, Pong_PID) ->
Pong_PID ! finished
io:format ("ping finished~n", []);

pi ng(N, Pong_PID) ->
Pong PID ! {ping, self()}
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
pi ng(N - 1, Pong_PI D).

pong() S
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start() ->
Pong_PI D = spawn(tut 15, pong, []

),
spawn(tut 15, ping, [3, Pong_PID])

1> c(tut15).

{ ok, tut 15}

2> tutlh5: start().
<0. 36. 0>

Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
ping finished

Pong fi ni shed

Thefunctionst art first creates a process, let's call it "pong”:

Pong_PI D = spawn(tut 15, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping".

spawn(tut 15, ping, [3, Pong_PID]),

this process executes

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

tut 15: pi ng(3, Pong_PI D)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,

pong()
end.

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the format:

receive
patternl ->
actionsl;
pattern2 ->
actions2;

patternN
actionsN
end.

Note: no";" beforethe end.

M essages between Erlang processes are simply valid Erlang terms. |.e. they can be lists, tuples, integers, atoms, pids
etc.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executesar ecei ve, the first message in the queue is matched against the first pattern in the
recei ve, if this matches, the message is removed from the queue and the actions corresponding to the the pattern
are executed.

However, if the first pattern does not match, the second pattern istested, if this matches the message is removed from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match the
third is tried and so on until there are no more pattern to test. If there are no more patterns to test, the first message
is kept in the queue and we try the second message instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match we try the third message and so on until we reach the end of the
gueue. If wereach the end of the queue, the process blocks (stops execution) and waits until anew messageisreceived
and this procedure is repeated.

Of course the Erlang implementation is "clever" and minimizes the number of times each message is tested against
the patternsin eachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes "Pong finished" to the output and
asit has nothing more to do, terminates. If it receives a message with the format:

{pi ng, Ping_PID}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

4.3 Concurrent Programming

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":

Ping_PID ! pong

Note how the operator "!" is used to send messages. The syntax of "!" is:

Pid ! Message

|.e. Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong, to the process "ping", "pong" callsthe pong function again, which causes it to get
back to the r ecei ve again and wait for another message. Now let's look at the process "ping”. Recall that it was
started by executing:

tut 15: pi ng(3, Pong_PI D)

Looking at the function pi ng/ 2 we see that the second clause of pi ng/ 2 is executed since the value of the first
argument is 3 (not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D) , so
N becomes 3).

The second clause sends a message to "pong":

Pong_PID ! {ping, self()},

sel f () returnsthe pid of the process which executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thiswill land up in the variable Pi ng_PI Dinther ecei ve previously explained).

"Ping" now waits for areply from "pong":

recei ve
pong - >
io:format ("Ping recei ved pong~n", [])
end,

and writes "Ping received pong" when this reply arrives, after which "ping" callsthe pi ng function again.

pi ng(N - 1, Pong_PI D)

N- 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
will be executed:

pi ng(0, Pong PID) ->
Pong PID ! finished,
io:format ("ping finished~n", []);

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Theatom f i ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then itself terminates as it has nothing left to do.

4.3.3 Registered Process Names

In the above example, wefirst created "pong” so asto be ableto givetheidentity of "pong” when we started "ping”. |.e.
in someway "ping" must be able to know the identity of "pong" in order to be able to send a message to it. Sometimes
processes which need to know each others identities are started completely independently of each other. Erlang thus
provides a mechanism for processes to be given names so that these names can be used as identities instead of pids.
Thisisdone by using ther egi st er BIF:

regi ster(sonme_atom Pid)

We will now re-write the ping pong example using this and giving the name pong to the "pong" process:

- modul e(tut 16) .
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished
io:format ("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
ping(N - 1).

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start() ->
regi ster(pong, spawn(tut16, pong, [])),
spawn(tut 16, ping, [3]).

2> c(tut16).

{ok, tut16}

3> tutl6:start().
<0. 38. 0>

Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved pi ng
Pi ng recei ved pong
ping finished

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

4.3 Concurrent Programming

Pong fi ni shed

Inthest art/ 0 function,

regi ster(pong, spawn(tutl6, pong, []))

both spawns the "pong" process and gives it the name pong. In the "ping" process we can how send messages to
pong by:

pong ! {ping, self()},
so that pi ng/ 2 now becomes pi ng/ 1 aswe don't have to use the argument Pong_PI D.

4.3.4 Distributed Programming

Now let's re-write the ping pong program with "ping" and "pong" on different computers. Before we do this, there are
a few things we need to set up to get this to work. The distributed Erlang implementation provides a basic security
mechanism to prevent unauthorized access to an Erlang system on another computer (*manua*). Erlang systems
which talk to each other must have the same magic cookie. The easiest way to achieve thisis by having afile called
. erl ang. cooki e in your home directory on all machines which on which you are going to run Erlang systems
communicating with each other (on Windows systems the home directory is the directory where pointed to by the
$HOME environment variable - you may need to set this. On Linux or Unix you can safely ignorethisand simply create
afilecalled. er| ang. cooki e inthedirectory you get to after executing the command cd without any argument).
The. er | ang. cooki e fileshould contain on linewith the same atom. For exampleon Linux or Unix inthe OS shell:

$ cd

$ cat > .erlang. cookie
this_is_very_secret

$ chnod 400 . erl ang. cooki e

The chnod above makethe. er | ang. cooki e file accessible only by the owner of thefile. Thisis arequirement.
When you start an Erlang system which is going to talk to other Erlang systems, you must give it a name, eg:

$ erl -sname ny_nane

Wewill see more details of thislater (*manua™*). If you want to experiment with distributed Erlang, but you only have
one computer to work on, you can start two separate Erlang systems on the same computer but give them different
names. Each Erlang system running on a computer is called an Erlang node.

(Note: er | - sname assumes that all nodes are in the same |P domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
givenin full (*manua*).

Here isthe ping pong example modified to run on two separate nodes:

-nmodul e(tut17).

-export([start_ping/1, start_pong/0, ping/2, pong/0]).

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi nished,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
pi ng(N - 1, Pong_Node).

pong() S
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start_pong() ->
regi ster(pong, spawn(tutl?7, pong, [])).

start_pi ng(Pong_Node) ->
spawn(tut 17, ping, [3, Pong_Node]).

Let us assume we have two computers called gollum and kosken. We will start a node on kosken called ping and then

anode on gollum called pong.

On kosken (on aLinux/Unix system):

kosken> erl| -sname ping
Erl ang (BEAM enul ator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~"Q
(pi ng@osken) 1>

On gollum:

gol lum> erl -snane pong
Erl ang (BEAM emnul ator version 5.2.3.7 [hipe] [threads: 0]

Eshel|l V5.2.3.7 (abort with ~Q
(pong@ol | unm 1>

Now we start the "pong" process on gollum:

(pong@ol I um) 1> tut17:start_pong().
true

and start the "ping" process on kosken (from the code above you will see that a parameter of the st art _pi ng

function is the node name of the Erlang system where "pong" is running):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

4.3 Concurrent Programming

(pi ng@osken) 1> tut17:start_pi ng(pong@ol | un.
<0. 37. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

Here we see that the ping pong program has run, on the "pong" side we see:

(pong@ol | um 2>
Pong recei ved ping
Pong recei ved ping
Pong recei ved ping
Pong fi ni shed
(pong@ol | um 2>

Looking at thet ut 17 code we see that the pong function itself is unchanged, the lines:

{ping, Ping_PID ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong

work in the same way irrespective of on which node the "ping" process is executing. Thus Erlang pids contain
information about where the process executes so if you know the pid of aprocess, the"!" operator can be used to send
it amessageif the processis on the same node or on a different node.

A differenceis how we send messages to a registered process on another node:

{pong, Pong_Node} ! {ping, self()},

Weuseatuple{regi st ered_nane, node_nane} instead of just ther egi st er ed_nane.

In the previous example, we started "ping" and "pong" from the shells of two separate Erlang nodes. spawn can also
be used to start processes in other nodes. The next example is the ping pong program, yet again, but this time we will
start "ping" in another node:

-nmodul e(tut18).
-export([start/1, ping/2, pong/0]).

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi nished,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
pi ng(N - 1, Pong_Node).

pong() ->

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_ PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,

pong()
end.

start (Pi ng_Node) ->
regi ster(pong, spawn(tut18, pong, [])),
spawn(Pi ng_Node, tutl8, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
we do:

(pong@ol | um) 1> tut 18: start (pi ng@osken)
<3934. 39. 0>

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Pong fi ni shed

ping finished

Notice we get al the output on gollum. This is because the io system finds out where the process is spawned from
and sends all output there.

4.3.5 A Larger Example

Now for alarger example. We will make an extremely simple "messenger”. The messenger isaprogram which allows
usersto log in on different nodes and send simple messages to each other.

Before we start, let's note the following:

« Thisexamplewill just show the message passing logic no attempt at al has been made to provide a nice graphical
user interface - this can of course also be donein Erlang - but that's another tutorial.

» Thissort of problem can be solved more easily if you use the facilities in OTP, which will aso provide methods
for updating code on the fly etc. But again, that's another tutorial.

* Thefirst program we write will contain some inadequacies as regards handling of nodes which disappear, we will
correct these in alater version of the program.

We will set up the messenger by allowing "clients" to connect to a central server and say who and where they are. |.e.
auser won't need to know the name of the Erlang node where another user is located to send a message.

Filemessenger. erl :

%86 Message passing utility.
%8 User interface:
%806 | ogon(Nane)

%806 One user at a tine can log in fromeach Erlang node in the
%806 system messenger: and choose a suitable Nane. If the Nane
%806 is already | ogged in at another node or if someone else is
%806 al ready | ogged in at the sane node, login will be rejected
%806 with a suitable error nmessage

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

4.3 Concurrent Programming

%86 | ogof f ()
%80 Logs of f anybody at at node
%86 nessage(ToNane, Message)

%80 sends Message to ToNane. Error nessages if the user of this
9% function is not |ogged on or if ToNarme is not | ogged on at
%80 any node.

%886

%806 One node in the network of Erlang nodes runs a server which maintains

%80 dat a about the | ogged on users. The server is registered as "messenger"
%86 Each node where there is a user |ogged on runs a client process registered
%86 as "nmess_client"

%886

%®06 Prot ocol between the client processes and the server

%886

%m®6 To server: {dientPid, |ogon, UserNane}

%B0 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%®0 Repl y {messenger, |ogged_on} |ogon was successful

%886

%B06 To server: {dientPid, |ogoff}

%80 Repl y: {nmessenger, |ogged off}

%886

%®80 To server: {dientPid, |ogoff}

%80 Repl y: no reply

%886

%B0 To server: {dientPid, nessage_to, ToNane, Message} send a nmessage
%80 Repl y: {nmessenger, stop, you_are_not_| ogged_on} stops the client
%®0 Repl y: {messenger, receiver_not_found} no user with this nane | ogged on
%m®0 Repl y: {nmessenger, sent} Message has been sent (but no guarantee)
%886

%80 To client: {nessage_from Nane, Message},

%886

%®% Prot ocol between the "commands" and the client

%886

%B06 St art ed: nmessenger: client (Server _Node, Nane)

%®%6 To client: |ogoff

%®0 To client: {nessage_to, ToNanme, Message}

%886

% @06 Confi guration: change the server_node() function to return the
%@ name of the node where the nessenger server runs

- modul e(messenger) .
-export([start_server/0, server/1, logon/1l, |ogoff/0, nessage/2, client/2]).

%86 Change the function below to return the name of the node where the
%86 nessenger server runs
server_node() ->

messenger @i | | .

%m®6o This is the server process for the "messenger"
%P6 the user list has the format [{CientPidl, Namel},{CdientPid22, Nanme2},...
server (User _List) ->
recei ve
{From |ogon, Nane} ->
New User List = server_l ogon(From Nanme, User List),
server (New User_List);
{From |ogoff} ->
New User List = server_logoff(From User_ List),
server (New User_List);
{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now ~p~n", [User_List]),
server (User _List)
end.

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

%P6 Start the server
start_server() ->
regi ster (nmessenger, spawn(nessenger, server, [[]])).

%B0 Server adds a new user to the user list
server_| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nanme, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User _List;
fal se ->
From! {messenger, |ogged_on},
[{From Nane} | User_List] %dd user to the |ist

end.

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydelete(From 1, User_List).

%B80 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From! {messenger, stop, you_are_not_| ogged_on};
{val ue, {From Nane}} ->
server_transfer(From Name, To, Message, User_List)
end.
%8601 f the user exists, send the nmessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |lists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nane, Message},
From ! {nessenger, sent}
end.

%86 User Commands
| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(nmess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client ! {message_to, ToNane, Message},
ok
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

4.3 Concurrent Programming

%m®06 The client process which runs on each server node
client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! {self(), |ogon, Nane}
await_result(),
client (Server_Node)

client(Server_Node) ->
receive
| ogoff ->
{messenger, Server_Node} ! {self(), |ogoff}
exit(normal);
{nmessage_to, ToNane, Message} ->
{nmessenger, Server_Node} ! {self(), nmessage_to, ToNane, Message}
await_result();
{nessage_from FromNane, Message} ->
io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end
client (Server_Node)

%WBowait for a response fromthe server
await_result() ->
receive
{nessenger, stop, Wiy} -> % Stop the client
io:format ("~p~n", [Wy]),
exit(normal);
{nmessenger, What} -> % Nornal response
io:format ("~p~n", [Wat])
end

To use this program you need to:

e configuretheser ver _node() function
« copy the compiled code (messenger . bean) to the directory on each computer where you start Erlang.

In the following example of use of thisprogram, | have started nodes on four different computers, but if you don't have
that many machines available on your network, you could start up several nodes on the same machine.

We start up four Erlang nodes, messenger@super, c1@bilbo, c2@kosken, c3@gollum.
First we start up athe server at messenger@super:

(messenger @uper) 1> messenger:start_server().
true

Now Peter logs on at c1@hilbo:

(cl1@il bo) 1> messenger: | ogon(peter).
true
| ogged_on

Jameslogs on at c2@kosken:

(c2@osken) 1> nmessenger: | ogon(j anes) .
true
| ogged_on

and Fred logs on at c3@gollum:

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

(c3@ol | um 1> nessenger: | ogon(fred).
true
| ogged_on

Now Peter sends Fred a message:

(cl@i |l bo) 2> nmessenger: nessage(fred, "hello")
ok
sent

And Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hell o"

(c3@ol | um 2> nessenger: nessage(peter, "go away, |'m busy").
ok

sent

(c3@ol | um 3> nmessenger: | ogof f ()

| ogof f

James now tries to send a message to Fred:

(c2@osken) 2> nessenger: nessage(fred, "peter doesn't |ike you").
ok
recei ver_not _found

But thisfails as Fred has already logged off.
First let'slook at some of the new concepts we have introduced.

There are two versions of the ser ver _t ransf er function, one with four arguments (ser ver _t ransfer/ 4)
and one with five (ser ver _transf er/ 5). These are regarded by Erlang as two separate functions.

Note how we writethe ser ver function so that it callsitself, ser ver (User _Li st) and thus createsaloop. The
Erlang compiler is"clever" and optimizes the code so that thisredlly is a sort of loop and not a proper function call.
But this only works if there is no code after the call, otherwise the compiler will expect the call to return and make a
proper function call. Thiswould result in the process getting bigger and bigger for every loop.

Weusefunctionsinthel i st s module. Thisisavery useful module and a study of the manual page is recommended
(erl -man lists).lists: keynenber (Key, Position, Li sts) looks through alist of tuples and looks
at Posi ti onineachtupleto seeif itisthe sameasKey. Thefirst element is position 1. If it finds atuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> |ists: keynenber (a, 2, [{x,y,z},{b,b,b}, {b,a,c},{q,r,s}]).
true
4> | i sts: keynmenber (p, 2, [{x,Vy,z},{b,b,b}, {b,a,c},{q,r,s}]).
fal se

Iists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

5> |ists: keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

4.3 Concurrent Programming

[{x,y.z},{b, b, b}, {q,r,s}]

lists: keysearchislikel i sts: keymenber, butit returns{val ue, Tupl e_Found} or theatomf al se.
There are alot more very useful functionsinthel i st s module.

An Erlang processwill (conceptually) run until it doesar ecei ve and thereisno messagewhich it wantstoreceivein
the message queue. | say "conceptually" because the Erlang system shares the CPU time between the active processes
in the system.

A process terminates when there is nothing more for it to do, i.e. the last function it calls simply returns and doesn't
call another function. Another way for a processto terminateisfor it to cal exi t / 1. Theargument toexi t / 1 has
aspecia meaning which we will look at later. In this example wewill do exi t (nor mal) which hasthe same effect
as a process running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists and
return the pid of the processif it does exist or the atom undef i ned if it does not.

Y ou should by now be able to understand most of the code above so I'll just go through one case: a message is sent
from one user to another.

Thefirst user "sends" the message in the example above by:

nessenger: nessage(fred, "hello")

After testing that the client process exists:

wher ei s(ness_client)

and amessageissenttoness_client:

mess_client ! {message to, fred, "hello"}

The client sends the message to the server by:

{messenger, nessenger @uper} ! {self(), nessage_to, fred, "hello"},

and waits for areply from the server.

The server receives this message and calls:

server_transfer(From fred, "hello", User_List),

which checks that the pid Fr omisinthe User _Li st :

l'i sts: keysearch(From 1, User_List)

If keysear ch returnsthe atom f al se, some sort of error has occurred and the server sends back the message:

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

From ! {nmessenger, stop, you_are_not_| ogged_on}

whichisreceived by theclient whichinturndoesexi t (nor mal) andterminates. If keysear chreturns{ val ue,
{ From Nane}} weknow that the user islogged on and is his name (peter) isin variable Nare. We now call:

server_transfer(From peter, fred, "hello", User_List)

Notethat asthisisser ver _t r ansf er/ 5 itisnot the same asthe previous function ser ver _t r ansf er/ 4. We
do another keysear ch onUser _Li st tofind the pid of the client corresponding to fred:

lists: keysearch(fred, 2, User_List)

This time we use argument 2 which is the second element in the tuple. If this returns the atom f al se we know that
fred is not logged on and we send the message:

From ! {messenger, receiver_not_found};

which isreceived by the client, if keysear ch returns;

{val ue, {ToPid, fred}}

we send the message:

ToPid ! {nessage_from peter, "hello"},

to fred's client and the message:

From ! {nessenger, sent}
to peter's client.

Fred's client receives the message and printsiit:

{nessage_from peter, "hello"} ->
io:format ("Message from ~p: ~p~n", [peter, "hello"])

and peter's client receives the messageintheawai t _r esul t function.
4.4 Robustness

There are several things which are wrong with the messenger example from the previous chapter. For example if a
node where a user is logged on goes down without doing a log off, the user will remain in the server'sUser _Li st

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

4.4 Robustness

but the client will disappear thus making it impossible for the user to log on again as the server thinks the user already
logged on.

Or what happens if the server goes down in the middle of sending a message leaving the sending client hanging for
everintheawai t _resul t function?

4.4.1 Timeouts

Before improving the messenger program we will ook into some general principles, using the ping pong program as
an example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed as
a message to "pong" so that "pong" could also finish. Another way to let "pong" finish, is to make "pong" exit if it
does not receive a message from ping within a certain time, this can be done by adding a timeout to pong as shown
in the following example:

- modul e(tut 19).
-export([start_ping/1l, start_pong/0, ping/2, pong/0])

pi ng(0, Pong_Node) ->
io:format("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong ->
io:format ("Ping recei ved pong~n", [])
end
ping(N - 1, Pong_Node)

pong() =2
recei ve
{ping, Ping PID} ->

i o:format ("Pong received ping~n", []),
Ping PID! pong
pong()

after 5000 ->
io:format ("Pong tined out~n", [])

end

start_pong() ->
regi ster(pong, spawn(tutl19, pong, []))

start_pi ng(Pong_Node) ->
spawn(tut 19, ping, [3, Pong_Node])

After we have compiled this and copied the t ut 19. beamfile to the necessary directories:
On (pong@kaosken):

(pong@osken) 1> tut19: start_pong()
true

Pong recei ved ping

Pong recei ved ping

Pong recei ved ping

Pong tined out

On (ping@gollum):

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

(ping@ol | um) 1> tut19: start_pi ng(pong@osken) .
<0. 36. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

(The timeout is set in:

pong() ->
receive
{ping, Ping_PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,

pong()
after 5000 ->

io:format ("Pong timed out~n", [])
end.

We start the timeout (af t er 5000) when we enter r ecei ve. The timeout is canceled if { pi ng, Pi ng_PI D}
is received. If { pi ng, Pi ng_PI D} is not received, the actions following the timeout will be done after 5000
milliseconds. af t er must belastinther ecei ve, i.e. preceded by all other message reception specificationsin the
recei ve. Of course we could aso call afunction which returned an integer for the timeout:

after pong_timeout () ->

In general, there are better ways than using timeouts to supervise parts of a distributed Erlang system. Timeouts are
usually appropriate to supervise external events, for example if you have expected a message from some external
system within a specified time. For example, we could use atimeout to log a user out of the messenger system if they
have not accessed it, for example, in ten minutes.

4.4.2 Error Handling

Before we go into details of the supervision and error handling in an Erlang system, we need see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters a runtime error (e.g. divide by zero, bad match, trying to call a function which doesn't
exist etc) exits with an error, i.e. has an abnormal exit. A process which executes exit(Reason) where Reason isany
Erlang term except the atom nor mal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called & her _Pi d. When a process terminates, it sends something called asignal
to al the processesit haslinks to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of a process which receives anormal exit is to ignore the signal.

The default behaviour in the two other cases (i.e. abnormal exit) above is to bypass al messages to the receiving
process and to kill it and to propagate the same error signal to the killed process links. In this way you can connect
all processesin atransaction together using links and if one of the processes exits abnormally, all the processesin the
transaction will be killed. Aswe often want to create a process and link to it at the same time, there is a special BIF,
spawn_link which does the same as spawn, but also creates alink to the spawned process.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

4.4 Robustness

Now an example of the ping pong example using links to terminate "pong":

- modul e(t ut 20) .
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ng1l(N, Pong_Pid).

pi ngl(0,) ->
exit(ping);

pi ngl(N, Pong_Pid) ->
Pong_Pid ! {ping, self()}
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
pingl(N - 1, Pong_Pid).

pong() ->
recei ve
{ping, Ping_PID} ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong

pong()
end

start (Pi ng_Node) ->
PongPI D = spawn(tut20, pong, []),
spawn(Pi ng_Node, tut20, ping, [3, PongPlD]).

(s1@ill)3> tut20:start(s2@osken).
Pong recei ved pi ng

<3820. 41. 0>

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Thisis aslight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, where the "ping" process can be spawned on a separate node. Note the use of the | i nk BIF. "Ping" calls
exi t (pi ng) whenit finishes and thiswill cause an exit signal to be sent to "pong" which will also terminate.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal exit
signals, but all signalswill beturned into normal messagesontheformat{' EXI T' , Fr onPl D, Reason} and added
to the end of the receiving processes message queue. This behaviour is set by:

process_flag(trap_exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway isusually
not donein standard user programs, but isleft to the supervisory programsin OTP (but that's another tutorial). However
we will modify the ping pong program to illustrate exit trapping.

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

-nmodul e(tut21).
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ngl(N, Pong_Pid).

pi ng1(0, _) ->
exit(ping);

pi ng1(N, Pong_Pid) ->
Pong _Pid ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end,
pi ngl(N - 1, Pong_Pid).

pong() ->
process_flag(trap_exit, true),
pong1().

pongl() ->
receive
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,
pong1();
{"EXIT', From Reason} ->
io:format ("pong exiting, got ~p~n", [{'EXIT', From Reason}])
end.

start (Pi ng_Node) ->
PongPI D = spawn(tut21, pong, []),
spawn(Pi ng_Node, tut2l, ping, [3, PongPlD]).

(s1@ill)1> tut2l:start(s2@ol |l un).
<3820. 39. 0>

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

pong exiting, got {'EX T ,6 <3820.39.0>, pi ng}

4.4.3 The Larger Example with Robustness Added

Now we return to the messenger program and add changes which make it more robust:

%86 Message passing utility.
98 User interface:
%6 | ogi n(Nane)

%806 One user at a tine can log in fromeach Erlang node in the
%806 system messenger: and choose a suitable Nane. If the Nane
%806 is already | ogged in at another node or if someone else is
%806 al ready | ogged in at the sane node, login will be rejected
%806 with a suitable error nmessage.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

4.4 Robustness

%86 | ogof f ()
%80 Logs of f anybody at at node
%86 nessage(ToNane, Message)

%80 sends Message to ToNane. Error nessages if the user of this
9% function is not |ogged on or if ToNarme is not | ogged on at
%80 any node.

%886

%806 One node in the network of Erlang nodes runs a server which maintains

%80 dat a about the | ogged on users. The server is registered as "messenger"
%86 Each node where there is a user |ogged on runs a client process registered
%86 as "nmess_client"

%886

%®06 Prot ocol between the client processes and the server

%886

%m®6 To server: {dientPid, |ogon, UserNane}

%B0 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%®0 Repl y {messenger, |ogged_on} |ogon was successful

%886

%80 When the client terminates for some reason

%B86 To server: {'EXIT', CientPid, Reason}

%886

%®86 To server: {dientPid, nessage_to, ToNane, Message} send a nmessage
%80 Repl y: {nmessenger, stop, you_are_not_| ogged_on} stops the client
%®0 Repl y: {messenger, receiver_not_found} no user with this nane | ogged on
%m®0 Repl y: {nmessenger, sent} Message has been sent (but no guarantee)
%886

%80 To client: {nessage_from Nane, Message},

%886

%®06 Prot ocol between the "commuands" and the client

%886

%B0 St art ed: nmessenger: client(Server _Node, Nane)

9%®%6 To client: |ogoff

%®0 To client: {nessage_to, ToNane, Message}

%886

%®06 Confi guration: change the server_node() function to return the
%@ name of the node where the nessenger server runs

- modul e(messenger) .
-export([start_server/0, server/O,
l ogon/ 1, |ogoff/0, message/2, client/2]).

%86 Change the function below to return the name of the node where the
%86 nessenger server runs
server_node() ->

messenger @Guper .

%m®o This is the server process for the "messenger"
%P6 the user list has the format [{CientPidl, Namel},{CdientPid22, Name2},...]
server() ->

process_flag(trap_exit, true),

server([]).

server (User _List) ->
receive

{From |ogon, Nane} ->
New User List = server_l ogon(From Nanme, User List),
server (New _User_List);

{"EXIT", From _} ->
New User List = server_logoff(From User List),
server (New User_List);

{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now ~p~n", [User_List]),

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

server (User _List)
end.

%86 Start the server
start_server() ->
regi ster (nmessenger, spawn(nessenger, server, [])).

%®06 Server adds a new user to the user list
server _| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nane, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User _Li st;
fal se ->
From! {messenger, |ogged_on},
i nk(From,
[{From Nane} | User_List] %dd user to the |ist

end.

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydel ete(From 1, User_List).

%B0 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%% check that the user is |logged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From! {messenger, stop, you_are_not_| ogged_on};
{value, {_, Nane}} ->
server_transfer(From Nanme, To, Message, User_List)
end.

%801 f the user exists, send the nessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |lists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nanme, Message},
From ! {nessenger, sent}
end.

%86 User Commands
| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(mess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client ! {message_to, ToNane, Message},
ok
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

4.5 Records and Macros

%®06 The client process which runs on each user node
client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! {self(), |ogon, Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive
| ogoff ->
exit(normal);
{nmessage_to, ToNane, Message} ->
{nmessenger, Server_Node} ! {self(), message to, ToNane, Message},
await_result();
{nessage_from FromNane, Message} ->
io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end,
client(Server_Node).

%WBowait for a response fromthe server
await_result() ->
receive
{nessenger, stop, Wiy} -> % Stop the client
io:format ("~p~n", [Wy]),
exit(normal);
{nmessenger, What} -> % Nornal response
io:format ("~p~n", [Wat])
after 5000 ->
io:format ("No response from server~n", []),
exit(timeout)
end.

We have added the following changes:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason} this means that a client
process has terminated or is unreachable because:

« theuser haslogged off (we have removed the "logoff" message),

* thenetwork connection to the client is broken,

» thenode on which the client process resides has gone down, or

« theclient processes has done someillegal operation.

If we receive an exit signa as above, we delete the tuple, { Fr om Nane} from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated

by the system), will be sent to all of the client processes: {' EXI T' , Messenger PI D, noconnect i on} causing
all the client processes to terminate.

We have also introduced a timeout of five secondsin theawai t _r esul t function. |.e. if the server does not reply
within five seconds (5000 ms), the client terminates. Thisisreally only needed in the logon sequence before the client
and server are linked.

Aninteresting case is if the client was to terminate before the server links to it. Thisis taken care of because linking
to anon-existent process causes an exit signal, {' EXI T' , Fr om nopr oc}, to be automatically generated as if the
process terminated immediately after the link operation.

4.5 Records and Macros

Larger programs are usually written as a collection of fileswith awell defined interface between the various parts.

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

4.5.1 The Larger Example Divided into Several Files

Toillustrate this, we will divide the messenger example from the previous chapter into five files.

nmess_config. hrl

header file for configuration data
mess_i nterface. hrl

interface definitions between the client and the messenger
user _interface. erl

functions for the user interface
mess_client.erl

functions for the client side of the messenger
mess_server. erl

functions for the server side of the messenger

While doing this we will also clean up the message passing interface between the shell, the client and the server and

define it using records, we will also introduce macros.

%6 - - - FI LE mess_config. hrl----

%06 Configure the |l ocation of the server node,
-defi ne(server_node, nessenger @uper) .

%6 - - - END FI LE-- - -

%M@ - - - FI LE mess_i nterface. hrl----

%86 Message interface between client and server and client shell for
%86 nessenger program

%edvkessages fromClient to server received in server/1 function.
-record(l ogon, {client_pid, usernane}).

-record(nessage, {client_pid, to_nane, nmessage}).

%Weo{ EXIT', CientPid, Reason} (client term nated or unreachabl e.

%86 Messages from Server to Cient, received in await_result/0 function
-record(abort_client, {nessage}).

%86 Messages are: user_exi sts_at_ot her_node,

%806 you_ar e_not _| ogged_on

-record(server_reply, {nessage}).

%86 Messages are: | ogged_on

%806 recei ver_not _f ound

%806 sent (Message has been sent (no guarantee)

%86 Messages from Server to Client received in client/1 function
-record(nessage_from {from nane, message}).

%86 Messages fromshell to Cient received in client/1 function
%86 spawn(ness_client, client, [server_node(), Nane])
-record(nessage_to, {to_name, nessage}).

%806 | ogof f

%6 - - - END FI LE-- - -

9%®% - - - Fl LE user_interface.erl----

%86 User interface to the messenger program

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

4.5 Records and Macros

%806 | ogi n(Nane)

9% One user at a time can log in fromeach Erlang node in the
%80 system nessenger: and choose a suitable Nane. If the Nane
%80 is already | ogged in at another node or if someone else is
%80 already | ogged in at the sane node, login will be rejected
%80 with a suitable error nessage.

%986 | ogof f ()
%80 Logs of f anybody at at node

%86 message(ToNane, Message)

%80 sends Message to ToNane. Error nessages if the user of this
9% function is not logged on or if ToName is not | ogged on at
%80 any node.

-modul e(user _i nterface).
-export([logon/1l, |ogoff/0, nessage/2]).
-include("ness_interface. hrl").
-include("mess_config.hrl").

| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(nmess_client, client, [?server_node, Nane]));
_ -> already_l ogged_on
end.

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(nmess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client | #message_to{to_nane=ToNane, nessage=Message},
ok
end.

%86 - - - END FI LE- - - -

%M®6 ---FILE nmess_client.erl----
%®6 The client process which runs on each user node

-modul e(ness_client).
-export([client/2]).
-include("ness_interface. hrl").

client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! #l ogon{client_pid=self(), usernane=Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive

| ogoff ->
exit(normal);

#nmessage_t o{t o_nane=ToNanme, nessage=Message} ->
{nmessenger, Server_Node} !

#nmessage{client_pid=self(), to_nane=ToNane, nessage=Message},

await_result();

{nmessage_from FromNane, Message} ->

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end,
client(Server_Node).

%WBowait for a response fromthe server
await_result() ->
receive
#abort _cl i ent { nessage=Wy} ->
io:format ("~p~n", [Wy]),
exit(normal);
#server _repl y{nessage=\Wat} ->
io:format ("~p~n", [Wat])
after 5000 ->
io:format ("No response from server~n", []),
exit(timeout)
end.

%86 - - - END FI LE- - -

9%®% - - - FI LE mess_server.erl----
%mBo This is the server process of the nessenger service

- modul e(mess_server).
-export([start_server/0, server/0]).
-include("ness_interface. hrl").

server() ->
process_flag(trap_exit, true),
server([]).

%P6 the user list has the format [{CientPidl, Namel},{dientPid22,
server (User _List) ->
io:format("User list = ~p~n", [User_List]),
receive
#l ogon{cl i ent _pi d=From user nane=Nane} ->
New User List = server_l ogon(From Nane, User List),
server (New _User_List);
{"EXIT", From _} ->
New User List = server_logoff(From User List),
server (New _User_List);
#nmessage{client _pi d=From to_nane=To, nessage=Message} ->
server_transfer(From To, Message, User_List),
server (User _List)
end.

%86 Start the server
start_server() ->
regi ster (nmessenger, spawn(?MODULE, server, [])).

%®806 Server adds a new user to the user list
server _| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keynmenber (Nanme, 2, User_List) of

true ->
From ! #abort _client{message=user_exi sts_at_ot her _node},
User _List;
fal se ->
From ! #server_repl y{message=Il ogged_on},
I'i nk(From,
[{From Nane} | User_List] %dd user to the |ist

end.

Nane2}, .. .]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

4.5 Records and Macros

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydelete(From 1, User_List).

%m®06 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From ! #abort _client{message=you_are_not | ogged_on};
{value, {_, Nane}} ->
server_transfer(From Name, To, Message, User_List)
end.
%860 | f the user exists, send the nmessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |ists: keysearch(To, 2, User_List) of
fal se ->
From ! #server _repl y{nessage=recei ver_not _found};
{val ue, {ToPid, To}} ->
ToPid ! #nessage_from{from nane=Nane, nessage=Message},
From ! #server _repl y{ message=sent}
end.

%86 ---END FI LE---

4.5.2 Header Files
Y ou will see some files above with extension . hr | . These are header fileswhich areincluded inthe. er | filesby:
-include("File_Name").

for example:

-include("ness_interface. hrl").

In our case abovethefileisfetched from the same directory asall the other filesin the messenger example. (* manual*).
.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

4.5.3 Records
A record is defined as:

-record(nane_of _record, {field_nanmel, field_nanme2, field_nanme3, 1)

For example:

-record(nessage_to, {to_nanme, nessage}).

Thisis exactly equivalent to:

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

{nessage_to, To_Nanme, Message}

Creating record, is best illustrated by an example:

#message_t o{ nessage="hel | 0", to_nanme=fred)

Thiswill create:

{message_to, fred, "hello"}

Note that you don't have to worry about the order you assign values to the various parts of the records when you
createit. The advantage of using recordsisthat by placing their definitionsin header files you can conveniently define
interfaces which are easy to change. For example, if you want to add a new field to the record, you will only have to
change the code where the new field is used and not at every place the record is referred to. If you leave out afield
when creating arecord, it will get the value of the atom undefined. (* manual*)

Pattern matching with records is very similar to creating records. For exampleinsideacase orr ecei ve:

#nmessage_t o{t o_nanme=ToNarme, nessage=Message} ->

isthe same as:

{nmessage_to, ToNane, Message}

45.4 Macros

The other thing we have added to the messenger isamacro. Thefileness_confi g. hrl contains the definition:

%8 Configure the | ocation of the server node
-defi ne(server_node, nessenger @uper) .

Weincludethisfilein mess server.erl:

-include("ness_config.hrl").

Every occurrence of ?ser ver _node inness_server . er| will now be replaced by messenger @uper .
The other place amacro is used is when we spawn the server process:

spawn(?MODULE, server, [])

Thisisastandard macro (i.e. defined by the system, not the user). ? MODUL E is always replaced by the name of current
module (i.e. the - rodul e definition near the start of the file). There are more advanced ways of using macros with,
for example parameters (* manual*).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

4.5 Records and Macros

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean). The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
our case we simply have put them in the same directory which is our current working directory (i.e. the place we have
done "cd" to). There are ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It could be any
valid Erlang term.

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.1 Introduction

5 Erlang Reference Manual

5.1 Introduction

5.1.1 Purpose

This reference manual describes the Erlang programming language. The focus is on the language itself, not the
implementation. The language constructs are described in text and with examples rather than formally specified, with
the intention to make the manual more readable. The manual is not intended as a tutorial.

I nformation about thisimplementation of Erlang can befound, for example, in System Principles (starting and stopping,
boot scripts, code loading, error logging, creating target systems), Efficiency Guide (memory consumption, system
limits) and ERTS User's Guide (crash dumps, drivers).

5.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

5.1.3 Document Conventions

In the document, the following terminology is used:

* A sequenceisone or more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

e Alistisany number of items. For example, an argument list can consist of zero, one or more arguments.
If afeature has been added recently, in Erlang 5.0/0TP R7 or later, thisis mentioned in the text.

5.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, refer toer | ang(3) .

5.1.5 Reserved Words

The following are reserved wordsin Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse query receive
rem try when xor

5.1.6 Character Set

In Erlang 4.8/OTP R5A the syntax of Erlang tokens was extended to allow the use of the full 1SO-8859-1 (Latin-1)
character set. Thisis noticeablein the following ways:

* All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
+ Atomsand variables can use al Latin-1 letters.

Octal Decimal Class

200 - 237 128 - 159 Control characters

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

5.2 Data Types

240 - 277 160 - 191 - ¢ | Punctuation characters
300 - 326 192 - 214 A-0 Uppercase letters

327 215 x Punctuation character
330- 336 216 - 222 g-b Uppercase letters
337 - 366 223 - 246 k-0 Lowercase letters

367 247 + Punctuation character
370 - 377 248 - 255 g-y Lowercase letters

Table 1.1: Character Classes.

5.2 Data Types

5.2.1 Terms
Erlang provides anumber of datatypeswhich arelisted in thischapter. A piece of dataof any datatypeiscalled aterm.

5.2.2 Number

There are two types of numeric literals, integers and floats. Besides the conventiona notation, there are two Erlang-
specific notations:

e S$char
ASCII value of the character char .

* base#val ue
Integer with the base bas e, which must be an integer in the range 2..36.
In Erlang 5.2/0OTP R9B and earlier versions, the allowed rangeis 2..16.

Examples:

1> 42.

42

2> $A

65

3> $\n.
10

4> 2#101.
5

5> 16#1f .
31

6> 2. 3.
2.3

7> 2. 3e3.
2.3e3

8> 2. 3e-3.
0. 0023

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Data Types

5.2.3 Atom

An atom is aliteral, a constant with name. An atom should be enclosed in single quotes () if it does not begin with a
lower-case letter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hell o
phone_nunber
' Monday'

' phone nunber

5.2.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit Strings are expressed using the bit syntax.

Bit Strings which consists of anumber of bitswhich is evenly divisible by eight are called Binaries

Examples:

1> <<10, 20>>
<<10, 20>>

2> <<" ABC'>>
<<" ABC' >>

1> <<1:1,0: 1>>
<<2: 2>>

More examples can be found in Programming Examples.

5.2.5 Reference

A reference is aterm which is unique in an Erlang runtime system, created by calling make_r ef / 0.

5.2.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end
#Fun<er| _eval . 6. 39074546>

2> Funl(2).

3

Read more about funs in Fun Expressions. More examples can be found in Programming Examples.

5.2.7 Port Identifier

A port identifier identifiesan Erlang port. open_por t / 2, whichisusedto create ports, will return avalue of thistype.

Read more about portsin Ports and Port Drivers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

5.2 Data Types

5.2.8 Pid

A process identifier, pid, identifies a process. spawn/ 1, 2, 3, 4, spawn_| i nk/ 1, 2, 3, 4 and spawn_opt / 4,
which are used to create processes, return values of this type. Example:

1> spawn(m f, []).
<0.51. 0>

TheBIF sel f () returnsthe pid of the calling process. Example:

-nmodul e(m) .
-export([loop/0]).

l'oop() ->
recei ve
who_are_you ->
io:format ("l am ~p~n", [self()]),
I'oop()
end.

1> P = spawn(m loop, []).
<0. 58. 0>

2> P | who_are_you.

I am <0. 58. 0>

who_ar e_you

Read more about processes in Processes.

5.2.9 Tuple

Compound data type with a fixed number of terms:

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists anumber of BIFs to manipulate tuples.

Examples:

1> P = {adam 24, {j uly, 29}}.
{adam 24, {j ul y, 29} }

2> el enment (1, P).

adam

3> elenment(3,P).

{july, 29}

4> P2 = setel ement (2, P, 25).
{adam 25, {j ul y, 29} }

5> tupl e_size(P).

3

6> tupl e_size({}).

0

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Data Types

5.2.10 List
Compound data type with a variable number of terms.
[Ternmt, ..., Ter m\]

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.
Formally, alistiseither theempty list[] or consists of ahead (first element) and atail (remainder of thelist) whichis

also alist. The latter can be expressed as[H| T] . Thenotation[Ter i, . . ., Ter mN] aboveisactualy shorthand
forthelist[TerniL|[...|[[TernN[]1]1]].

Example:

[1 isalist, thus

[cl[]] isalist, thus
[bl[cl[]1]] isalig, thus
[al[bl[c|[11]] isalist,orinshort| a, b, c].

A list wherethetail isalist is sometimes called aproper list. Itis allowed to have alist where the tail isnot alist, for
example[a| b] . However, thistype of list is of little practical use.

Examples:

1> L1 = [a, 2,{c, 4}].

[a 2, {c, 4}]
2> [HT] = L1
[a, 2, {c, 4}]
3> H.

a

4> T.
[2,{c,4}]

5> L2 = [d|T].
[d, 2, {c, 4}]
6> | engt h(L1).
3

7> length([]).
0

A collection of list processing functions can be found in the STDLIB modulel i st s.

5.2.11 String

Strings are enclosed in double quotes (), but is not adatatypein Erlang. Instead a string " hel | 0" is shorthand for
thelist[$h, $e, $I , $I , $0] , thatis[104, 101, 108, 108, 111].

Two adjacent string literals are concatenated into one. This is done at compile-time and does not incur any runtime
overhead. Example:

"string" "42"

is equivalent to

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

5.2 Data Types

"string42"

5.2.12 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct
in C. However, record is not a true data type. Instead record expressions are tranglated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless specia actions are taken. See
shel I (3) for details.

Examples:

- modul e(person).
-export ([new 2])

-record(person, {nane, age})

new(Nane, Age) ->
#per son{ nane=Nane, age=Age}.

1> person: new(ernie, 44).
{person, erni e, 44}

Read more about recordsin Records. More examples can be found in Programming Examples.

5.2.13 Boolean
There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false
true

5.2.14 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b backspace

\d delete

\e escape

\f form feed

\n newline

\r carriage return

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Data Types

\s space

\t tab

\v vertical tab

\XYZ,\YZ,\Z character with octal representation XYZ, YZ or Z
\XXY character with hexadecimal representation XY

character with hexadecimal representation; X... isone or

{X..} more hexadecimal characters
N N

t/\i"\\/\zz control A to control Z

\ single quote

\" double quote

\\ backslash

Table 2.1: Recognized Escape Sequences.

5.2.15 Type Conversions

There are anumber of BIFsfor type conversions. Examples:

1> atomto_list(hello).

"hel | 0"

2> list_to_atom("hello").

hel | o

3> binary_to_list(<<"hello">>).

"hel | 0"

4> binary_to_list(<<104, 101, 108, 108, 111>>).
"hel | 0"

5> |list_to_binary("hello").
<<104, 101, 108, 108, 111>>

6> float_to_|list(7.0).
"7.00000000000000000000e+00"
7> list_to_float("7.000e+00").

7.0

8> integer_to_list(77).
w7

9> |list_to_integer("77").
77

10> tuple_to_list({a,b,c}).
[a, b, c]

11> list_to_tuple([a,b,c]).
{a, b, c}

12> termto_binary({a,b,c}).

<<131, 104, 3, 100, 0, 1, 97, 100, O, 1, 98, 100, O, 1, 99>>

13> binary_to_tern(<<131, 104, 3, 100, 0, 1, 97, 100, 0, 1, 98, 100, 0, 1, 99>>) .
{a, b, c}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

5.3 Pattern Matching

5.3 Pattern Matching
5.3.1 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, arun-time error occurs.

Examples:

1> X

** 1. variable 'X is unbound **
2> X = 2.

2

3> X + 1.

3

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1, 2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

5.4 Modules

5.4.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.). Example:

- modul e(m) . % nodul e attribute
-export([fact/1]). % nodul e attribute

fact(N) when N>0 -> 9% begi nning of function declaration
N * fact(N-1); % |

fact(0) -> % |
1. % end of function declaration

See the Functions chapter for a description of function declarations.

5.4.2 Module Attributes

A module attribute defines a certain property of amodule. A module attribute consists of atag and avalue.

- Tag(Val ue) .

Tag must be an atom, while Val ue must be a literal term. As a convenience in user-defined attributes, the literal
term Val ue the syntax Nane/ Ari t y (where Name isan atom and Ar i t y a positive integer) will be translated to
{Nane, Arity}.

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Modules

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes) or by using beam lib(3).

There are several modul e attributes with predefined meanings, some of which have arity two, but user-defined module
attributes must have arity one.

Pre-Defined Module Attributes
Pre-defined modul e attributes should be placed before any function declaration.
- modul e(Modul e) .

Module declaration, defining the name of the module. The name Mbdul e, an atom, should be the same as the
file name minus the extension er | . Otherwise code loading will not work as intended.

This attribute should be specified first and is the only attribute which is mandatory.
-export (Functions).
Exported functions. Specifieswhich of the functions defined withinthe modul e that are visible outsidethe module.

Functions isalist [Namel/ Arityl, ..., NameN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i mport (Modul e, Functi ons).

Imported functions. Imported functions can be called the same way aslocal functions, that iswithout any module
prefix.

Modul e, an atom, specifieswhich moduleto import functionsfrom. Funct i ons isalist similar asfor expor t
above.

-conpi | e(Options).

Compiler options. Opt i ons, which isa single option or alist of options, will be added to the option list when
compiling the module. Seeconpi | e(3) .

-vsn(Vsn).
Module version. Vsn isany literal term and can beretrieved using beam | i b: ver si on/ 1, see beam lib(3).
If this attribute is not specified, the version defaults to the MD5 checksum of the module.

-on_|l oad(Function).

Names a function that should be run automatically when a module a loaded. See code loading for more
information.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for a behaviour:

- behavi our (Behavi our) .

The atom Behavi our gives the name of the behaviour, which can be a user defined behaviour or one of the OTP
standard behavioursgen_ser ver,gen_f smgen_event or supervi sor.

The spelling behavi or isalso accepted.
Read more about behaviours and callback modulesin OTP Design Principles.

Record Definitions

The same syntax as for module attributes is used by for record definitions:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

5.4 Modules

-record(Record, Fi el ds).

Record definitions are allowed anywhere in amodule, aso among the function declarations. Read more in Records.

The Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SonmeFile.hrl").
- defi ne(Macr o, Repl acenent) .

Read more in The Preprocessor.

Setting File and Line

The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?LI NE:

-file(File, Line).

This attribute is used by tools such as Y ecc to inform the compiler that the source program was generated by another
tool and indicates the correspondence of source files to lines of the original user-written file from which the source
program was produced.

Types and function specifications

A similar syntax as for module attributes is used for specifying types and function specifications.

-type my_type() :: aton() | integer().
-spec my_function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications which will not be further updated.

5.4.3 Comments

Comments may be placed anywherein amodul e except within strings and quoted atoms. The comment beginswith the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Note that the terminating
end-of-line has the effect of white space.

5.4.4 The module_info/0 and module_info/1 functions

The compiler automaticaly inserts the two specia, exported functions into each module:
Modul e: modul e_i nf o/ 0 andModul e: nodul e_i nf o/ 1. Thesefunctionscan becalledtoretrieveinformation
about the module.

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

5.5 Functions

module_info/0

The nodul e_i nf o/ 0 function in each module returns a list of { Key, Val ue} tuples with information about
the module. Currently, the list contain tuples with the following Keys. att ri but es, conpi | e, export s, and
i mport s. The order and number of tuples may change without prior notice.

Warning:

The{i nport s, Val ue} tuple may be removed in afuture release because Val ue isaways an empty list. Do
not write code that depends on it being present.

module_info/1

Thecall nodul e_i nf o(Key) , where key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:

attributes

Returnalistof { At t ri but eNane, Val uelLi st} tuples,whereAt t ri but eNane isthenameof an attribute,
and Val uelLi st isalist of values. Note: a given attribute may occur more than once in the list with different
valuesif the attribute occurs more than once in the module.

Thelist of attributes will be empty if the module has been stripped with beam lib(3).
conpile

Return alist of tuples containing information about how the module was compiled. Thislist will be empty if the
module has been stripped with beam lib(3).

i mports

Alwaysreturn an empty list. Thei nport s key may not be supported in future release.
exports

Return alist of { Nanme, Ari t y} tupleswith all exported functions in the module.
functions

Return alist of { Nanme, Ari ty} tupleswith al functionsin the module.

5.5 Functions

5.5.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when.

Name(Patternll, ..., PatternlN) [when CuardSeql] ->
Body1;

Name(PatternKi, ..., Pat t er nKN) [when CuardSeqK] ->
BodyK.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

5.5 Functions

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name and arity. That is, two functions with the same name and in the same module, but with different arities are two
completely different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.

A clause body consists of a sequence of expressions separated by comma (,):

Expr 1,
Expr N
Valid Erlang expressions and guard sequences are described in Erlang Expressions.

Example:

fact(N) when NSO -> % first clause head
N * fact(N-1); % first clause body

fact(0) -> % second cl ause head
1. % second cl ause body

5.5.2 Function Evaluation

When afunction m f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
run-time error will occur. Note that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clauseis found that fulfills the following
two conditions:

» thepatternsin the clause head can be successfully matched against the given arguments, and
e theguard sequence, if any, istrue.

If such a clause cannot be found, af unct i on_cl ause run-time error will occur.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Example: Consider the functionf act :

- modul e(m) .
-export([fact/1]).

fact (N) when N>O ->
N * fact(N-1);
fact(0) ->
1.

Assume we want to calculate factoria for 1:

1> mfact(1).

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Functions

Evaluation starts at the first clause. The pattern N is matched against the argument 1. The matching succeeds and the
guard (N>0) istrue, thus Nis bound to 1 and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now f act (0) iscalled and thefunction clauses are scanned sequentially again. First, the pattern Nis matched against
0. The matching succeeds, but the guard (N>0) is false. Second, the pattern 0 is matched against 0. The matching
succeeds and the body is evaluated:

1* fact(0) =>
1* 1 =
1

Evaluation has succeed and m f act (1) returns 1.

If m fact/ 1iscaledwith anegative number as argument, no clause head will match. A f unct i on_cl ause run-
time error will occur.

5.5.3 Tail recursion

If the last expression of a function body isafunction call, atail recursive call is done so that no system resources for
example call stack are consumed. This means that an infinite loop can be doneiif it usestail recursive calls.

Example:

loop(N) ->
io:format ("~w~-n", [N]),
| oop(N+1).

As a counter-example see the factorial example above that is not tail recursive since a multiplication is done on the
result of therecursivecall tof act (N- 1) .

5.5.4 Built-In Functions, BIFs

Built-in functions, BIFs, areimplemented in C code in the runtime system and do thingsthat are difficult or impossible
to implement in Erlang. Most of the built-in functions belong to the module er | ang but there are also built-in
functions belonging to afew other modules, for examplel i st s and et s.

The most commonly used BIFs belonging to er | ang are auto-imported, they do not need to be prefixed with the
module name. Which BIFs are auto-imported is specified in er | ang(3) . For example, standard type conversion
BlFslikeat om t o_I i st and BIFsallowed in guards can be called without specifying the module name. Examples:

1> tupl e_size({a,b,c}).

3

2> atomto_list('Erlang').
"Erl ang”

Note that normally it is the set of auto-imported built-in functions that is referred to when talking about 'BIFs.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

5.6 Types and Function Specifications

5.6 Types and Function Specifications

5.6.1 Introduction of Types

Erlang isadynamically typed language. Still, it comes with alanguage extension for declaring sets of Erlang termsto
form a particular type, effectively forming a specific sub-type of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and the argument and return types of functions.

Typeinformation can be used to document function interfaces, provide more information for bug detection tools such
asDi al yzer, and can be exploited by documentation tools such as Edoc for generating program documentation of
various forms. It is expected that the type language described in this document will supersede and replace the purely
comment-based @ ype and @ pec declarations used by Edoc.

5.6.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist and are built from a set of predefined types (e.g. i nt eger (),
at om(), pi d(), ...) described below. Predefined typesrepresent atypically infinite set of Erlang termswhich belong
to thistype. For example, thetype at on{) standsfor the set of all Erlang atoms.

For integers and atoms, we allow for singleton types (e.g. theintegers- 1 and 42 or theatoms' f oo’ and' bar').
All other types are built using unions of either predefined types or singleton types. In atype union between atype and
one of its sub-types the sub-type is absorbed by the super-type and the union is subsequently treated asif the sub-type
was not a constituent of the union. For example, the type union:

aton() | 'bar' | integer() | 42

describes the same set of terms as the type union:

aton() | integer()

Because of sub-type relations that exist between types, types form alattice where the topmost element, any(), denotes
the set of all Erlang terms and the bottom-most element, none(), denotes the empty set of terms.

The set of predefined types and the syntax for typesis given below:

Type :: any() %6 The top type, the set of all Erlang terns.
none() %b The bottom type, contains no terms.
pi d()

port ()

ref erence()

[] 996 ni |

At om

Bi nary

float()

Fun

| nt eger

Li st

Tupl e

Uni on

User Def i ned %% described in Section 2

Union :: Typel | Type2

Atom :: atom()

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

| Erlang_Atom Who' foo', 'bar',
Bi nary :: binary()
| <<>>
| <<_:Erlang_|nteger>>
| <<_:_*Erlang_| nteger>>
| <<_:Erlang_Integer,
Fun :: fun()

| fun((...) -> Type)
| fun(() -> Type)
| fun((TList) -> Type)

Integer :: integer()

| Erlang_| nteger

| Erlang_Integer..Erlang_|nteger
List :: list(Type)

| inproper_list(Typel, Type2)
| nmaybe_i nproper_Iist(Typel, Type2)

Tuple :: tuple()

| {}

| {TList}
TList :: Type

| Type, TLi st

Wh<<_:_ * 8>

%% Base size
%o Unit size

:*Erlang_I nt eger >>

%% any function
%o any arity, returning Type

Wo..., -1, 0, 1, .42 ...
%hb speci fies an integer range

%% Proper list ([]-term nated)
%6 Typel=contents, Type2=term nation
%6 Typel and Type2 as above

%hb stands for a tuple of any size

Because lists are commonly used, they have shorthand type notations. Thetypel i st (T) hastheshorthand[T] . The
shorthand [T, . . .] stands for the set of non-empty proper lists whose elements are of type T. The only difference
between the two shorthandsisthat [T] may bean empty listbut[T, ...] may not.

Notice that the shorthand for | i st () , i.e. thelist of elements of unknown type, is[_] (or[any()]),not[].The
notation [] specifies the singleton type for the empty list.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table. (Some type unions below slightly abuse the syntax of types.)

Built-in type Stands for

term) any()

bool ean() 'false' | '"true'

byt e() 0..255

char () 0..16#10ffff
non_neg_i nt eger () 0..

pos_i nt eger () 1..

neg_i nt eger () -1

nunber () integer() | float()
list() [any()]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

5.6 Types and Function Specifications

maybe_i nproper _list()

maybe_i nproper_list(any(), any())

maybe_i nproper _list(T)

maybe_i nproper _list(T, any())

string()

[char ()]

nonenpty_string()

[char(),...]

maybe_i nproper _list(char() | binary()

ot | Tolist(), binary() | [1)
modul e() at o)

nf a() {aton(), aton(), byte()}

node() atony()

timeout () "infinity' | non_neg_integer()
no_return() none()

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and itsviolation resultsin acompilation error. (For bootstrapping purposes, it can also result to just awarning

if thisinvolves a built-in type which has just been introduced.)

Note:

Thefollowing built-in list types also exist, but they are expected to be rarely used. Hence, they have long names:

nonenpty_maybe_i nproper _|ist(Type) ::

nonenpty_maybe_i nproper _list() ::

nonenpty_maybe_i nproper_li st (Type, any())
nonenpty_maybe_i nproper _Iist(any())

where the following two types define the set of Erlang terms one would expect:

nonenpty_i nproper _|ist(Typel, Type2)
nonenpty_maybe_i nproper _I|ist(Typel, Type2)

Alsofor convenience, weallow for record notation to be used. Recordsare just shorthandsfor the corresponding tuples.

Record :: #Erl ang_Aton{}
| #Erl ang_At on{ Fi el ds}

Records have been extended to possibly contain type information. This is described in the sub-section "Type
information in record declarations' below.

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

5.6.3 Type declarations of user-defined types

As seen, the basic syntax of atype is an atom followed by closed parentheses. New types are declared using -type
and '-opaque’ compiler attributes as in the following:

-type my_struct _type() :: Type.
-opaque ny_opaq_type() :: Type.

where the type name is an atom (" my_struct _t ype' in the above) followed by parentheses. Type is a type as
defined in the previous section. A current restriction is that Type can contain only predefined types, or user-defined
types which are either module-local (i.e., with adefinition that is present in the code of the module) or are remote types
(i.e., types defined in and exported by other modules; see below). For module-local types, the restriction that their
definition exists in the module is enforced by the compiler and results in a compilation error. (A similar restriction
currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variablesis the same as Erlang variables (starts with an upper case |etter). Naturally, these variables can - and should
- appear on the RHS of the definition. A concrete example appears below:

-type orddict(Key, Val) :: [{Key, Val}l].

A module can export some types in order to declare that other modules are allowed to refer to them as remote types.
This declaration has the following form:

-export_type([T1/ AL, ..., Tk/AKk]).

where the Ti's are atoms (the name of the type) and the Ai's are their arguments. An exampleis given below:

-export_type([my_struct_type/0, orddict/2]).

Assuming that these types are exported from module ' nod' then one can refer to them from other modules using
remote type expressions like those below:

mod: ny_struct _type()
nmod: orddi ct (atom(), term())

Oneisnot allowed to refer to types which are not declared as exported.

Typesdeclared asopaque represent sets of termswhose structure is not supposed to be visible in any way outside of
their defining module (i.e., only the module defining them is allowed to depend on their term structure). Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and should always be exported.

5.6.4 Type information in record declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

5.6 Types and Function Specifications

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). 1.e., the above is a shorthand for:

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initial valuesfor fields, the type must be declared after the initialization asin the following:

-record(rec, {fieldl =[] :: Typel, field2, field3 = 42 :: Type3}).

Naturally, the initial values for fields should be compatible with (i.e. a member of) the corresponding types. Thisis
checked by the compiler and resultsin a compilation error if aviolation is detected. For fields without initial values,
thesingletontype' undefi ned' isaddedtoal declared types. In other words, the following two record declarations
have identical effects:

-record(rec, {fl = 42 :: integer(),
f2 :: float(),
f3 o 'a’ | 'b'}).
-record(rec, {fl = 42 :: integer(),
f2 :: 'undefined | float(),
f3 ;0 'undefined | 'a" | 'b'}).

For this reason, it is recommended that records contain initializers, whenever possible.
Any record, containing type information or not, once defined, can be used as atype using the syntax:
#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field in the following manner:

#rec{sone_field :: Type}
Any unspecified fields are assumed to have the typein the original record declaration.

5.6.5 Specifications for functions

A specification (or contract) for afunction is given using the new compiler attribute ' - spec' . The general format
isasfollows:

-spec Modul e: Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

The arity of the function has to match the number of arguments, or else a compilation error occurs.

Thisform can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can beincluded in files that (implicitly or explicitly) import these functions.

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

For most uses within a given module, the following shorthand suffices:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgNanmel :: Typel, ..., ArgNameN :: TypeN) -> RT.

A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):

-spec foo(T1, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently resultsin awarning (OBS: not an error) by the compiler, is that the domains of
the argument types cannot be overlapping. For example, the following specification resultsin awarning:

-spec foo(pos_integer()) -> pos_integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

-spec id(X) -> X

However, note that the above specification does not restrict the input and output type in any way. We can constrain
these types by guard-like subtype constraints:

-spec id(X) -> X when is_subtype(X, tuple()).

or equivalently by the more succinct and more modern form of the above:

-spec id(X) -> X when X :: tuple().

and provide bounded quantification. Currently, the : : constraint (the i s_subt ype/ 2 guard) is the only guard
constraint which can beused inthe' when' partof a' - spec' attribute.

Thescopeof an: : constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
we suggest that different variables are used in different constituents of an overloaded contract asin the example bel ow:

-spec foo({X, integer()}) -> X when X :: atom()
; ([Y]) -> Y when Y :: nunber().

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

5.7 Expressions

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions as the function below:

my_error(Err) -> erlang:throw({error, Err}).

For such functions we recommend the use of the special no_return() type for their "return", viaa contract of the form:

-spec my_error(term()) -> no_return().

5.7 Expressions

In this chapter, all valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate chapters: Macros and Records.

5.7.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type will cause abadar g run-time error.

5.7.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list or tuple. The return value is the
termitself.

5.7.3 Variables

A variable is an expression. If avariable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore (_) and may contain alphanumeric characters, underscore and
@. Examples:

X

Nanmel
PhoneNunber
Phone_nunber

" Hei ght

Variables are bound to values using pattern matching. Erlang uses single assignment, a variable can only be bound
once.

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

The anonymous variable is denoted by underscore () and can be used when a variable is required but its value can
be ignored. Example:

[H_ =1[12373]

Variablesstarting with underscore (), for example_Hei ght , arenormal variables, not anonymous. They are however
ignored by the compiler in the sense that they will not generate any warnings for unused variables. Example: The
following code

menber (_, []) ->
[1.
can be rewritten to be more readable:

nenber (Elem []) ->
[1.

This will however cause a warning for an unused variable El em if the code is compiled with the flag
war n_unused_var s set. Instead, the code can be rewritten to:

menber (_Elem []) ->
[1.

Note that since variables starting with an underscore are not anonymous, this will match:

{3 ={12
But this will fail:
{N_N ={1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f , case, orr ecei ve expression
must be bound in al branchesto have avalue outside the expression, otherwise they will beregarded as'unsafe’ outside
the expression.

For thet r y expression introduced in Erlang 5.4/0TP-R10B, variable scoping islimited so that variables bound in the
expression are always 'unsafe’ outside the expression. Thiswill be improved.

5.7.4 Patterns

A pattern has the same structure as aterm but may contain unbound variables. Example:

Nanel
[HT]

{error, Reason}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

5.7 Expressions

Patterns are allowed in clause heads, case and r ecei ve expressions, and match expressions.

Match Operator = in Patterns
If Patt er nl and Pat t er n2 are valid patterns, then the following is also avalid pattern:
Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 will be matched against the term. The idea behind
thisfeature is to avoid reconstruction of terms. Example:

f ({ connect, From To, Nunber, Opti ons}, To) ->
Si gnal = {connect, From To, Nunber, Opti ons},

f(Signal, To) ->

i gnore.

can instead be written as

f({connect, ,To, ,_} = Signal, To) ->

f(Signal, To) ->
i gnor e.

String Prefix in Patterns
When matching strings, the following isavalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read

f([$p, $r, Se, $f, $i,$x | Str]) -> ...

Expressions in Patterns

An arithmetic expression can be used within apattern, if it uses only numeric or bitwise operators, and if its value can
be evaluated to a constant at compile-time. Example:

case {Val ue, Result} of
{?THRESHOLD+1, ok} -> ...

This feature was added in Erlang 5.0/0TP R7.

5.7.5 Match

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Exprl = Expr2

Matches Expr 1, a pattern, against Expr 2. If the matching succeeds, any unbound variable in the pattern becomes
bound and the value of Expr 2 isreturned.

If the matching fails, abadmat ch run-time error will occur.

Examples:

1> {A B} = {answer, 42}.

{answer, 42}

2> A

answer

3> {C D =1[1, 2].

** exception error: no match of right hand side value [1,2]

5.7.6 Function Calls

Expr F(Expr1, ..., Expr N)
Expr M Expr F(Expr1, .. ., Expr N)

In the first form of function calls, Expr M Expr F(Expr 1, ..., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to as aremote or external function call. Example:

lists: keysearch(Nane, 1, List)

In the second form of function calls, Expr F(Expr 1, . .., Expr N), Expr F must be an atom or evaluate to a fun.

If ExprF is an atom the function is said to be called by using the implicitly qualified function name. If the
function Expr F is locally defined, it is caled. Alternatively if Expr F is explicitly imported from module M
M Expr F(Expr1, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF. Examples:

handl e(Msg, State)
spawmn(m init, [])

Examples where ExprF isafun:

Funl = fun(X) -> X+1 end
Funi(3)
= 4

Fun2 = {lists, append}
Fun2([1,2], [3, 4])
=> [1,2,3,4]

fun lists:append/2([1,2], [3,4])
=> [1,2,3,4]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

5.7 Expressions

Note that when calling a local function, there is a difference between using the implicitly or fully qualified function
name, as the latter always refers to the latest version of the module. See Compilation and Code Loading.

See also the chapter about Function Evaluation.

Local Function Names Clashing With Auto-imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsisthat implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, there is acompiler directive available,
-conpi l e({no_auto_i nmport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
acompile-directive is mandatory.

Warning:

Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to afunction having the same name
as an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler the local
functionisinstead called. The changeisthereto avoid that future additions to the set of auto-imported BIFs does
not silently change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need
to explicitly remove the auto-import using a compiler directive, or replace the call with afully qualified function
call, otherwise you will get a compilation error. See example below:

-export([length/1,f/1]).
-conpil e({no_auto_inmport,[length/1]}). %erlang:length/1 no | onger autoinported
l'ength([]) ->

0

length([H T]) ->
1 + length(T). %o Calls the | ocal funtion |ength/1

f(X) when erlang:length(X) >3 -> %6 Calls erlang:|ength/1,

%6 which is allowed in guards
| ong.

The same logic applies to explicitly imported functions from other modules as to locally defined functions. To both
import a function from another module and have the function declared in the module at the same time is not allowed.

-export ([f/1]).
-conpil e({no_auto_inport,[length/1]}). %erlang:length/1 no | onger autoinported
-inport(nod,[length/1]).

f(X) when erlang:length(X) > 33 -> %o Calls erlang:|enght/1,
%6 which is allowed in guards

erl ang: | engt h(X); %o Explicit call to erlang:length in body

f(x ->
I engt h(X) . %o nod: | ength/1 is called

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

For auto-imported BIFs added to Erlang in release R14A and thereafter, overriding the name with a local function
or explicit import is always alowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not
used, the compiler will issue a warning whenever the function is called in the module using the implicitly qualified
function name.

57.7 If

if
GuardSeql ->
Body1;
Quar dSegN - >
BodyN
end

Thebranchesof ani f -expression are scanned sequentially until aguard sequence Guar dSeq which evaluatesto true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

The return value of Body isthereturn value of thei f expression.

If no guard sequenceistrue, ani f _cl ause run-time error will occur. If necessary, the guard expressiont r ue can
be used in the last branch, as that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
if

XY ->
true;
true -> % works as an 'el se' branch
fal se
end
5.7.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->

BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

Thereturn value of Body isthe return value of the case expression.
If there is no matching pattern with atrue guard sequence, acase_cl ause run-time error will occur.
Example:

is_valid_signal (Signal) ->
case Signal of

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

5.7 Expressions

{signal, Wat, From _To} ->
true;
{signal, _Wat, _To} ->
true;
_Else ->
fal se
end.

5.7.9 Send

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluateto apid, aregistered name (atom) or atuple{ Nane, Node} , where Narne isan atom and Node
anode name, also an atom.

« |f Expr 1 evaluatesto aname, but this nameis not registered, abadar g run-time error will occur.

e Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

» Distributed message sending, that isif Expr 1 evaluatesto atuple { Nane, Node} (or apid located at another
node), also never fails.

5.7.10 Receive

recei ve
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pat t er n are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If a match succeeds and the optional
guard sequence Guar dSeq istrue, the corresponding Body is evaluated. The matching messageis consumed, that is
removed from the mailbox, while any other messages in the mailbox remain unchanged.

The return value of Body isthereturn value of ther ecei ve expression.

recei ve never falls. Execution is suspended, possibly indefinitely, until a message arrives that does match one of
the patterns and with a true guard sequence.

Example:

wai t _f or _onhook() ->
recei ve

onhook ->
di sconnect (),
idle();

{connect, B} ->
B ! {busy, self()},
wai t _f or _onhook()

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

end

It is possible to augment ther ecei ve expression with atimeout:

receive
Patternl [when QuardSeql] ->
Body1;

Patt ernN [when GuardSeqN] ->
BodyN
after
ExprT ->
Body T
end

Expr T should evaluate to an integer. The highest allowed value is 16#ffffffff, that is, the value must fit in 32 bits.
recei ve. . af t er works exactly as r ecei ve, except that if no matching message has arrived within Expr T
milliseconds, then Body T isevaluated instead and itsreturn value becomesthereturn valueof ther ecei ve. . af ter

expression.
Example:

wai t _for_onhook() ->
recei ve

onhook ->
di sconnect (),
idle();

{connect, B} ->
B ! {busy, self()},
wai t _f or _onhook()

after
60000 ->
di sconnect (),
error()
end

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
Body T
end

This construction will not consume any messages, only suspend execution in the process for Expr T milliseconds and
can be used to implement simple timers.

Example:

timer() ->
spawn(m tinmer, [self()]).

timer(Pid) ->
receive

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

5.7 Expressions

after
5000 ->
Pid ! tineout
end.

There are two special cases for the timeout value Expr T:

infinity
The process should wait indefinitely for a matching message -- this is the same as not using atimeout. Can be
useful for timeout values that are calculated at run-time.

If there is no matching message in the mailbox, the timeout will occur immediately.

5.7.11 Term Comparisons

Exprl op Expr2

op Description

== equal to

/= not equal to

=< lessthan or equal to

< less than

>= greater than or equal to
> greater than

== exactly equal to

=/= exactly not equal to

Table 7.1: Term Comparison Operators.

The arguments may be of different data types. The following order is defined:

nunber < atom < reference < fun < port < pid < tuple < list < bit string

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement
by element.

When comparing an integer to afloat, the term with the lesser precision will be converted into the other term's type,
unless the operator is one of =:= or =/=. A float is more precise than an integer until all significant figures of the float
are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0. The
conversion strategy is changed depending on the size of the float because otherwise comparison of large floats and
integers would lose their transitivity.

Returns the Boolean value of the expression, t r ue or f al se.

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Examples:

1> 1==1. 0.
true

2> 1=:=1.0.
fal se

3> 1 > a.
fal se

5.7.12 Arithmetic Expressions

op Expr
Exprl op Expr2

op Description Argument type
+ unary + number
- unary - number
+ number
- number
* number
/ floating point division number
bnot unary bitwise not integer
div integer division integer
rem integer remainder of X/Y integer
band bitwise and integer
bor bitwise or integer
bxor arithmetic bitwise xor integer
bsl arithmetic bitshift left integer
bsr bitshift right integer

Table 7.2: Arithmetic Operators.

Examples:

1> +1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

5.7 Expressions

1
2> -1,
-1
3> 1+1.
2
4> 4] 2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when eval uating an arithnmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a systemlimt has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

5.7.13 Boolean Expressions

op Expr
Exprl op Expr2

op Description

not unary logical not
and logical and

or logical or

xor logical xor

Table 7.3: Logical Operators.

Examples:

1> not true.
fal se
2> true and fal se.
fal se
3> true xor false.
true
4> true or garbage.
** exception error: bad argunent
in operator or/2
called as true or garbage

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

5.7.14 Short-Circuit Expressions

Exprl orel se Expr2
Expr1 andal so Expr2

Expressions where Expr 2 is evaluated only if necessary. That is, Expr 2 is evaluated only if Expr 1 evaluates to
fal seinanorel se expression, or only if Expr 1 evaluatestot r ue in an andal so expression. Returns either
thevalue of Expr 1 (thatis, t r ue or f al se) or thevaue of Expr 2 (if Expr 2 was evauated).

Example 1:

case A >= -1.0 andal so math: sqrt (A+1) > B of

Thiswill work even if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 isnever evaluated.

Example 2:

OnlyOne = is_aton(L) orel se
(is_list(L) andal so length(L) == 1),

From R13A, Expr 2 isno longer required to evaluate to a boolean value. As a consequence, andal so and or el se
are now tail-recursive. For instance, the following function is tail-recursivein R13A and later:

all (Pred, [Hd|Tail]) ->
Pred(Hd) andalso all(Pred, Tail);
all(_, [1) ->

true.

5.7.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2
The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list which is a copy of the first argument, subjected to the following
procedure: for each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3]++[4,5].

[1,2 3,4,5]
2>[1,2,38,2,1,2]--[2,1,2].
[3,1,2]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

5.7 Expressions

Warning:

The complexity of A -- B isproportional to | engt h(A) *I engt h(B) , meaning that it will be very slow
if both A’and B arelong lists.

5.7.16 Bit Syntax Expressions

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
Val ue: Si ze |
Val ue/ TypeSpeci fi erList |
Val ue: Si ze/ TypeSpeci fi erLi st

Used in abit string construction, Val ue isan expression which should evaluate to an integer, float or bit string. If the
expression is something else than asingle literal or variable, it should be enclosed in parenthesis.

Used in a bit string matching, Val ue must be avariable, or an integer, float or string.

Note that, for example, using astring literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in abit string construction, Si ze is an expression which should evaluate to an integer.

Used in a bit string matching, Si ze must be an integer or a variable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below). For i nt eger itis8, for f| oat itis64, for bi nary and bi t stri ng it isthe whole binary or bit string.
In matching, this default value is only valid for the very last element. All other bit string or binary elements in the
matching must have a size specification.

For theut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment is implicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.

Type=integer |float |binary |bytes|bitstring|bits|utf8|utfl16|utf32
Thedefaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.
Si gnedness=si gned |unsi gned
Only matters for matching and when the typeisi nt eger . The default isunsi gned.
Endi anness=big|little|native
Native-endian means that the endianness will be resolved at 1oad time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machineis run on. Endianness only matters when the
Typeiseitheri nt eger,utf 16,utf32,orfl oat . Thedefaultishi g.
Unit=unit:IntegerlLiteral
The alowed range is 1..256. Defaultsto 1 for i nt eger, fl oat andbi t st ri ng, andto8for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have asize
that isevenly divisible by 8.

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Note:

When constructing binaries, if the size N of an integer segment istoo small to contain the given integer, the most
significant bits of the integer will be silently discarded and only the N least significant bits will be put into the
binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation Formats UTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Val ue must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction will fail with abadar g exceptionif Val ue isoutside the allowed ranges. The
size of the resulting binary segment depends on the type and/or Val ue. For ut f 8, Val ue will be encoded in 1
through 4 bytes. For ut f 16, Val ue will be encoded in 2 or 4 bytes. Finally, for ut f 32, Val ue will always be
encoded in 4 bytes.

When constructing, aliteral string may be given followed by one of the UTF types, for example: <<" abc" / ut f 8>>
which is syntatic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of asegment of aut f typeresultsin aninteger in therange 0..16#D7FF or 16#E£000..16#10FFFF.
The match will fail if returned value would fall outside those ranges.

A segment of type ut f 8 will match 1 to 4 bytes in the binary, if the binary at the match position contains a valid
UTF-8 sequence. (See RFC-3629 or the Unicode standard.)

A segment of type ut f 16 may match 2 or 4 bytesin the binary. The match will fail if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 may match 4 bytesin the binary in the same way asan i nt eger segment matching 32
bits. The match will fail if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Binl = <<1, 17, 42>>
<<1, 17, 42>>

2> Bin2 = <<"abc">>

<<97, 98, 99>>

3> Bin3 = <<1,17, 42: 16>>
<<1, 17, 0, 42>>

4> <<A B, C 16>> = <<1, 17, 42: 16>>
<<1, 17, 0, 42>>

5> C

42

6> <<D: 16, E, F>> = <<1, 17, 42: 16>>
<<1, 17, 0, 42>>

7> D.

273

8> F.

42

9> <<G H bi nary>> = <<1, 17, 42: 16>>
<<1, 17, 0, 42>>

10> H

<<17, 0, 42>>

11> <<G H bitstring>> = <<1, 17, 42: 12>>
<<1, 17,1, 10: 4>>

12> H

<<17, 1, 10: 4>>

13> <<1024/ ut f 8>>

<<208, 128>>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

5.7 Expressions

Note that bit string patterns cannot be nested.

Note also that "B=<<1>>" isinterpreted as"B =<<1>>" which isasyntax error. The correct way isto write a space
after '=": "B= <<1>>.

More examples can be found in Programming Examples.

5.7.17 Fun Expressions

fun
(Patternii, ..., PatternliN) [when CQuardSeql] ->
Body1;
(PatternKi, ..., Patt ernKN) [when QuardSeqK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them should be a function
declaration, similar to aregular function declaration, except that no function name is specified.

Variablesin afun head shadow variables in the function clause surrounding the fun expression, and variables bound
in afun body are local to the fun body.

The return value of the expression is the resulting fun.
Examples:

1> Funl = fun (X) -> X+1 end.

#Fun<er| _eval . 6. 39074546>

2> Funi(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> It end.
#Fun<er| _eval . 6. 39074546>

4> Fun2(7).

gt

The following fun expressions are also allowed:

fun Nane/Arity
fun Modul e: Nane/ Arity

InNane/ Arity, Name isanatomand Ari ty isaninteger. Nane/ Ari t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl,..., ArgN) -> Name(Argl,..., ArgN) end

In Modul e: Nane/ Ari ty, Modul e and Nane areatomsand Ari t y isan integer. Starting from the R15 release,
Modul e, Nane, and Ari t y may also be variables. A fun defined in this way will refer to the function Nanme with
arity Ari ty in the latest version of module Modul e. A fun defined in this way will not be dependent on the code
for module in which it is defined.

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

When applied to a number N of arguments, atuple { Modul e, Funct i onNane} isinterpreted as a fun, referring
to the function Funct i onNane with arity N in the module Modul e. The function must be exported. This usageis
deprecated. Usef un Mbdul e: Nane/ Ari ty instead. See Function Calls for an example.

More examples can be found in Programming Examples.

5.7.18 Catch and Throw

catch Expr

Returnsthe value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught. For
exceptions of classer r or, that isrun-time errors: {' EXI T' , { Reason, St ack}} isreturned. For exceptions of
classexit,thatisthecodecalledexit (Term: {' EXI T', Ter n} isreturned. For exceptions of classt hr ow,
that isthe code called t hr ow(Ter n) : Ter mis returned.

Reason depends on the type of error that occurred, and St ack is the stack of recent function calls, see Errors and
Error Handling.

Examples:

1> catch 1+2.

3
2> catch 1+a.
{"EXIT ,{badarith,[...]}}

Note that cat ch has low precedence and catch subexpressions often needs to be enclosed in a block expression or
in parenthesis:

3> A = catch 1+2.

** 1. syntax error before: 'catch' **
4> A = (catch 1+2).

3

TheBIFt hr owm(Any) can be used for non-local return from afunction. It must be evaluated within acat ch, which
will return the value Any. Example:

5> catch throw hell o).
hel | o

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error will occur.

5.7.19 Try

try Exprs
catch
[assl:] Excepti onPatternl [when ExceptionCuardSeql] ->
Excepti onBody1;
[A assN:] Excepti onPatternN [when Excepti onCGuardSeqN ->
Except i onBodyN

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

5.7 Expressions

end

Thisisan enhancement of catch that appeared in Erlang 5.4/0OTP-R10B. It givesthe possibility do distinguish between
different exception classes, and to choose to handle only the desired ones, passing the others on to an enclosingt r y
or cat ch or to default error handling.

Note that although the keyword cat ch isused in thet r y expression, there is not acat ch expression within the
t ry expression.

Returnsthevalueof Expr s (asequenceof expressionsExpr 1, ..., Expr N)unlessanexceptionoccursduringthe
evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right exception class
d ass are sequentially matched against the caught exception. An omitted Cl ass isshorthand for t hr ow. If amatch
succeeds and the optional guard sequence Except i onGuar dSeq istrue, the corresponding Except i onBody is
evaluated to become the return vaue.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
d ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

If an exception occurs during evaluation of Except i onBody it is not caught.

Thet ry expression can have an of section:

try Exprs of
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
cat ch
[assl:] Excepti onPatternl [when ExceptionCuardSeql] ->
Excepti onBody1;

[A assN:] Excepti onPatternN [when ExceptionCuardSeqN ->
Excepti onBodyN
end

If the evaluation of Expr s succeeds without an exception, the patterns Pat t er n are sequentially matched against
the result in the same way as for a case expression, except that if the matching fails, at r y_cl ause run-time error
will occur.

An exception occurring during the evaluation of Body is not caught.

Thet ry expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
catch
[O assl:] Excepti onPatternl [when ExceptionCuardSeql] ->
Excepti onBody1;

[A assN:] Excepti onPatternN [when ExceptionCuardSeqN ->
Excepti onBodyN
after
Af t er Body

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

end

Af t er Body is evaluated after either Body or Except i onBody no matter which one. The evaluated value of
Af t er Body islost; thereturn value of thet r y expression isthe same with an af t er section as without.

Even if an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevaluated. In thiscase
the exception is passed on after Af t er Body has been evaluated, so the exception from the t r y expression is the
same with an af t er section aswithout.

If an exception occurs during evaluation of Af t er Body itself itisnot caught, soif Af t er Body isevaluated after an
exceptionin Expr s, Body or Except i onBody, that exceptionislost and masked by the exceptionin Af t er Body.

Theof , cat ch and af t er sections are all optional, aslong asthereis at least acat ch or an af t er section, so
thefollowing arevalidt r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body
after
Af t er Body
end

try Exprs
catch
ExpressionPattern ->
Expr essi onBody
after
Af t er Body
end

try Exprs after AfterBody end

Example of using af t er, this code will close the file even in the event of exceptionsinfil e:read/ 2 or in
bi nary _to_terni 1, and exceptionswill bethe same aswithout thet ry...af t er ...end expression:

term ze file(Nane) ->

{ok,F} = file:open(Nane, [read, binary]),

try
{ok,Bin} = file:read(F, 1024*1024),
bi nary_to_tern(Bin)

after
file:close(F)

end.

Example: Usingt ry to emulate cat ch Expr .

try Expr
cat ch

throw Term -> Term

exit: Reason -> {'EXIT', Reason}

error: Reason -> {'EXIT , { Reason, erl| ang: get _stacktrace()}}
end

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

5.7 Expressions

5.7.20 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example in arithmetic expressions:

1> 1 + 2 * 3.
7

2> (1 +2) * 3.
9

5.7.21 Block Expressions

begi n
Expr 1,

Expr N

end

Block expressions provide away to group a sequence of expressions, similar to aclause body. The return valueis the
value of the last expression Expr N.

5.7.22 List Comprehensions

List comprehensions are a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are anal ogousto set comprehensionsin Zermel o-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to the set of andf i ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qalifierl,..., QualifierN

Expr isan arbitrary expression, and each Qual i f i er iseither agenerator or afilter.

e A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression which evaluatesto alist of terms.

* A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression which evaluatesto a bitstring.

« Afilter isan expression which evaluatestot r ue or f al se.
The variables in the generator patterns shadow variablesin the function clause surrounding the list comprehensions.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and bit string generator elements for which all filters are true.

Example:

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

1> [X2 || X< [1,23]].
[2, 4, 6]

More examples can be found in Programming Examples.

5.7.23 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qualifierl, ..., QualifierN >>

Bi t Stri ngisabit string expression, and each Qual i f i er iseither agenerator, abit string generator or afilter.

e A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression which evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression which evaluates to a bitstring.

» Afilter isan expression which evaluatestot r ue or f al se.

The variables in the generator patterns shadow variables in the function clause surrounding the bit string
comprehensions.

A bit string comprehension returnsabit string, which is created by concatenating theresultsof evaluatingBi t St ri ng
for each combination of bit string generator elements for which all filters are true.

Example:

1> << << (X*2) >> |
<<X>> <= << 1,2,3 >> >>
<<2, 4, 6>>

More examples can be found in Programming Examples.

5.7.24 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequenceistrueif at least one of the
guardsistrue. (The remaining guards, if any, will not be evaluated.)
Guardl;...; GuardK

A guard isasequence of guard expressions, separated by comma(,). Theguardistrueif al guard expressions evaluate
totrue.
QuardeExprl, ..., GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang expressions.
The reason for restricting the set of valid expressions is that evaluation of a guard expression must be guaranteed to
be free of side effects. Valid guard expressions are:

« theatomtr ue,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

5.7 Expressions

» other constants (terms and bound variables), all regarded asfalse,
« callstothe BIFs specified below,

e term comparisons,

e arithmetic expressions,

* boolean expressions, and

» short-circuit expressions (andal so/or el se).

is atom1l

is _binary/1

is bitstring/1

i s_bool ean/1

is float/1

is function/1

is function/2

is integer/1

is list/1

is_nunber/1

is_pid/1

is_port/1

is record/2

is record/3

is referencel/l

is tuple/l

Table 7.4: Type Test BIFs.

Notethat most typetest BIFshaveolder equivalents, without thei s__ prefix. These old BlFsareretained for backwards
compatibility only and should not be used in new code. They are aso only allowed at top level. For example, they
are not allowed in boolean expressions in guards.

abs(Nunmber)

bit_size(Bitstring)

byte size(Bitstring)

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

el ement (N, Tupl e)

float(Term

hd(Li st)

| engt h(Li st)

node()

node(Pi d| Ref | Port)

round(Nunber)

sel f ()

size(Tupl e| Bitstring)

t1(List)

trunc(Number)

tupl e_size(Tupl e)

Table 7.5: Other BIFs Allowed in Guard Expressions.

If an arithmetic expression, a boolean expression, a short-circuit expression, or acal to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) will be evaluated.

5.7.25 Operator Precedence

Operator precedence in falling priority:

#

Unary + - bnot not

/* div rem band and Left associative
+ - bor bxor bsl bsr or xor Left associative
++ -- Right associative
== /==<<>=>===/=

andalso

orelse

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

5.8 The Preprocessor

=1 Right associative

catch

Table 7.6: Operator Precedence.

When evaluating an expression, the operator with the highest priority isevaluated first. Operatorswith the samepriority
are evaluated according to their associativity. Example: The left associative arithmetic operators are evaluated |eft
toright:

6 +5* 4 - 3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

5.8 The Preprocessor

5.8.1 File Inclusion

A file can be included in the following way:

-include(File).
-include_lib(File).

Fi | e, astring, should point out afile. The contents of thisfile areincluded as-is, at the position of the directive.

Includefilesaretypically used for record and macro definitions that are shared by several modules. It isrecommended
that the file name extension . hr | be used for include files.

Fi | e may start with a path component $VAR, for some string VAR. If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If os: get env(VAR) returnsf al se,
$VARisleft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified fileis searched for in the current working directory, in the same directory as the modul e being
compiled, and in the directories given by thei ncl ude option, in that order. Seeer | c(1) and conpi | e(3) for
details.

Examples:

-include("ny_records. hrl").
-include("incdir/ny_records. hrl").
-include("/hone/ user/proj/m_records. hrl").
-include("$PRQJ_ROOT/ my_records. hrl").

i ncl ude_Ili b issimilartoi ncl ude, but should not point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application. Example:

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 The Preprocessor

-include_lib("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude is searched for thefilefil e. hrl .

5.8.2 Defining and Using Macros
A macro is defined the following way:

-define(Const, Replacenent).
-define(Func(Varl,..., VarN), Repl acenent).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an include file.
A macro is used the following way:

?Const
?Func(Argl, ..., Ar gN)

Macros are expanded during compilation. A simple macro ?Const will be replaced with Repl acenent . Example:

- defi ne(TI MEQUT, 200).
cal | (Request) ->
server:call (refserver, Request, ?TIMEQUT).

Thiswill be expanded to:

cal | (Request) ->
server:call (refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) will be replaced with Repl acenent , where al occurrences of a variable
Var from the macro definition are replaced with the corresponding argument Ar g. Example:

-define(MACROL(X, Y), {a, X b, Y}).
bé;’(X) ->

?MACROL(a, b),

?MACROL(X, 123)

Thiswill be expanded to:

bar (X) ->
{a, a, b, b},
{a, X, b, 123} .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

5.8 The Preprocessor

It isgood programming practice, but not mandatory, to ensure that amacro definition isavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the' P' option. conpil e: fil e(Fil e,
['P']).Thisproducesalisting of the parsed code after preprocessing and parse transforms, in thefileFi | e. P.

5.8.3 Predefined Macros
The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

Thefile name of the current module.
?LI1 NE.

The current line number.
?MACHI NE.

The machine name, ' BEAM .

5.8.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

A macro ?Func(Argl, ..., ArgN) witha(possibly empty) list of arguments results in an error message if there
is at least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A.
-define(C, mf).

the following will not work:

fo() ->
?F0. % No, an enpty |ist of arguments expected.

f1(A) ->

?F1(A, A). % No, exactly one argument expected.

On the other hand,
f() ->
2C() .

will expand to

Q0 ->

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 The Preprocessor

mf().

5.8.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr 0) .
Causes the macro to behave as if it had never been defined.
-i fdef (Macro).
Evaluate the following lines only if Macr o is defined.
-i f ndef (Macr o).
Evaluate the following lines only if Macr o is not defined.
- el se.
Only allowed after ani f def ori f ndef directive. If that condition was false, the linesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def ori f ndef directive.

Note:

The macro directives cannot be used inside functions.

Example:

- modul e(m) .

-i fdef (debug) .
-define(LOX X), io:format("{~p, ~p}: ~p~n", [?MODULE, ?LINE, X])).
-el se.

-define(LOE X), true).

-endif.

When trace output is desired, debug should be defined when the module mis compiled:

% erl c -Ddebug m erl
or

1> c(m {d, debug}).
{ok, n}

?LOE Ar g) will thenexpandtoacall toi o: f or mat / 2 and provide the user with some simple trace output.

5.8.6 Stringifying Macro Arguments

The construction ??Ar g, where Ar g is amacro argument, will be expanded to a string containing the tokens of the
argument. Thisissimilar to the #ar g stringifying constructionin C.

The feature was added in Erlang 5.0/0OTP RY7.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

5.9 Records

Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w-n", [??Call, Call])).

?TESTCALL(nyfunction(1,2)),
?TESTCALL(you: function(2,1)).

resultsin

io:format("Call ~s: ~w-n",["nyfunction (1, 2)",nyfunction(1,2)]),
io:format("Call ~s: ~w-n",["you : function (2, 1)",you:function(2,1)]).

That is, atrace output with both the function called and the resulting value.

5.9 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless specia actions are taken. Seeshel | (3) for details.

More record examples can be found in Programming Examples.

5.9.1 Defining Records

A record definition consists of the name of the record, followed by the field names of the record. Record and field
names must be atoms. Each field can be given an optional default value. If no default value is supplied, undef i ned
will be used.

-record(Nane, {Fieldl [= Val uel],
Fiel dN [= Val ueN}).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord isused in several modules, it is recommended that the record definition is placed in an include file.

5.9.2 Creating Records

Thefollowing expression creates anew Nane record where the value of each field Fi el dI isthe value of evaluating
the corresponding expression Expr | :

#Nanme{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

The fields may be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields will get their respective default value instead.

If several fields should be assigned the same value, the following construction can be used:

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 Records

#Nanme{ Fi el d1=Expr1, ..., Fi el dK=Expr K, _=ExprL}

Omitted fields will then get the value of evaluating Expr L instead of their default values. This feature was added
in Erlang 5.1/OTP R8 and is primarily intended to be used to create patterns for ETS and Mnesia match functions.
Example:

-record(person, {nanme, phone, address}).

| ookup(Nane, Tab) ->
et s: mat ch_obj ect (Tab, #person{name=Nanme, _='_'}).

5.9.3 Accessing Record Fields

Expr #Nane. Fi el d

Returns the value of the specified field. Expr should evaluate to a Narre record.
The following expression returns the position of the specified field in the tuple representation of the record:

#Nane. Fi el d

Example:

-record(person, {name, phone, address}).

| ookup(Narme, List) ->
i sts: keysearch(Nane, #person.name, List).

5.9.4 Updating Records

Expr #Nanme{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

Expr should evaluate to aNane record. Returns a copy of this record, with the value of each specified field Fi el dl
changed to the value of evaluating the corresponding expression Expr | . All other fields retain their old values.

5.9.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example for field initiations, must of course be valid guard expressions
aswell. Examples:

handl e(Msg, State) when Msg==#nsg{to=void, no=3} ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

5.9 Records

handl e(Msg, State) when State#state.runni ng==true ->
Thereisaso atypetest BIFi s_record(Term RecordTag).Example:

is_person(P) when is_record(P, person) ->
true;

is_person(_P) ->
fal se.

5.9.6 Records in Patterns
A pattern that will match a certain record is created the same way as arecord is created:
#Nanme{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

In this case, one or more of Expr 1...Expr K may be unbound variables.

5.9.7 Nested records

Beginning with R14 parentheses when accessing or updating nested records can be omitted. Assuming we have the
following record definitions:

-record(nrecO, {nanme = "nested0"}).
-record(nrecl, {name = "nestedl", nrecO=#nrec0{}}).
-record(nrec2, {name = "nested2", nrecl=#nrecl{}}).

N2 = #nrec2{},
Before R14 you would have needed to use parentheses as following:

"nested0" = ((N2#nrec2.nrecl)#nrecl. nrecO)#nrec0. name
NOn = ((N2#nrec2. nrecl)#nrecl. nrecO)#nrecO{nane = "nestedOa"}

Since R14 you can also write:

"nest ed0" = N2#nrec?2. nrecl#nrecl. nrecO#nrecO. nane,
NOn = N2#nrec2. nrecl#nrecl. nrecO#nrecO{name = "nestedOa"},

5.9.8 Internal Representation of Records

Record expressions are translated to tuple expressions during compilation. A record defined as

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Errors and Error Handling

-record(Nanme, {Fieldl,..., Fi el dN}) .

isinternally represented by the tuple

{Nane, Val uel, ..., Val ueN}

where each Val uel isthedefault valuefor Fi el dl .

To each module using records, a pseudo function is added during compilation to obtain information about records:

record_info(fields, Record) -> [Field]
record_i nfo(size, Record) -> Size

Si ze isthe size of the tuple representation, that is one more than the number of fields.

In addition, #Recor d. Nane returns the index in the tuple representation of Nane of the record Recor d. Nane
must be an atom.

5.10 Errors and Error Handling
5.10.1 Terminology

Errors can roughly be divided into four different types:

e Compile-time errors
e Logical errors

* Run-timeerrors

e Generated errors

A compile-time error, for example a syntax error, should not cause much trouble as it is caught by the compiler.

A logical error iswhen a program does not behave as intended, but does not crash. An example could be that nothing
happens when a button in a graphical user interfaceis clicked.

A run-time error iswhen a crash occurs. An example could be when an operator is applied to arguments of the wrong
type. The Erlang programming language has built-in features for handling of run-time errors.

A run-time error can also be emulated by calling er | ang: error (Reason) or erl ang: error (Reason,
Ar gs) (those appeared in Erlang 5.4/0TP-R10).

A run-time error is another name for an exception of classer r or .

A generated error is when the code itself callsexi t/ 1 or t hr ow/ 1. Note that emulated run-time errors are not
denoted as generated errors here.

Generated errors are exceptions of classesexi t andt hr ow.

When arun-time error or generated error occurs in Erlang, execution for the process which evaluated the erroneous
expression is stopped. This is referred to as a failure, that execution or evaluation fails, or that the process fails,
terminates or exits. Note that a process may terminate/exit for other reasons than afailure.

A process that terminates will emit an exit signal with an exit reason that says something about which error has
occurred. Normally, some information about the error will be printed to the terminal.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

5.10 Errors and Error Handling

5.10.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression (appeared in Erlang 5.4/0TP-R10B) can distinguish between the different classes, whereas the catch
expression can not. They are described in the Expressions chapter.

Class Origin
Run-time error for example 1+a, or the process called
error erlang: error/ 1, 2 (appeared in Erlang 5.4/0TP-
R10B)
exit Theprocesscaledexit/ 1
t hr ow Theprocesscaledt hr ow 1

Table 10.1: Exception Classes.

An exception consists of its class, an exit reason (the Exit Reason), and a stack trace (that aids in finding the code
location of the exception).

The stack trace can beretrieved using er | ang: get _st ackt race/ 0 (new in Erlang 5.4/OTP-R10B) from within
atry expression, and isreturned for exceptions of classer r or fromacat ch expression.

An exception of classer r or isaso known as arun-time error.

5.10.3 Handling of Run-Time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
ort ry, seethe Expressions chapter about Catch and Try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see the Processes chapter.

5.10.4 Exit Reasons

When a run-time error occurs, that is an exception of class er r or, the exit reason is atuple { Reason, St ack}.
Reason isaterm indicating the type of error:

Reason Type of error

badar g Bad argument. The argument is of wrong data type, or is

otherwise badly formed.
badarith Bad argument in an arithmetic expression.
{badmat ch, \} Evaluation of a match expression failed. The value V

did not match.

No matching function clause is found when evaluating a

function_cl ause .
- function call.

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Processes

{case_cl ause, V}

No matching branch is found when evaluating acase
expression. The value V did not match.

i f_clause

No true branch is found when evaluating an i f
expression.

{try_cl ause, V}

No matching branch is found when evaluating the of-
section of at ry expression. The value V did not match.

undef

The function cannot be found when evaluating a
function call.

{badf un, F}

There is something wrong with afun F.

{badarity, F}

A funisapplied to the wrong number of arguments. F
describes the fun and the arguments.

ti meout val ue

Thetimeout valueinar ecei ve. . af t er expression
is evaluated to something else than an integer or
infinity.

nopr oc

Trying to link to a non-existing process.

{nocatch, V}

Trying to evaluate at hr ow outsideacat ch. Visthe
thrown term.

systeml|limt

A system limit has been reached. See Efficiency Guide
for information about system limits.

Table 10.2: Exit Reasons.

St ack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{ Modul e, Nane, Ari ty} with the most recent function call first. The most recent function call tuple may in some

casesbe{ Modul e, Nane, [Arg] }.

5.11 Processes

5.11.1 Processes

Erlang is designed for massive concurrency. Erlang processes are light-weight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate and the scheduling overhead is low.

5.11.2 Process Creation
A processis created by calling spawn:

spawn(Modul e, Nane, Args) -> pid()
Modul e = Nane = aton()
Args = [Argl, ..., ArgN|
Argl = term)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

5.11 Processes

spawn creates a new process and returns the pid.

The new process will start executing in Modul e: Name(Argl, ..., ArgN) where the arguments is the elements
of the (possible empty) Ar gs argument list.

There exist anumber of other spawn BIFs, for example spawn/ 4 for spawning a process at another node.

5.11.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

Associates the name Nane, an atom, with the process

regi ster(Name, Pid) Pi d

Returns alist of names which have been registered

registered() usingr egi st er/ 2.

Returns the pid registered under Nane,

wher ei s(Narre) orundef i nedif the nameis not registered.

Table 11.1: Name Registration BIFs.

5.11.4 Process Termination
When a process terminates, it always terminates with an exit reason. The reason may be any term.

A processissaid to terminate normally, if the exit reasonistheatomnor mal . A processwith no more code to execute
terminates normally.

A process terminates with exit reason { Reason, St ack} when a run-time error occurs. See Error and Error
Handling.

A process can terminate itself by calling one of the BIFs exit (Reason), erl ang: error (Reason),
erl ang: error (Reason, Args),erlang: fault(Reason) orerl ang: faul t (Reason, Args).The
process then terminates with reason Reason for exi t/ 1 or { Reason, St ack} for the others.

A processmay a so beterminatedif it receivesan exit signal with another exit reasonthannor mal , seeError Handling
below.

5.11.5 Message Sending

Processes communicate by sending and receiving messages. Messages are sent by using the send operator ! and
received by calling receive.

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient, provided that
the recipient exists.

5.11.6 Links

Two processes can be linked to each other. A link between two processes Pi d1 and Pi d2 iscreated by Pi d1 calling
the BIF | i nk(Pi d2) (or vice versa). There also exists a number aspawn_I| i nk BIFs, which spawns and links
to a process in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk(Pi d) have
no effect.

A link can be removed by calling the BIF unl i nk(Pi d) .

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Processes

Links are used to monitor the behaviour of other processes, see Error Handling below.

5.11.7 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes will emit exit signals to
all linked processes, which may terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example restarting them
if they terminate abnormally.

Refer to OTP Design Principles for more information about OTP supervision trees, which uses this feature.

Emitting Exit Signals

When a process terminates, it will terminate with an exit reason as explained in Process Termination above. This exit
reason is emitted in an exit signal to all linked processes.

A processcan aso call thefunctionexi t (Pi d, Reason) . Thiswill resultin an exit signal with exit reason Reason
being emitted to Pi d, but does not affect the calling process.

Receiving Exit Signals

The default behaviour when a process receives an exit signal with an exit reason other than nor mal , isto terminate
and in turn emit exit signals with the same exit reason to its linked processes. An exit signal with reason nor nal
isignored.

A process can be set to trap exit signals by calling:

process_flag(trap_exit, true)

When aprocessistrapping exits, it will not terminate when an exit signal isreceived. Instead, the signal istransformed
into amessage {' EXI T' , FronPi d, Reason} which is put into the mailbox of the process just like a regular

message.
An exception to the above is if the exit reason iski | | , that isif exi t (Pi d, ki | I') has been caled. This will
unconditionally terminate the process, regardless of if it istrapping exit signals or not.

5.11.8 Monitors

An dternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by caling the BIF
erl ang: noni t or (process, Pi d2). Thefunction returns areference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:

{' DOMN , Ref, process, Pid2, Reason}

If Pi d2 does not exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

Monitors are unidirectional. Repeated calls to er| ang: noni t or (process, Pid) will create severa,
independent monitors and each one will send a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: denoni t or (Ref) .

It is possible to create monitors for processes with registered names, also at other nodes.

5.11.9 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

5.12 Distributed Erlang

put (Key, Val ue)
get (Key)

get ()

get _keys(Val ue)
er ase(Key)
erase()

5.12 Distributed Erlang

5.12.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, are local to each node. This meansthe node
must be specified as well when sending messages etc. using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How to implement an alternative carrier isdescribed
in ERTSUser's Guide.

5.12.2 Nodes

A node is an executing Erlang runtime system which has been given a name, using the command line flag - name
(long names) or - snane (short names).

The format of the node name is an atom name@ost where nane is the name given by the user and host isthe
full host name if long names are used, or the first part of the host name if short names are used. node() returnsthe
name of the node. Example:

% erl -nanme dil bert
(di | bert @ab. eri csson. se) 1> node() .
"di |l bert @ab. eri csson. se'

% erl -snane dil bert
(di | bert @ab) 1> node() .
di | bert @ab

Note:

A node with along node name cannot communicate with a node with a short node name.

5.12.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used, for
example if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node will
be made.

Connectionsare by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A will aso try to connect to node C. This feature can be turned off by using the command lineflag - connect _al |
fal se,seeerl (1).

If anode goes down, all connectionsto that node are removed. Calling er | ang: di sconnect _node(Node) will
force disconnection of anode.

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.12 Distributed Erlang

Thelist of (visible) nodes currently connected to is returned by nodes() .

5.12.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. Seeepnd(1) .

5.12.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example could be some kind of O&M functionality used to inspect the status of a system without disturbing it.
For this purpose, a hidden node may be used.

A hidden node is a node started with the command lineflag - hi dden. Connections between hidden nodes and other
nodesare not transitive, they must be set up explicitly. Also, hidden nodes does not show up inthelist of nodesreturned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node will not be added to the set of nodesthat gl obal iskeeping track of.

This feature was added in Erlang 5.0/0TP R7.

5.12.6 C Nodes

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. Refer to the documentation for Erl_Interface and Interoperability Tutorial for
more information about C nodes.

5.12.7 Security

Authentication determines which nodes are allowed to communicate with each other. In anetwork of different Erlang
nodes, it is built into the system at the lowest possible level. Each node has its own magic cookie, which is an Erlang
atom.

When a nodes tries to connect to another node, the magic cookies are compared. If they do not match, the connected
node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is assumed to
be nocooki e. The first action of the Erlang network authentication server (aut h) is then to read a file named
$HOMVE/ . er | ang. cooki e. If the file does not exist, it is created. The UNIX permissions mode of the file is set
to octal 400 (read-only by user) and its contents are a random string. An atom Cooki e is created from the contents
of the file and the cookie of the local nodeis set to thisusing er | ang: set _cooki e(node(), Cooki e). This
also makes the local node assume that all other nodes have the same cookie Cooki e.

Thus, groups of users with identical cookie files get Erlang nodes which can communicate freely and without
interference from the magic cookie system. Users who want run nodes on separate file systems must make certain that
their cookie files are identical on the different file systems.

For a node Nodel with magic cookie Cooki e to be able to connect to, or accept a connection from, another node
Node?2 with a different cookie Di f f Cooki e, the function er | ang: set _cooki e(Node2, Diff Cooki e)
must first be called at Node 1. Distributed systems with multiple user IDs can be handled in thisway.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, thereis always afully connected network. If there are nodes with different cookies, this method might
be inappropriate and the command lineflag - connect _al | f al se must be set, see erl(2).

The magic cookie of the local node isretrieved by calling er | ang: get _cooki e() .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

5.12 Distributed Erlang

5.12.8 Distribution BIFs

Some useful BIFs for distributed programming, seeer | ang(3) for more information:

erl ang: di sconnect _node(Node)

Forces the disconnection of a node.

erl ang: get _cooki e()

Returns the magic cookie of the current node.

is_alive()

Returnst r ue if the runtime system is anode and can
connect to other nodes, f al se otherwise.

noni t or _node(Node, true|false)

Monitor the status of Node. A message{ nodedown,
Node} isreceived if the connectionto it islost.

Returns the name of the current node. Allowed in

node() guards.

Returns the node where Ar g, a pid, reference, or port, is
node(Arg) located. %8P P

Returnsalist of all visible nodes this node is connected
nodes() to

Depending on Ar g, this function can return alist
nodes(Ar Q) not only of visible nodes, but aso hidden nodes and

previously known nodes, etc.

set _cooki e(Node, Cookie)

Sets the magic cookie used when connecting to Node.
If Node isthe current node, Cooki e will be used when
connecting to all new nodes.

spawn|[_| i nk| _opt] (Node, Fun)

Creates a process at aremote node.

spawn|[_| i nk| opt] (Node, Modul e,
Functi onNane, Args)

Creates a process at aremote node.

Table 12.1: Distribution BIFs.

5.12.9 Distribution Command Line Flags

Examples of command line flags used for distributed programming, seeer | (1) for moreinformation:

-connect _all false

Only explicit connection set-ups will be used.

- hi dden

Makes a node into a hidden node.

-nanme Name

Makes a runtime system into a node, using long node
names.

-set cooki e Cooki e

Sameascalinger | ang: set _cooki e(node(),
Cooki e) .

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Compilation and Code Loading

Makes a runtime system into a node, using short node
-snanme Name

names.
Table 12.2: Distribution Command Line Flags.
5.12.10 Distribution Modules
Examples of modules useful for distributed programming:
In Kerndl:
gl obal A global name registration facility.
gl obal _group Grouping nodes to global name registration groups.
net _adm Various Erlang net administration routines.
net _ker nel Erlang networking kernel.
Table 12.3: Kernel Modules Useful For Distribution.
In STDLIB:
sl ave Start and control of slave nodes.

Table 12.4: STDLIB Modules Useful For Distribution.

5.13 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system dependent. This chapter describes compilation
and code loading in Erlang/OTP with pointers to relevant parts of the documentation.

5.13.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate a new file which contains the object
code. The current abstract machine which runsthe object codeis called BEAM, therefore the object files get the suffix
. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the Kernel module conpi | e, seecompi | e(3).

conpi | e: fil e(Modul e)
conpi l e: fil e(Mdul e, Options)

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Modul e.
Thereisalsoamodulemak e which providesaset of functionssimilar tothe UNIX type Makefunctions, seerrake(3) .
The compiler can also be accessed from the OS prompt, seeer | (1) .

% erl -conpile Mdulel...MduleN

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

5.13 Compilation and Code Loading

% erl -nmake

Theer | ¢ program provides an even better way to compile modules from the shell, seeer | c¢(1) . It understands a
number of flags that can be used to define macros, add search paths for include files, and more.

%erlc <flags> Filel.erl...FileN erl

5.13.2 Code Loading

The object code must be loaded into the Erlang runtime system. Thisis handled by the code server, seecode(3) .

The code server loads code according to a code loading strategy which is either interactive (default) or embedded. In
interactive mode, code are searched for in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. Thisis described in System Principles.

5.13.3 Code Replacement
Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin a system: current and old. When amoduleisloaded into the system
for the first time, the code becomes ‘current’. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes 'current’.

Both old and current code is valid, and may be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code may still be evaluated because of processes lingering in the old code.

If athird instance of the modul e isloaded, the code server will remove (purge) the old code and any processeslingering
init will be terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

To change from old code to current code, a process must make a fully qualified function call. Example:

- modul e(m) .
-export([loop/0]).

loop() ->
receive
code_sw tch ->
m | oop();
Msg ->

I 0op()

end

To makethe process change code, send themessagecode_swi t ch toit. The processthen will makeafully qualified
cal tom | oop() and changeto current code. Note that m | oop/ 0 must be exported.

For code replacement of funs to work, the syntax f un Modul e: Funct i onNane/ Ari t y should be used.

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Ports and Port Drivers

5.13.4 Running a function when a module is loaded

Warning:

This section describes an experimental feature that was introduced in R13B03, and changed in a backwards-
incompatible way in R13B04. There may be more backward-incompatible changes in future releases.

The- on_I oad() directive namesafunction that should be run automatically when amodule aloaded. Itssyntax is:

-on_| oad(Nane/ 0) .

It is not necessary to export the function. It will be called in afreshly spawned process (which will be terminated as
soon asthe function returns). The function must return ok if the moduleisto be remained loaded and become callable,
or any other valueif the moduleisto be unloaded. Generating an exception will also cause the module to be unloaded.
If the return value is not an atom, awarning error report will be sent to the error logger.

A process that calls any function in amodule whose on_| oad function has not yet returned will be suspended until
theon_| oad function has returned.

In embedded mode, al modules will be loaded first and then will all on_load functions be called. The system will be
terminated unless al of the on_load functions return ok

Example:

-nmodul e(m) .
-on_| oad(l oad_my_ni fs/0).

load_ny_nifs() ->
NifPath = ..., oSet up the path to the NIF library.
Info = ..., %nitialize the Info term
erlang: | oad_nif(N fPath, Info).

If thecall toer | ang: | oad_ni f/ 2 fails, the module will be unloaded and there will be warning report sent to the
error loader.

5.14 Ports and Port Drivers

Examples of how to use ports and port drivers can be found in Interoperability Tutorial. The BIFs mentioned are as
usual documentediner | ang(3) .

5.14.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process which creates a port is said to be the port owner, or the connected process of the port. All
communication to and from the port should go via the port owner. If the port owner terminates, so will the port (and
the external program, if it iswritten correctly).

The external program resides in another OS process. By default, it should read from standard input (file descriptor 0)
and write to standard output (file descriptor 1). The externa program should terminate when the port is closed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

5.14 Ports and Port Drivers

5.14.2 Port Drivers

It is also possible to write adriver in C according to certain principles and dynamically link it to the Erlang runtime
system. The linked-in driver looks like a port from the Erlang programmer's point of view and is called a port driver.

Warning:

An erroneous port driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Port driversaredocumentediner | _dri ver (4),driver_entry(1) anderl _ddl I (3).

5.14.3 Port BIFs
To create a port:

Returns a port identifier Por t as the result of opening a
new Erlang port. Messages can be sent to and received
open_port (PortName, PortSettings from aport identifier, just like a pid. Port identifiers
can also be linked to or registered under a name using
i nk/ 1landr egi ster/ 2.

Table 14.1: Port Creation BIF.

Por t Name isusually atuple{ spawn, Comrand} , where the string Comrand isthe name of the external program.
The external program runs outside the Erlang workspace unless a port driver with the name Command is found. If
found, that driver is started.

Port Setti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N}
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvauesfor N are 1, 2 or 4. If binaries should be used instead of listsof bytes, theoptionbi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the messages from the port always go to the port owner).

Below, Dat a must be an I/O list. An /O list isabinary or a (possibly deep) list of binaries or integers in the range
0..255.

{Pi d, {conmand, Dat a}} Sends Dat ato the port.

Closes the port. Unless the port is already closed, the
{Pid, cl ose} port replieswith { Por t , cl osed} when all buffers
have been flushed and the port really closes.

Sets the port owner of Por t to NewPi d. Unless

the port is aready closed, the port replies

{Pi d, {connect, NewPi d} } with{ Por t , connect ed} to the old port owner. Note
that the old port owner is still linked to the port, but the
new port owner is not.

Table 14.2: Messages Sent To a Port.

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Ports and Port Drivers

{Port, {data, Dat a} }

Dat ais received from the external program.

{Port, cl osed}

ReplytoPort | {Pid, cl ose}.

{Port, connect ed}

ReplytoPort ! {Pid, {connect, NewPi d} }

{"EXIT", Port, Reason}

If the port has terminated for some reason.

Table 14.3: Messages Received From a Port.

Instead of sending and receiving messages, there are also a number of BIFs that can be used. These can be called by

any process, not only the port owner.

port _conmand(Port, Dat a)

Sends Dat ato the port.

port_cl ose(Port)

Closes the port.

port _connect (Port, NewPi d)

Sets the port owner of Por t to NewPi d. The old port
owner Pi dstays linked to the port and have to call
unl i nk(Port) if thisisnot desired.

erlang: port_info(Port,Iten)

Returnsinformation as specified by | t em

erl ang: ports()

Returns alist of all ports on the current node.

Table 14.4: Port BIFs.

There are some additional BIFsthat only apply to port drivers: port _control /3 ander | ang: port _cal |/ 3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

6.1 Records

6 Programming Examples

This chapter contains examples on using records, funs, list comprehensions and the bit syntax.

6.1 Records

6.1.1 Records vs Tuples

The main advantage of using records instead of tuplesis that fields in arecord are accessed by name, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that we want to represent a person with
thetuple{ Nane, Address, Phone}.

We must remember that the Nane field isthefirst element of thetuple, the Addr ess field isthe second element, and
so on, in order to write functions which manipulate this data. For example, to extract data from a variable P which
contains such atuple we might write the following code and then use pattern matching to extract the relevant fields.

Name = el enent (1, P),
Address = elenent(2, P),

Code like this is difficult to read and understand and errors occur if we get the numbering of the elements in the
tuple wrong. If we change the data representation by re-ordering the fields, or by adding or removing afield, then all
references to the person tuple, wherever they occur, must be checked and possibly modified.

Records allow us to refer to the fields by name and not position. We use arecord instead of atuple to store the data.
If we write arecord definition of the type shown below, we can then refer to the fields of the record by name.

-record(person, {nanme, phone, address}).

For example, if P is now avariable whose value is aper son record, we can code as follows in order to access the
name and address fields of the records.

Name = P#person. nane,
Addr ess = P#per son. addr ess,

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Records

6.1.2 Defining a Record

This definition of a person will be used in many of the exampleswhich follow. It contains three fields, nane, phone
and addr ess. Thedefault valuesfor nane and phone is"" and [], respectively. The default value for addr ess is
the atom undef i ned, since no default valueis supplied for thisfield:

-record(person, {nane = "", phone = [], address}).

We have to define the record in the shell in order to be able use the record syntax in the examples:

> rd(person, {name = "", phone =[], address})
per son

Thisis due to the fact that record definitions are available at compile time only, not at runtime. See shel | (3) for
details on records in the shell.
6.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0, 8, 2, 3,4,3,1,2], name="Robert"}.
#per son{nane = "Robert", phone = [0, 8, 2, 3,4, 3,1, 2], address = undefi ned}
Sincethe addr ess field was omitted, its default value is used.

There is a new feature introduced in Erlang 5.1/JOTP R8B, with which you can set a value to al fields in a record,
overriding the defaults in the record specification. The special field _, means"all fields not explicitly specified".

> #person{name = "Jakob", _ ="'_'}.
#person{name = "Jakob", phone = ' _', 6 address = ' _'}

It is primarily intended to be used in et s: mat ch/ 2 and rmesi a: mat ch_obj ect / 3, to set record fields to the
atom' ' . (Thisisawildcardinet s: mat ch/ 2.)

6.1.4 Accessing a Record Field

> P = #person{nane = "Joe", phone = [0,8,2,3,4,3,1,2]}.
#person{name = "Joe", phone = [0, 8, 2, 3,4, 3,1, 2], address = undefi ned}
> P#per son. nane.

"Joe"

6.1.5 Updating a Record

> P1 = #person{nanme="Joe", phone=[1, 2, 3], address="A street"}.
#person{name = "Joe", phone = [1,2,3],address = "A street"}
> P2 = Pl#person{nanme="Robert"}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

6.1 Records

#person{name = "Robert", phone = [1, 2, 3],address = "A street"}

6.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type per son.

foo(P) when is_record(P, person) -> a_person;
foo(_) -> not_a_person.

6.1.7 Pattern Matching

Matching can be used in combination with records as shown in the following example:

> P3 = #person{nanme="Joe", phone=[0,0,7], address="A street"}.

#per son{nane = "Joe", phone = [0,0,7],address = "A street"}
> #person{name = Nane} = P3, Nane.
"Joe"

Thefollowing function takesalist of per son records and searchesfor the phone number of aperson with a particular
name:

find_phone([#per son{ name=Nane, phone=Phone} | _], Nane) ->
{found, Phone};

find_phone([_| T], Nane) ->
find_phone(T, Nane);

find_phone([], Nanme) ->
not _f ound.

Thefields referred to in the pattern can be given in any order.

6.1.8 Nested Records

The value of afield in arecord might be an instance of arecord. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(nane, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).

deno