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1 Introduction

1.1 The objectives of Normaliz

The program Normaliz, version 2.10, is a tool for computing the Hilbert bases and enumerative
data of rational cones. A rational cone can be given by

(1) asystem of generators ¢ in a lattice Z";
(2) constraints: a homogeneous linear system of equations and inequalities;
(3) generators and relations.

The Hilbert basis of a rational pointed cone C in R" is defined with respect to a lattice L C Z':
it is the unique minimal system of generators of the monoid C M L. The standard choice for L
is Z" itself, but for Normaliz this choice can be modified in two ways:

(1) L can be chosen to be the sublattice of Z" generated by ¢
(2) L can be chosen to be the lattice of solutions of a homogeneous system of congruences
if the cone is specified by equations and inequalities.

In particular, Normaliz solves combined systems of homogeneous diophantine linear equa-
tions, inequalities and congruences. (An extension to nonhomogeneous systems is envisaged.)
Conversely, Normaliz computes a system of constraints defining the cone and the lattice for
which the Hilbert basis has been computed.

Normaliz has special input types for lattice polytopes (represented by their vertices) and mono-
mial ideals (represented by the exponent vectors of their generators). Via the specification of
a grading, one can easily apply Normaliz also to rational polytopes.

The enumerative data computed by Normaliz depend on a grading of the monoid under con-
sideration (see Section : if asked to do so, Normaliz computes the Hilbert series and the
Hilbert quasipolynomial of the monoid (or its associated algebra). In polytopal terminology:
Normaliz computes Ehrhart series and quasipolynomials of rational polytopes. Via its off-
spring NmzIntegrate, Normaliz computes generalized Ehrhart series and Lebesgue integrals of
polynomials over rational polytopes.

The computations can be restricted, for example to the support hyperplanes of the cone or the
lattice points of a rational polytope.

For the mathematical background we refer the reader to [2] and [4]. The terminology follows
[2]]. For algorithms of Normaliz see [15]], [3], [6] and [7].

The input syntax of Normaliz has always been kept backward compatible so that input files for
older versions can still be used.

1.2 Access from other systems

Normaliz can be accessed from the following systems:

e SINGULAR via the library normaliz.lib,
e MACAULAY 2 via the package Normaliz.m2,



e COCOA via an external library,
e POLYMAKE (thanks to the POLYMAKE team),
e SAGE via an optional package by A. Novoseltsev.

The Singular and Macaulay 2 interfaces are contained in the Normaliz distribution.

Furthermore, Normaliz is used by the B. Burton’s system REGINA.

1.3 Major changes relative to version 2.8

(1) Nmazintegrate and access to it from Normaliz have been added.

(2) In connection with this extension an output option for Stanley decompositions has been
added.

(3) Simplification of the input of sign inequalities for variables.

(4) The computation of volumes has been improved.

(5) Further improvement of parallelization.

There are no major changes from 2.9 to 2.10.

1.4 Future extensions

(1) Inhomogeneous systems of equations, inequalities and congruences,
(2) aprogramming interface (using the already existing library),

(3) exploitation of symmetries,

(4) access from further systems.

2 Getting started

Download

e the zip file with the Normaliz source, documentation, examples and further platform
independent components, and
e zip file made with the executable for your system

from the Normaliz website

http://www.math.uos.de/normaliz

and unzip both in the same directory of your choice. In it, a directory Normaliz2.10 (called
Normaliz directory in the following) is created with several subdirectories. (Some versions of
the Windows executables may need the installation of a runtime library; see website.)

In the Normaliz directory open jNormaliz by clicking jNormaliz.jar in the appropriate way.
(We assume that Java is installed on your machine.) In the jNormaliz file dialogue choose one
of the input files in the subdirectory example, say small.in, and press Run. In the console
window you can watch Normaliz at work. Finally inspect the output window for the results.


http://www.math.uos.de/normaliz

jNormaliz 1.2 - 3x3magic.in
File Edit Normaliz Help

@ = Computation mode Precision
L=

PR Hilbert basis series 3| | 64 bits precision (normaliz)

[ 3x3magic.in = 3x3magic.out ~ Console = Options |

/Normaliz/example

Elapsed time: - Physical mem. (free/total) 2.9G [ 4.0G

Figure 1: jNormaliz

The menus and dialogues of jNormaliz are self explanatory, but you can also consult the doc-
umentation [[1]] via the help menu.

If the executables prepared cannot be run on your system, then you can compile Normaliz
yourself (see Section [TT).

Moreover, one can, and often will, run Normaliz from the command line. This is explained in
Section 4l

If 64 bit integer precision is not sufficient, then one can switch jNormaliz to infinite precision
(or use the option -B from the command line). Then Normaliz has no restrictions on the integer
precision. See Section f.4] (The integer precision has nothing to do with the address width
(32 bit or 64 bit) of your operating system.)

3 The input file

The input file <projectname>.in consists of one or several matrices. Each matrix is built as
follows:

(1) The first line contains the number of rows m.

(2) The second contains the number of columns #.

(3) The next m lines of n integers each contain the rows.

(4) The last line contains a single number or word specifying the type of input the matrix

presents.

At the moment there are three major types of input matrices, namely generators, constraints,
and relations. An additional type is grading.

For each input type we specify two lattices: the ambient lattice A to which the input data refer
and the essential lattice IE C A with respect to which all data are computed.



In this section we assume that Normaliz is run in a computation mode in which the Hilbert
basis is actually computed. (See Section {| for computation modes.)

3.1 Generators

The generator types are 0, 1, 2 and 3. If a matrix of one of these types is in the input file, then
it must be the only matrix in the file, unless a grading has been added.

3.1.1 Type 0, integral_closure

The rows of an m x n matrix of type 0 represent m vectors in the ambient lattice A = Z". The
essential lattice [E is the smallest direct summand of Z” that contains the vectors in the matrix.

The vectors are considered as a system of generators ¢ of a cone C, and Normaliz computes
the Hilbert basis of C with respect to E (or, equivalently, Z").

The nomenclature integral_closure is explained by the fact that the Hilbert basis generates
the integral closure of the monoid Z, ¥ in Z".

A simple example:

Input Hilbert basis
3 10

2 01

20

11

02

integral_closure

In this example, the three input vectors clearly generate the positive orthant R%r in R?, and the
two unit vectors clearly are the Hilbert basis of R%r NZ?.

Example input files: rproj2.in, small.in.

3.1.2 Type 1, normalization

The matrix is interpreted as in type 0, however [E is chosen as the sublattice of Z" generated
by ¥.

The choice of the name normalization indicates that Normaliz computes the normalization of
the monoid Z¥. (The computation of such normalizations was the original goal of Normaliz,
hence the name.)

We choose the same input vectors as above, but change the type to normalization:

Input Hilbert basis
3 20

2 11

20 02

11



02
normalization

The cone has not changed, but the lattice has: E is now the sublattice of Z? of all (z1,z2) with
71 +22 =0 mod 2.

Example input files: rafa2416.in, A443.1n,

3.1.3 Type 2, polytope

The rows of the matrix are interpreted as integral points of a lattice polytope in R", which is
their convex hull.

The cone C is the cone over the polytope, i.e. the cone with apex 0 in R"*! generated by the
vectors (x, 1) where x represents a row of the input matrix. We want to compute the Ehrhart
monoid CNZ"+1,

The lattice A is Z"*!, and E is the smallest direct summand of A containing the generators of
C.

Type 2 is only a variant of type 0. One obtains the same results as in type 0 with the extended
vectors (x, 1) as input.

Note: In previous versions, the text in the output file was adapted to the polytopal situation.
Since 2.8 polytope is only an input variant of type 0.

Example input files: polytop.in, FortuneCookie.in, 106.1in.

3.1.4 Rational polytopes

Normaliz has no special input type for rational polytopes. In order to process them one uses
type O together with a grading. Suppose the polytope is given by vertices

vi=(Fily--sTin), i=1,...,m, rjcQ.
Then we write v; with a common denominator:
Pil Pin
V,':(—l,...,—l), p,'j,inZ,q,’>0.
qi qi
The generator matrix is given by the rows
vl':(pl'17"'7pl'r17Ql')7 l:177m

We must add a grading since Normaliz cannot recognize it without help (unless all the g; are
equal). The grading vector has coordinates (0, ...,0,1). Seebelow for general information
on gradings.

Let us look at a concrete example (contained in rational.in), the triangle P with vertices

(1/2,1/2), (—1/3,—1/3), (1/4,—1/2).

In order to apply Normaliz to it one uses the following input:



3

3

112

-1 -13

1-24
integral_closure
1

3

0601

grading

The output will be discussed in[6.1.3]

3.1.5 Type 3, rees_algebra

In this type the input vectors are considered as exponent vectors of the generators of a mono-
mial ideal I in the polynomial ring K[Xj,...,X,]. Normaliz computes the normalization of
the Rees algebra of the ideal I (see [4] for the notion of Rees algebra.) This is a monomial
subalgebra of the extended polynomial ring K[Xj,...,X,, T| with an auxiliary variable 7. Nor-
maliz computes the exponent vectors in Z*! of the system of generators. For an example, see
Section [6]

In type 3 one has A = E = 7"+,

Example input file: rees.in.

3.1.6 Preparation of the generators

After the coordinate transformation to the lattice I£, Normaliz divides each generator by the
greatest common divisor of its components. For example, the extreme rays listed will always
be such E-primitive vectors (re-transformed to A where they may not be primitive).

If a grading is present, the generators will be sorted by degree in ascending order. Those of the
same degree will remain sorted as in the input file (or the result of a previous computation).

3.2 Constraints

Inequalities, equations, and congruences defining the cone and the lattice are called con-
straints. Matrices representing them are of types 4, 5 and 6. All three types can be present in
the input file, and there can be several matrices of each type. The order does not matter. Ma-
trices of the same type will be concatenated. The numbers of columns must of course match:
for the ambient lattice Z" the matrices of types 4 and 5 must have n columns, and those of
type 6 must have n+ 1 columns.

If there is no matrix of type 4, then it is assumed that the user wants to compute the nonnegative
solutions of the system represented by the matrices of type 5 and/or 6. The input file is
therefore compatible with the types 4 and 5 of previous versions of Normaliz.



3.2.1 Type 4, hyperplanes
Arow (&1,...,&,) of the input matrix of type 4 represents an inequality

§1x1+"'+€nxn20

for the vectors (x,...,x,) of R™.
Example:

Input Hilbert basis

2 0 -1

2 1 1

10

1-1

hyperplanes

Normaliz has computed the Hilbert basis of the cone defined by the inequalities x; > 0 and
x1 —xp > 0 with respect to the lattice 72

Example input file: Condorcet.in

3.2.2 Sign inequalities

There is a shortcut for the input of inequalities x; > 0 or x; < 0. The input matrix of type signs
has format 1 x n and the entries of its single row are in {—1,0, 1}:

—1 stands for x; <0,
1 stands for x; > 0,
0 indicates that the sign of x; is not restricted.

Example:

1

4
1-101
signs

In this example we require that x;,x4 > 0 and x; < 0.

Example input file: Condorcet.in

3.2.3 Polytopes by inequalities

Normaliz has no special input type for polytopes defined by inequalities since they can easily
be specified via type 4. Suppose the polytope is given by inequalities

O X1+ -+ QipXp > Bi, i=1,....m, Otij,ﬁi e 7.
Then we homogenize the inequalities in the form

O X1+ -+ + QlinXy — Bixyi1 >0,

10



and use type 4 for them in connection with the grading vector (0,...,0,1).
The file poly_ineq.in contains

3

3

2 73

-8 23
1-10
hyperplanes
1

3

001
grading

It reproduces the triangle that we have discussed in[3.1.4]

3.2.4 Type 5, equations

Arow (&p,...,&,) of the input matrix of type 5 represents an equation

51x1+"'+énxn:()

for the vectors (x,...,x,) of R™.
Example:
Input Hilbert basis
1 201
3 021
11-2 111
equations

If the input file contains no further matrices, Normaliz has computed the Hilbert basis of the
subcone of Ri defined by the equation x| +x; —2x3 = 0.

Example input files: 4x4.1in, 5x5.1in.

3.2.5 Type 6, congruences

We consider the rows of a matrix of type 6 to have length n+ 1. Each row (&j,...,&,,¢)
represents a congruence
Eizi+-+&2,=0 modc

for the elements (z1,...,2,) € Z".

Example:
Input Hilbert basis
1 20
3 11
112 02
congruences

11



If no other matrix is in the input file, then Normaliz computes the Hilbert basis of the positive
orthant intersected with the lattice of all integral vectors (z1,z2) such that z; +z, =0 mod 2
and the result is the same as in[3.1.2] above.

Example input file: 3x3magiceven.in.

3.2.6 The constraints combined

Let L be the sublattice of Z" that consists of the solutions of the system of congruences defined
by the input matrix of type congruences. (L = Z" if there is no such matrix). Moreover let A
be the matrix of type hyperplanes (combined with the matrix representing the signs) and B
be the matrix of type equations. Then the cone C is given by

C={xeR":Ax>0, Bx=0}.

and the Hilbert basis of CN L is computed.
The ambient lattice A is Z", and the essential lattice is E = LNRC.

If there is no matrix of type equations, then the system of equations is empty, satisfied by all
vectors of R".

Note that there is always a matrix of type hyperplanes, either explicitly in the input, or im-
plicitly, namely the n X n unit matrix, if there is no matrix of type hyperplanes or signs in
the input file (but one of type equations or congruences).

See Section [6.2.3]for an example combining types equations and congruences.

Example input file: 3x3magiceven.in.

3.3 Relations

Relations are another type of constraints. They do not select a sublattice of Z" or a subcone of
R", but define a monoid as a quotient of Z’} modulo a system of congruences (in the semigroup
sense!).

Let U be a subgroup of Z". Then the natural image M of Z" C Z" in the abelian group
G =Z"/U is a submonoid of G. In general, G is not torsionfree, and therefore M may not be
an affine monoid. However the image N of M in the lattice L = G/torsion is an affine monoid.
Normaliz chooses an embedding L < Z", r = n — rank U, such that N becomes a submonoid
of Z’ . In general there is no canonical choice for such an embedding, but one can always find
one, provided N has no invertible element except 0. The ambient lattice is then A = 7", and
the essential lattice is L, realized as a sublattice of A.

The typical starting point is an ideal J C K[X,...,X,] generated by binomials
n b bn
Xfl"‘Xr? — X/ X

The image of K[Xj,...,X,] in the residue class ring of the Laurent polynomial ring S =
K [Xlil,...,Xfl] modulo the ideal JS is exactly the monoid algebra K[M] of the monoid M

12



above if we let U be the subgroup of Z" generated by the differences
(al,...,an) — (bl,...,bn).

Ideals of type JS are called lattice ideals if they are prime. Since Normaliz automatically
passes to G/torsion, it replaces JS by the smallest lattice ideal containing it.

3.3.1 Type 10, lattice_ideal

The rows of the input matrix of type 10 are interpreted as generators of the subgroup U, and
Normaliz performs the computation as just explained.

As an example we consider the binomials X1 X3 — X22, X1 X4 —XoX5:

Input Hilbert basis
2 30
4 21
1-2 10 12
1-1-11 03

lattice_ideal

In this example Z* /U is torsionfree, but we can replace each of the vectors in the input matrix
by a nonzero integral multiple without changing the result.

Type 10 cannot be combined with any other input type (except grading)—such a combination
would not make sense.

Example input file: lattice_ideal.in.

3.4 Gradings

Normaliz can compute the Hilbert series and the Hilbert (quasi)polynomial of a graded monoid.
A grading of a monoid M is simply a homomorphism deg : M — Z& where Z& contains the
degrees. The Hilbert series of M with respect to the grading is the formal Laurent series

H(T)= Z #{x EM:degx:d}Tldl ...ngg7

dezs
provided all sets {x € M : degx = d} are finite.

At the moment, Normaliz can only handle the case g = 1. A Z-valued grading can be specified
in two ways:

(1) explicitly by including a grading in the input, or

(2) implicitly. In this case Normaliz checks whether the extreme integral generators of the
monoid lie in an (affine) hyperplane A. If so, then the (unique) primitive Z-linear form
A that affords an equation A (x) = b for A is used as the grading.

The basic fact about H(¢) in the Z-graded case is that it is the Laurent expansion of a rational
function at the origin:
R(1)

H(t) :mv

R(1) € Z[t], (1

13



where r is the rank of M and e is the least common multiple of the degrees of the extreme
integral generators of the cone.

Usually one can find denominators for H(¢) of much lower degree than in equation (], and
Normaliz tries to give a more economical presentations of H(z) as a quotient of two polynomi-
als. One should note that it is not clear what the most natural presentation of H(¢) is in general
(when e > 1). We discuss this problem in [[6, Section 4] and in[6.1.3] The examples in Section
[6] especially [6.1.3]and [6.2.3] may serve as an illustration.

A rational cone C and a grading together define the rational polytope P = CMNA;| where A} =
{x:degx = 1}. In this sense the Hilbert series is nothing but the Ehrhart series of P.

Note: In previous versions we used height as a synonym for degree.

A grading is explicitly specified by an 1 x n matrix for cones embedded in R", and its type is
fixed by the attribute grading, for example

1

2

32
grading

We have not assigned a numerical type to matrices (effectively, vectors) specifying the grading.
Normaliz checks whether all generators of the monoid have positive degree.

Before Normaliz can apply the degree, it must be restricted to the effective lattice E. Even if
the entries of the grading vector are coprime, it often happens that all degrees of vectors in E
are divisible by a greatest common divisor d > 1. Then d is extracted from the degrees, and it
will appear as denominator in the output file.

Special rules apply to some input types that we explain in the following.

3.4.1 polytope

Cones defined by lattice polytopes always have an implicit grading in which the lattice points
in the polytope have degree 1 (roughly speaking). Therefore it is not possible to use an explicit
grading together with this input type.

If it should be necessary to apply a different grading, then one converts the input of type
polytope to integral_closure by appending 1 to each row of the input matrix and adds the
grading to be used.

3.4.2 rees_algebra

Suppose that the rows of the input matrix specify vectors of length n. Then these are embedded
into R"*!, and therefore the grading must have 7+ 1 components. Example:

14



202

111
rees_algebra
1

4

111 -1
grading

Note that the Rees algebra has an implicit grading if and only if all the monomials have the
same total degree, say g. Then the grading vector chosen automatically is (1,...,1,—(g—1)).

3.4.3 lattice_ideal

In this case the unit vectors correspond to generators of the monoid. Therefore the degrees
assigned to them must be positive. Moreover, the vectors in the input represent binomial
relations, and these must be homogeneous. In other words, both monomials in a binomial
must have the same degree. This amounts to the condition that the input vectors have degree
0. Normaliz checks this condition. Example:

1

4

11-1-1
lattice_ideal
1

4

1212
grading

3.5 Pointedness

For Hilbert basis computations and triangulations Normaliz requires the cone to be pointed
(x,—x € C = x =0). Whenever the condition of pointedness is violated at a step where it
is crucial, Normaliz will stop computations.

Pointedness is checked by testing whether the dual cone of C is full dimensional, and if not,
then the constructor of the cone complains as follows:

Full Cone error: Matrix with rank = number of columns needed in
the constructor of the object Full_Cone. Probable reason: Cone
not full dimensional(<=> dual cone not pointed)!

3.6 The zero cone

The zero cone with an empty Hilbert basis is a legitimate object for Normaliz. Nevertheless a
warning message is issued if the zero cone is encountered.

15



3.7 Additional input file for NmziIntegrate

NmzIntegrate, whether called by Normaliz or from the command line, needs an input file
<projectname>.pnm that contains the polynomial for which the generalized Ehrhart series or
the integral is to be computed. See [8].

4 Running Normaliz

The simplest way to call Normaliz from the command line is
normaliz <projectname>
for example
normaliz rafa2416

The project name is rafa2416. Normaliz reads the input file rafa2416. in (hopefully existing),
computes everything it can compute, and writes the output to rafa2416.out.

The full syntax for calling Normaliz from the command line is
normaliz [-stvnhpNldcBefaT] [-x=<T>] [<projectname>]

where the options and <projectname> are optional. (We assume that the executable normaliz
or normaliz.exe is in the search path. Otherwise you have to prefix it with a suitable relative
or absolute path.) If no <projectname> is given, the program will ask you for it or display a
help screen.

The option -x differs from the other ones: <T> represents a positive number assigned to -x;
see Section 4.3

The help screen can also be displayed by normaliz -?.
Normaliz will look for <projectname>. in as input file.

For example, if you input the command
normaliz -c -p -a -T rafa241l6 or normaliz -cpaT rafa2416

then the program will take the file rafa2416.1in as input, control data will be displayed on
your terminal, the support hyperplanes, the triangulation, the multiplicity, the Hilbert series
and the Hilbert (quasi)polynomial will be computed and all the possible output files will be
produced.

If you inadvertently typed rafa2416.in as the project name, then Normaliz will first look for
rafa2416.in.1in as the input file. If this file doesn’t exist, rafa2416.1in will be loaded.

In the following we explain the various options of Normaliz. The full text names given appear
in the help screen as well as in the menus of jNormaliz which allows you to choose options
interactively.

16



The default computation mode is -h. All options that can be activated are switched off
by default.

Adding a pure output option, namely -f or -a, or an option controlling execution does not
change the computation mode.

Note: (1) In 2.7 and earlier versions the default computation mode was -n. The change to
-h reflects that the extra time for the computation of the Hilbert series can be neglected now
(actually, already in 2.7). The choice of -h ensures that Normaliz computes all the information
accessible to it.

(2) In version 2.8 and earlier, options were evaluated from left to right. Therefore the last of
mutually exclusive options was used. Now options can be accumulated.

4.1 Computation modes
4.1.1 Support hyperplanes and extreme rays

The least that Normaliz can do is

-s support hyperplanes: only the support hyperplanes of the cone under consideration
and the extreme rays are computed.

4.1.2 Modes with partial triangulation

For the computation of Hilbert bases and/or degree 1 elements it is enough to use a partial
triangulation (see [3]]). The following two computation modes take advantage of this fact:

-N Hilbert basis: includes -s and computes the Hilbert basis.
-1 degree 1 elements: includes -s, only degree 1 elements are computed. (This is the
fastest mode for computing the lattice points in a polytope.)

4.1.3 Modes with full triangulation

The following modes form an ascending chain. All of them compute a full triangulation:

-t triangulation: in addition to the support hyperplanes the triangulation is computed,
but not evaluated (it can be written to the output). Why -t is nevertheless useful will be
explained in Section 9]

-v volume: includes -t. Now Normaliz evaluates the triangulation and computes the mul-
tiplicity (or normalized volume) if a grading is available.

-n Hilbert basis volume: includes -v and Normaliz computes the Hilbert basis.

-h Hilbert basis series: includes -n. If a grading is given, Normaliz computes the
Hilbert series and the Hilbert (quasi)polynomial. This computation mode yields the
maximum information Normaliz can produce.

If only the Hilbert series is to be computed, then one uses
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-g Hilbert series or
-p Hilbert series degree 1 elements.This mode includes -1.

Both -p and -q include -v.

Note: once the Hilbert series is computed, the computation of the degree 1 elements does not
cost much extra time. It may however cause a substantial amount of output.

4.1.4 The dual algorithm

If a cone is defined by constraints, it is often (but not always) faster to use a Hilbert basis
algorithm originally due to Pottier [10] that we call the dual algorithm, in contrast to the primal
(triangulation based) algorithm of Normaliz. (See [5]] for our version of the dual algorithm.)
The dual algorithm is invoked by

-d dual

By itself, the dual algorithm computes only Hilbert bases (and degree 1 elements if a grading
is given), but it can be combined with the other options. For example, -dq starts a Hilbert basis
computation with the dual algorithm, followed by a computation of the Hilbert series.

The dual algorithm can be used with all input types. See Section [§] for a comparison of
performance on various examples.

4.1.5 What option do | use ...

The following table gives an overview of the computation options introduced so far (except
-1).

No enumera- Hilbert
tive data multiplicity | series

No vectors
or points -s -V -q
degree 1
elements -1 -vl -p
Hilbert -d default,
basis -N -n -h

As mentioned above, combinations with -d are possible and may be useful.

Note: at present, it is not possible to restrict the dual algorithm to the computation of degree 1
elements.

4.1.6 Modes calling NmzIntegrate

Nmzlntegrate is an independent executable, but it can be called by Normaliz. The options are
exactly those that would be used for a command line call of NmzIntegrate:
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-E Generalized Ehrhart series: computation of generalized Ehrhart series,

-L Leading coefficient: computation of leading coefficient of generalized Ehrhart quasipoly-

nomial,
-I Integral: computation of Lebesgue integral.

See [8] for the details of NmzlIntegrate. The options -c and -x=<T> are forwarded to NmzIn-
tegrate.

The option -E contains -y, and -I and -L both contain -T. See Section[4.2|for -T and -y.

4.2 Control of output files

In the default setting Normaliz writes only the output file <projectname>.out. The amount of
output files can be increased as follows:
-f Normaliz writes the additional output files with suffixes gen, cst, and inv, provided the
data of these files have been computed.
-a includes -f, Normaliz writes all available output files except the triangulation or the
Stanley decomposition.
-T Normaliz writes the triangulation and the file with suffix inv.
-y Normaliz writes the Stanley decomposition and the file with suffix inv.

Note that -T and -y do not only write the data of the triangulation or Stanley decomposition to
the output, but also force their computation, even if there is no other reason to compute them.

In order to see all available output files one uses -aTy.

The triangulation and the Stanley decomposition are treated separately since they can become
very large and may exhaust memory if they must be stored for output.

For the list of potential output files and their interpretation see Section

4.3 Control of execution

The options that control the execution are:

-c activates the verbose (“control”) behavior of Normaliz in which Normaliz writes addi-
tional information about its current activities to the standard output.
-e activates the overflow error check of Normaliz. Ignored if used with -B.
-B Switches Normaliz to infinite precision.
-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is set by the operating system. If you
want to run Normaliz in a strictly serial mode, choose -x=1.

The number of threads can also be controlled by the environment variable OMP_NUM_THREADS.
See Section [8] for further discussion.
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4.4 Numerical limitations

Even in low dimensions, the range of 64 bit integers may not be sufficient for the computations
of Normaliz. Therefore normaliz can be switched to infinite precision by the option -B.

Computations with -B typically run about 5 times slower than those without it. In examples
that look critical, it may be useful first to try normaliz without -B, but with the error check
option activated. This costs time, too, but hardly more than 50% extra.

The user should run the example critical64.in in the subdirectory examples with normaliz
-e in order to see the failure of 64 bit arithmetic. (Running it with -B takes a while and requires
much memory.)

4.5 Obsolete options

The options -i and -m of version 2.2 have become obsolete. They will be ignored if present.

The options -SVHP of versions 2.5 and 2.7 are now synonymous with-svhp and can still be
used.

5 The output file

The data you will find in the output file depend on the input type and on the computation
mode. The output file starts with an “abstract” that collects various numerical and qualitative
data, for example the number of elements in the Hilbert basis. The lists of vectors, equations
etc. follow the abstract.

The output file <projectname>.out will contain the following data as far as computed:

only for type 10: the original system of generators (see below);

the Hilbert basis H computed;

the extreme rays of the cone C generated by H;

the rank of the lattice E;

the index of the lattice generated by the original input vectors in [E;

the support hyperplanes of C;

a system of equations defining the vector space generated by C;

a system of congruences defining [ as a sublattice of A (together with the equations);
the number of simplicial cones in the triangulation and the sum of the absolute values
of their determinants.

In the presence of a grading the following extra data may be printed:

e the linear form defining the degree;

o the degree 1 elements of the Hilbert basis;

e the multiplicity;

o the Hilbert series and the coefficients of the Hilbert (quasi)polynomial.
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The degrees of the extreme rays are listed in the abstract. If the whole Hilbert basis is of
degree 1, this fact is indicated. Moreover, Normaliz tells you whether the original system of
generators contains the Hilbert basis by indicating whether the original monoid is integrally
closed.

Please note:

(1) The equations and support hyperplanes together define the cone C. While support
hyperplanes will always be present (except for the zero cone), equations will only be
printed if necessary, namely when dimC < rank A.

Similarly, congruences will only be printed if the lattice E is not given by RCN A. This
can only happen with input matrices of type 1 or 6.

Even if the cone and the lattice are defined by constraints, the inequalities, equations
and congruences of the input will in general not be reproduced, but replaced by an
equivalent system.

(2) The extreme rays are given by the first points in [E on them (the extreme integral gener-
ators with respect to [E).

(3) In order to lift the grading from E to A it may be necessary to replace it by a multiple (in
order to avoid fractions as coefficients). The necessary factor appears as “denominator”.
The Hilbert series and the Hilbert (quasi)polynomial do always refer to the degree in [E.

(4) Input matrices of types 0, 1, 2 or 3 contain an explicit system of generators. For the
other types # 10 the extreme rays computed by Normaliz take their place. For type 10
Normaliz first computes the monoid M generated by the residue classes of the canoni-
cal basis of Z" (compare Section [3.3)), and they are considered the original system of
generators.

In type = 3 (rees_algebra), the data in the output file refer to the integral closure % of
the Rees algebra. In addition to what has been mentioned already, the following data are
computed:

e the generators of the integral closure of the ideal;
e if the ideal is primary to the irrelevant maximal ideal, the multiplicity of the ideal (not
to be confused with the multiplicity of the monoid).

6 Examples

6.1 Generators
6.1.1 Type 0, integral_closure

The file rproj2.in contains the following (here typeset in 2 columns):

16
7
1000000 1010101
0100000 1001011
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0010000 1000111

0001000 01106011

0000100 0101101

06000010 61060111

1110001 0011101

1101001 06011011
0

This means that we wish to compute the the cone C generated by the 16 vectors
(1,0,0,0,0,0,0), (0,1,0,0,0,0,0), ..., (0,0,1,1,0,1,1)

in R7 with respect to the full lattice Z’, as indicated by the final digit that specifies the type.
(Actually, the vectors generate the full lattice so that a replacement of type O by type 1 would
not change anything.)

Running normaliz with no option (or option -h, Hilbert basis series) produces the file
rproj2.out which has the following content (partially typeset in 2 or 3 columns):

17 Hilbert basis elements multiplicity = 72
16 Hilbert basis elements of degree 1
16 extreme rays Hilbert series:
24 support hyperplanes 1931256
denominator with 7 factors:
rank = 7 (maximal) 1: 7
index =1
original monoid is not integrally closed Hilbert polynomial:
60 194 284 245 130 41 6
size of triangulation = 67 with common denominator = 60

resulting sum of |det|s = 72

grading:
111111-2

degrees of extreme rays:
1: 16

Hilbert basis elements are not of degree 1

3k 3K 3k 3K K >k K 5K K 5K 3K 5K >k 5k >k 5k K 5k 3K 5k 3K K 3K 3K 3K 3K 3K K 5K 3k 5k 3k 3k >k 5k >k 5k 3K 5k 3K 5k >k 3K 3K K 5k 3k 3k >k 3k >k 5k >k 5k K 5k K 5k K 5k >k 3k >k kok kok kok kok

17 Hilbert basis elements: 24 support hyperplanes:
0000010 O 06 61 06 0 0
0000100 6 0 6 0 1 0
0001000 O 0 6 060 6 1 0
0010000 O 0 6 0 06 0 1
00611011 O 061 0 06 0 O
0011101 O 1 06 06 06 0 0
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0100000 © 1 1 06 06 1-1
01060111 6 1 06 06 1 1-1
0101101 © 1 6 1 1 0-1
011006011 6 61 1 0 1-1
1000000 6 1 1 1 1 1-2
1000111 0 06 1 1 1 0-1
1001011 1 06 6 6 6 0 0
1010101 1 11 11 1-3
1101001 1 06 6 6 1 1-1
1110001 1 6 61 0 1-1
1111112 1 061 06 1 0-1
1 61 1 1 1-2
16 extreme rays: 1 11 06 0 0-1
1000000 1 111 06 1-2
0100000 11 6 1 06 0-1
0010000 11 106 1 1-2
0001000 1 1 1 1 1 0-2
0000100 11 06 1 1 1-2
00000610
1110001 16 degree 1 Hilbert basis elements:
1101001 0000010
1010101 0000100
1001011 0001000 0110011
1000111 0010000 1000000
0110011 00611011 1000111
0101101 0011101 1001011
0100111 0100000 1010101
0011101 0100111 1101001
0011011 01061101 1110001

From this, we see that there are 17 elements in the Hilbert basis, of which 16 are of degree
1, and 16 extreme rays, that the sublattice generated by the input vectors has index 1 in Z’,
and that the corresponding support hyperplanes are given by the linear forms (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0), ..., (1,1,0,1,1,1,-2).

We are also given the information that there is a grading (defined implicitly) and what it is.
The multiplicity with respect to this grading is 72. By definition, the multiplicity is the E-
normalized volume of the polytope obtained by intersecting the cone with the hyperplane at
degree 1.

The degrees of the extreme rays are given in multiset notation:
1: 16

indicates that 16 extreme rays have degree 1. (The input file contains no explicit grading. The
implicitly defined grading requires that all extreme rays have the same degree, but it need not
be 1 as in this case.)

Since there is a grading, the degree 1 elements of the Hilbert basis, the Hilbert series and
Hilbert polynomial of the monoid generated by the Hilbert basis are also computed. The
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Hilbert series is given as a rational function. Its numerator polynomial is
1497 + 3162 42503 + 61*

as we can see from the vector below the heading Hilbert series. The denominator is given
in multiset notation: 1: 7 specifies the denominator

(1—1H7,

More general cases will be discussed in[6.1.3|and [6.2.3| below.
The Hilbert polynomial is given by

60 194 284 , 245, 130, 41 5 6
S k k k K4+ —k°.
60 60 60 60 60" 60" 60

P(k)

The Hilbert polynomial gives the number of elements of degree k, starting from degree 0, as
is always the case for normal monoids. Note that the multiplicity m can also be read from the
leading coefficient ¢ of the Hilbert polynomial:

c= (rTl)!’ r = rank, (2)
in our case
B 1 B 72
10 720°
The lines

size of triangulation = 67
resulting sum of |det|s = 72

give some information about Normaliz’ (not so hard) work: It produced a triangulation of 67
simplicial cones, and the sum of the absolute values of the determinants of their generator
matrices is 72. It is not surprising that this number equals the multiplicity. This is always the
case if only degree 1 vectors appear in the generator matrix.

We omit an example of type 1 since it does not add anything new.

6.1.2 Type 2, polytope

The file polytop.in:
4

00
00
30
05
polytope

o O N O W
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The Ehrhart monoid of the integral polytope with the 4 vertices
(0,0,0), (2,0,0), (0,3,0) and (0,0,5)

in R? is to be computed. (Note the last line, indicating the polytope type 2.)

Running normaliz without an option (or option -h) produces the file polytop.out:

19 Hilbert basis elements multiplicity = 30
18 Hilbert basis elements of degree 1
4 extreme rays Hilbert series:
4 support hyperplanes 114 15
denominator with 4 factors:
rank = 4 (maximal) 1: 4
index = 30
original monoid is not integrally closed Hilbert polynomial:
1485
size of triangulation =1 with common denominator =1

resulting sum of |det|s = 30

grading:
06001

degrees of extreme rays:
1: 4

Hilbert basis elements are not of degree 1

3k 3k >k 5k 3k 3k >k 3K 5k 3k >k 5k 5k 5k kK 5k 3k 3k >k 5k 5k kK 5k 5k kK 5k 5k 3k >k 5k Sk 3k >k 5k 5k 3k >k 5k Sk 5k >k 5k 5k 3k K 5k 5k 5k 5k 5k 5k 3k >k >k 5k 3k >k >k 5k 3k kK 5k ok >k Kk >k

19 Hilbert basis elements: 18 Hilbert basis elements of degree 1:
06051 0051
0301 0301
2001 2001
0001 0001
0131 0131
0121 0121
0111 0111
0101 0101
0041 0041
0031 0031
0021 0021
06011 0011
0201 0201
0211 0211
1001 1001
1011 1011
1021 1021
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1101 1101

1242

4 extreme rays: 4 support hyperplanes:
0001 -15 -106 -6 30
2001 1 0 0 ©
0301 6 1 0 0
00651 6 0 1 o

For the polytopal interpretation one must observe that all data are in homogenized coordinates
for which Normaliz has appended 1 to the input vectors that (in this case) are the vertices of
the polytope. In the cone produced the lattice points of the polytope are of degree 1. Therefore
the 18 Hilbert basis elements of degree 1 represent the lattice points of the polytope, starting
from (0,0,5) and ending with (1,1,0). The extreme rays represent the 4 vertices.

From the fact that there are 19 Hilbert basis elements, but only 18 of degree 1, we see that the
lattice points in the polytope do not yield the Hilbert basis of the Ehrhart monoid (or the cone
over the polytope).

That there is only one simplicial cone in the triangulation is not surprising since our polytope
is a simplex.

The support hyperplanes give us a description of the polytope by inequalities: it is the solution
of the system of the 4 inequalities

x3>0, x>0, x>0 and 15x;+ 10xy+ 6x3 <30,

The dimension of the polytope is 3 since the cone over it has dimension 4. The polytope has
73-normalized volume 30 as indicated by the multiplicity.

The Ehrhart series (we use the more general term Hilbert series) is

14 14t +15¢
(1—2)*
and its Ehrhart polynomial (again we use a more general term in the output file) of the polytope

1S
p(k) =144k +8k> +5k> .

6.1.3 A rational polytope

We want to investigate the Ehrhart series of the triangle P with vertices

(1/2,1/2), (—1/3,—1/3), (1/4,—1/2).

The input file is rational.in. Running Normaliz yields the following output:

8 Hilbert basis elements Hilbert series with cyclotomic denominator:
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1 Hilbert basis elements of degree 1
3 extreme rays
3 support hyperplanes

rank = 3 (maximal)
index = 15
original monoid is not integrally closed

size of triangulation =1
resulting sum of |det|s = 15
grading:

001

degrees of extreme rays:
2:'1 3:'1 4:1

multiplicity = 5/8

Hilbert series:

10032-12211112
denominator with 3 factors:
1: 1 2:1 12: 1

-1 -1 -1 -3 -4 -3 -2
cyclotomic denominator:
1: 3 2: 2 3:1 4:1

Hilbert quasi-polynomial of period 12:

0: 48 28 15
1: 11 22 15
2: -20 28 15
3: 39 22 15
4: 32 28 15
5: -5 22 15
6: 12 28 15
7: 23 22 15
8: 16 28 15
9: 27 22 15
10: -4 28 15
11: 7 22 15

with common denominator = 48

3k 3k >k 5k 3k 3k >k 5k 5k 3k >k 5k 5k kK 5k 5k 3k >k 5k 5k 5k 5k 5k 5k 3k >k 5k 5k 5k %k 3K 5k 3k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k kK 5k 5k 3k >k 5k 5k k >k 5k 5k 3k >k 5k 5k >k kR k k

8 Hilbert basis elements:

1 -2 4 1 1
-1 -1 3 -1 -1
1 1 2 1 -2
0 0 1

0 -1 3

1 0 3 2 7
1-1 4 -8 2
0 -2 5 1-1

3 extreme rays:

2
3
4

3 support hyperplanes:

3
3
0

1 Hilbert basis elements of degree 1:

0601

The 3 extreme rays have reproduced the vertices (don’t forget that the last coordinate can
be interpreted as a denominator), and the 3 support hyperplanes represent the 3 inequalities
that define the polytope as an intersection of affine halfspaces like in The Hilbert basis
element of degree 1 shows that there is a single lattice point in the polytope, namely the origin
(0,0). Except that P has non-integral vertices now, these data are completely analogous to

those of the lattice polytope in[6.1.2]
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The multiplicity is a rational number. Since in dimension 2 the normalized area (of full-
dimensional polytopes) is twice the Euclidean area, we see that P has Euclidean area 5/16.

The Hilbert (or Ehrhart) function counts the lattice points in kP, k € Z.. The corresponding
generating function is a rational function H () with numerator
14368 426 — 2 42004207 418 487 4110 11 212
and denominator
(1—1)(1 —r3)(1—1).
As a rational function, H(r) has degree —3. This implies that 3P is the smallest integral
multiple of P that contains a lattice point in its interior.

Normaliz gives also a representation as a quotient of coprime polynomials with the denom-
inator factored into cyclotomic polynomials. The multiset notation lists the orders of the
cyclotomic polynomials and their multiplicities. In this case we have

14t 412 413 +46* 436 + 246
HeIeY

where  is the i-th cyclotomic polynomial (§; =t —1, 6 =t+1, =12 +1+1, { =12+ 1).

H(t) =

Normaliz transforms the representation with cyclotomic denominator into one with denomina-
tor of type (1 —¢¢1)--- (1 —¢°), r = rank, by choosing e, as the least common multiple of all
the orders of the cyclotomic polynomials appearing, e, as the lcm of those orders that have
multiplicity > 2 etc.

There are other ways to form a suitable denominator with 3 factors 1 — ¢, for example g(¢) =
(1 =1 —=3)(1 —1*) = =P {38384 Of course, g(t) is the optimal choice in this case.
However, P is a simplex, and in general such optimal choice may not exist. We will explain
the reason for our standardization below.

Let p(k) be the number of lattice points in kP. Then p(k) is a quasipolynomial:
p(k) = po(k) + pr(k)k+-+ pro1 (k)K"

where the coefficients depend on k, but only to the extent that they are periodic of a certain
period 7 € N. In our case & = 12 (the lcm of the orders of the cyclotomic polynomials).

The table giving the quasipolynomial is to be read as follows: The first column denotes the
residue class j modulo the period and the corresponding line lists the coefficients p;(j) in
ascending order of i, multiplied by the common denominator. So

7 5

T2 _
plk)=1+ 5kt k=0 (12),

etc. The leading coefficient is the same for all residue classes and equals the Euclidean volume
as in equation (2).

Our choice of denominator for the Hilbert series is motivated by the following fact: e; is the
common period of the coefficients p,_;,..., p,—1. The user should prove this fact or at least
verify it by several examples.
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6.1.4 Type 3, rees_algebra

Next, let us discuss the example rees.in:

10

11000

01010
0606101
00011

6
1
110100
1
1
1

011001
010110
010011
001110
0061101
rees_algebra

Comparing with the data in rproj2.in shows that rees is the origin of rproj2.

Here we want to compute the integral closure of the Rees algebra of the ideal generated by
the monomials corresponding to the above 10 exponent vectors. The output in rees.out
coincides with that in rproj2.out, up to notions and the supplementary information on the

integral closure of the ideal:

10 generators of integral closure of the ideal:
11

H © 0 © © ©
H R RO o

0

o H O ©

1
0
1
0

0

0

1
1
1
0
1

1

=l <]

100101
101010
110100
111000

A brief look at rproj2.out shows that exactly the generators with the last coordinate 1 have
been extracted. (So the ideal is integrally closed. This is not surprising because we have

chosen squarefree monomials.)

6.2 Constraints

6.2.1 Type 4, hyperplanes

The file dual.inis

N
SN

[cl ool oo oMo oMo R ORI
O P P F P OO oo oo

H P O 00 H OO0 o o
H © O P ©O 00 o o
H O P P OO0 O o O
O P P OO0 O o r oo

H OO O Fr O O o

-1

-1

-3
-1
-1
-1
-2
-1
-1
-2
-2

N e e
=l N o o BN o BN ol N o
R = H O R RO OO
O B O H OO R R OO
P © @ @O R R R O KH OO
R R OO R O KR KRk KHOO
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001101 -1 111110 -2
0611111 -2 110111-2
hyperplanes

This means that we wish to compute the Hilbert basis of the cone cut out from R’ by the
24 inequalities. (It is the dual of the cone spanned by the 24 linear forms in (R’)*.) The
inequalities represent exactly the support hyperplanes from the file rproj2.out. The output
in dual.out coincides with that in rproj2.out.

6.2.2 Type 5, equations

Suppose that you have the following “square”

X1 | X2 | X3
X4 | X5 | Xg
X7 | X8 | X9
and the problem is to find nonnegative values for x1,...,x9 such that the 3 numbers in all rows,

all columns, and both diagonals sum to the same constant .#. Sometimes such squares are
called magic and . is the magic constant. This leads to a linear system of equations

X1 +x0+x3 =x4+x5+X6;
X1+ X2 +X3 = X7 + X8 +X9;
X1 +x0+x3 =x1+x4+x7;
X1 +x0+x3 =xp +x5+x3;
X1+ X2+ X3 = X3 + X6 +X9;
X1 +x2+x3 =x1+x5+X9;
X1 +Xx2 +x3 =Xx3+Xx5+X7.

This system of equations is contained in the file 3x3magic.in. It has input type equations.
(Don’t forget that the sign conditions x; > 0 are automatically included if there are no explicit
inequalities.)
The magic constant is a natural choice for the grading, and therefore

1

9

111000000
grading

follows the equations.
The output file contains the following:

5 Hilbert basis elements multiplicity = 4
5 Hilbert basis elements of degree 1
4 extreme rays Hilbert series:
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4 support hyperplanes 121
denominator with 3 factors:

rank = 3 1: 3

index = 2

original monoid is not integrally closed Hilbert polynomial:
122

size of triangulation with common denominator =1

resulting sum of |det]|s

1]
AN

grading:
111000000
with denominator = 3

degrees of extreme rays:
1: 4

Hilbert basis elements are of degree 1

3K 3k >k 5k 5k 5k >k >k 5K 3k >k 5k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 3k >k 5k 5k 5k %k 5k 5K 3k >k 3k 5k 5k 5k >k 5k 3k >k >k 5k 5k >k >k 5k 5k %k >k 5k ok >k >k k >k

5 Hilbert basis elements: 6 equations:
102210021 -2'1 4-3 06 0 0 0 0
0212101002 -1 9 1-1 1 0 0 0 0
201012120 -2 0 2-1 61 0 0 0
120012201 -2 0 3-2 6 01 0 0
111111111 06 6-2 1 06 06 6 1 0

-1 6 2-2 0 06 0 0 1

4 extreme rays:

120012201 5 Hilbert basis elements of degree 1:
201012120 102210021
021210102 0212101002
102210021 201012120

1206012201

4 support hyperplanes: 111111111
0-1 0 6 2 0 0O

0 1 2 0 -2 0
-1 -2 0 4 0
1 0 0 0 0 0 0

o o o
o O o
o O o

0
0

The 5 elements of the Hilbert basis represent the magic squares

2101 110]2 1|1]1 112]0 0]2]1
1]2 21110 1|1 11]2 211
11210 0121 1111 2101 1102

All other solutions are linear combinations of these squares with nonnegative integer coeffi-
cients.
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Normaliz tells us that the cone generated by the magic squares can be described by 4 inequal-
ities and 6 linear relations. The number of equations becomes clear when we look at the rank.

The input degree is the magic constant. However. as the denominator 3 shows, the magic
constant is always divisible by 3, and therefore the effective degree is .# /3. This degree is
used for the multiplicity and the Hilbert series.
The Hilbert series is
1+ 21412
(1—1)?
The Hilbert polynomial is
P(k) = 1+ 2k + 247,

and after substituting .# /3 for k we obtain the number of magic squares of magic constant
M.

6.2.3 Type 6, congruences

We change our definition of magic square by requiring that the entries in the 4 corners are all
even. Then we have to augment the input file as follows (3x3magiceven.in):

7 4
9 10
111-1-1-1 06 0 0 1000000002
111 0 6 0 -1-1-1 0010000002
©011-1 0 06-1 0 0 0000001002
101 0-1 0 0 -1 0 0000000012
1106 0 0-1 0 0-1 congruences
011 6-1 6 0 0 -1 1
1106 0-1 0-1 0 0 9
equations 111000000
grading
The output changes accordingly:

9 Hilbert basis elements multiplicity =1
0 Hilbert basis elements of degree 1
4 extreme rays Hilbert series:
4 support hyperplanes 1-131

denominator with 3 factors:
rank = 3 1:' 1 2:2
index = 4
original monoid is not integrally closed Hilbert series with cyclotomic denominator:

-11 -3 -1
size of triangulation =2 cyclotomic denominator:
resulting sum of |det|s = 8 1: 3 2: 2
grading: Hilbert quasi-polynomial of period 2:
111000000 0: 2 21
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with denominator = 3 1: -1 0 1

with common denominator = 2
degrees of extreme rays:
2: 4

3K 3k >k >k 5k 3k >k >k 5k 3k >k >k 5k 5k 5k >k 5k 3k %k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 3k >k 5k 5k 5k %k 5k 5Kk K 5k 5k 5k 5k >k 5k 3k K >k 5k 5k %k >k 5k 5k %k >k 5k %k kK k >k

9 Hilbert basis elements: 4 support hyperplanes:
204420042 1 6 1 6-1 06 0 0 0
042420204 -1 61 061 0 06 0 0
402024240 1 6-1 6 1 06 0 0 0
240024402 -1 6-1 06 3 0 0 0 O
222222222
432135432 6 equations:
252333414 -2 1 4-3 0 0 06 0 0
234531234 -1 0 1-1 1 0 06 0 0
414333252 -2 0 2-1 61 0 0 0

-2 6 3-2 0 01 0 0

4 extreme rays: 0 0-2 1 06 06 06 1 0
240024402 -1 6 2-2 0 0 06 0 1
402024240
042420204 2 congruences:
204420042 0010000002

1000000002

0 Hilbert basis elements of degree 1:

It is not surprising that the support hyperplanes have not changed after the introduction of the
congruences, since the latter only modify the lattice [E. Similarly the number extreme rays is
the same, but the vectors are multiplied by the factor 2 since Normaliz chooses them in [E, and
therefore these vectors must satisfy the congruences.

Its first representation tells us that the Hilbert series is
1—t+32+13
(1—1)(1—1%)>

As in the second representation gives coprime numerator and denominator polynomials
in which the denominator is a product of cyclotomic polynomials:

—1+t-32-1
372 ’
6és
In this case, the two denominators differ by the factor —1. In general, the first representation
is not coprime, as we have seen in[6.1.3]

Clzzt——l,CQZZI%—l.

The lattice point enumerator is a quasipolynomial of period 2:

1+k+k2/2, k
—1/24+k%/2, &k

{x:degx=k}| = (1) (2)

(2).
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In general one must expect a non-integral multiplicity if the period is > 1. That the multiplicity
is integral, namely 1, in this case must be considered an exception.

As you can see, the equations make two of the input congruences superfluous: it is enough to
require the two corners in the first row to be even. The first congruence is to be read as x; =0
mod 2, the second as x3 =0 mod 2.

Another good example for Hilbert series and gradings is given by Condorcet.in. The reader
should run it or have a look at the corresponding output file.

6.3 Relations
6.3.1 Type 10, lattice_ideal
As an example, we consider the binomial ideal generated by
XX — X4Xs5Xe, X1X7 — X3X5Xg, X1 X2X3 — X2 Xs.

We want to find an embedding of the toric ring it defines and the normalization of the toric
ring.
The input ideal lattice_ideal.inis

3

6

21 0 -1-1 -1
10-1 2-1 -1
11 1 0 -2 -1
lattice_ideal

It yields the output

6 original generators of the toric ring multiplicity = 10

10 Hilbert basis elements

10 Hilbert basis elements of degree 1 Hilbert series:

5 extreme rays 163

5 support hyperplanes denominator with 3 factors:
1: 3

rank = 3 (maximal)

index =1 Hilbert polynomial:

original monoid is not integrally closed 135
with common denominator =1

size of triangulation = 3

resulting sum of |det|s = 10

grading:

1-11

degrees of extreme rays:
1: 5
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Hilbert basis elements are of degree 1

3k 3k >k 5k 5k 3k >k 3K 5k 3k >k 5k 5k 5k kK 5k 3k k3K 5k 5k kK 5k 5k 5k >k 5k 5k 3k >k 5k 5k kK 5k 5k 3k >k 5k 5k 5k >k 5k 5k 3k >k 5k 5k 3k 5k >k 5k 3k >k >k 5k 5k >k >k 5k 5k >k >k ok ok kK k k

6 original generators: 5 support hyperplanes:
012 1 0 0

320 6 1 0

001 0 0 1

111 3-2 1

100 6 -9 7

133

[
(<]

Hilbert basis elements of degree 1:

10 Hilbert basis elements: 133
133 100
100 111
111 001
001 320
320 012
012 210
210 122
122 221
221 111
111

5 extreme rays:

012
320
001
100
133
The 6 original generators correspond to the indeterminates Xj,...,Xs in the binomial equa-

tions. They represent an embedding of the affine monoid defined by the binomial equations.

7 Optional output files

When one of the options - f, -a, -T, -y or an option calling NmzlIntegrate is activated, Normaliz
writes additional output files whose names are of type <projectname>.<type>. The format of
the files (with the exception of inv) is completely analogous to that of the input file, except
that there is usually no last line denoting the type. The main purpose of these files is to
give the other systems easy access to the results of Normaliz without complicated parsing.
The packages for Singular and Macaulay 2 use the extra output files to retrieve the results
of Normaliz. Furthermore they provide additional information not contained in the standard
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output file.

The option - f makes Normaliz write the following files:

gen
cst

inv

contains the Hilbert basis.

contains the constraints defining the cone and the lattice in the same format as they
would appear in the input: matrices of types 4,5,6 following each other. Each matrix
is concluded by the integer denoting its type. Empty matrices are indicated by O as the
number of rows. Therefore there will always be at least 3 matrices.

If a grading is defined, it will be appended. Therefore this file (with suffix in) as input
for Normaliz will reproduce the Hilbert basis and all the other data computed, at least in
principle.

contains all the information from the file out that is not contained in any of the other
files.

If -a is activated, then the following files are written additionally:

typ

ext
htl

This is the product of the matrices corresponding to egn and esp. In other words, the
linear forms representing the support hyperplanes of the cone C are evaluated on the
Hilbert basis. The resulting matrix, with the generators corresponding to the rows and
the support hyperplanes corresponding to the columns, is written to this file.

The suffix typ is motivated by the fact that the matrix in this file depends only on the
isomorphism type of monoid generated by the Hilbert basis (up to row and column
permutations). In the language of [2] it contains the standard embedding.

contains the extreme rays of the cone.

contains the degree 1 elements of the Hilbert basis if a grading is defined.

egn,esp These contain the Hilbert basis and support hyperplanes in the coordinates with re-

7.1

spect to a basis of [£. egn contains the grading in the coordinates of [E if one exists. Note
that no equations for CNE or congruences for [E are necessary.

Triangulation and Stanley decomposition

The option -T (independently from - f or -a) writes inv and the triangulation data:

tgn, tri These files together describe the triangulation computed by Normaliz.

The file tri lists the simplicial subcones as follows: The first line contains the number
of simplicial cones in the triangulation, and the next line contains the number m + 1
where m = rank[E. Each of the following lines specifies a simplicial cone A: the first
m numbers are the indices (with respect to the order in the file tgn) of those generators
that span A, and the last entry is the multiplicity of A in E, i. e. the absolute value of the
determinant of the matrix of the spanning vectors (as elements of ).

If -t is combined with -T, then the determinants have not been computed, and the last
entry of each row is O (a forbidden value for the determinant).

The file tgn contains a matrix of vectors (in the coordinates of A) spanning the simplicial
cones in the triangulation.

Note that these files are not generated with the modes -d, -1 or -N.

36



The option -T (independently from - f or -a) writes inv, tgn and the Stanley decomposition:

dec For each simplicial cone A in the triangulation this file contains a block of data:
(1) a line listing the indices iy, ....iy of the generators v;,...,v;, relative to the order in
tgn (asin tri, m = rank[E);
(i1) a g x m matrix where u the multiplicity of A (see above).
In the notation of [6], each line lists an “offset” x + £(x) by its coordinates with respect
to vi,,...,v;, as follows: if (ay,...,a,) is the line of the matrix, then

1
x+e(x) = ﬁ(al"il + - Famvi,)-

The file 3x3magiceven.in has been processed with the option -aTy activated. We recommend
you to inspect all the output files in the subdirectory example of the distribution.

8 Performance and parallelization

The executables of Normaliz have been compiled for parallelization on shared memory sys-
tems with OpenMP. Parallelization reduces the “real” time of the computations considerably,
even on relatively small systems. However, one should not underestimate the administrational
overhead involved.

e [t is not a good idea to use parallelization for very small problems.
e On multi-user systems with many processors it may be wise to limit the number of
threads for Normaliz somewhat below the maximum number of cores.

The number of parallel threads can be limited by the Normaliz option -x (see Section 4.3)) or
by the commands

export OMP_NUM_THREADS=<T> (Linux/Mac)
or
set OMP_NUM_THREADS=<T>  (Windows)

where <T> stands for the maximum number of threads accessible to Normaliz. For example,
we often use

export OMP_NUM_THREADS=16

on a multi-user system system with 24 cores.
Limiting the number of threads to 1 forces a strictly serial execution of Normaliz.

First we compare the performance of Normaliz on several processor configurations. (The table
shows real times in seconds taken with Normaliz 2.8.))

37



mode 15 M520 17 870 Xeon Xeon

cores/threads 2 cor, 4 thr | 4 cor, 8 thr | 24 cor, 1 thr | 24 cor, 16 thr
medium -h 1.2 0.7 2.3 0.7

A443 -h 22 94 56 9.3

A543 -h 1320 466 3580 226

A443 -N 0.5 0.4 0.7 0.3

A543 -N 26 9.2 52 7

A553 -N 4430 1500 14940 1350

See [6] for further performance data of challenging examples.
All computation times are based on the Linux version of normaliz.

Finally we compare the primal and the dual algorithm on several examples (computation times
measured on the Xeon system with 16 threads).

-N -d
dual | 0.06 | 0.004
small 3.6 383
rafad 9.5 o0
5x5 | 1940 1
6x6 oo | 12660

As arule of thumb, one should use -d if the number of extreme rays is at least one magnitude
larger than that of support hyperplanes. Therefore a previous run with -s may help in choosing
the right approach. The example small is discussed extensively in [3]].

9 Running large computations

Normaliz can cope with very large examples, but it is usually difficult to decide a priori whether
an example is very large, but nevertheless doable, or simply impossible. Therefore some
exploration makes sense.

See [6] for some very large computations. The following hints reflect the authors’ experience
with them.

(1) Run Normaliz with the option -cs and pay attention to the terminal output. The number
of extreme rays, but also the numbers of support hyperplanes of the intermediate cones are
useful data.

(2) In many cases the most critical size parameter is the number of simplicial cones in the
triangulation. It makes sense to determine it as the next step. Even with the fastest potential
evaluation (option -v), finding the triangulation takes less time, say by a factor between 3 and
10. Thus it makes sense to run the example with -t in order to explore the size.

As you can see from [6], Normaliz has successfully evaluated triangulations of size ~ 5 - 10!!
in dimension 24.
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(3) Another critical parameter are the determinants of the generator matrices of the simplicial
cones. To get some feeling for their sizes, one can restrict the input to a subset (of the extreme
rays computed in (1)) and use the option -v.

The output file contains the number of simplicial cones as well as the sum of the absolute
values of the determinants. The latter is the number of vectors to be processed by Normaliz in
triangulation based calculations.

The number includes the zero vector for every simplicial cone in the triangulation. The zero
vector does not enter the Hilbert basis calculation, but cannot be neglected for the Hilbert
series.

Normaliz has mastered calculations with > 10!3 vectors.

(4) If the triangulation is small, we can add the option -T is order to actually see the triangula-
tion in a file. Then the individual determinants become visible.

(5) If a cone is defined by inequalities and/or equations consider the dual mode for Hilbert
basis calculation, even if you also want the Hilbert series.

(6) The size of the triangulation and the size of the determinants are not dangerous for memory
by themselves (unless -T or -y are set). Critical magnitudes can be the number of support
hyperplanes, Hilbert basis candidates, or degree 1 elements.

10 Distribution and Installation

In order to install Normaliz you should first download the basic package containing the docu-
mentation, examples, source code, jJNormaliz, NmzIntegrate and the packages for Singular and
Macaulay 2. Then unzip the downloaded file Normaliz2.10.zip in a directory of your choice.
(Any other downloaded zip file for Normaliz should be unzipped in this directory, too.)

This process will create a directory Normaliz2.10 (called Normaliz directory) and several
subdirectories in Normaliz2.10. The names of the subdirectories created are self-explanatory.
Nevertheless we give an overview:

e In the main directory Normaliz2.10 you should find jNormaliz.jar, Copying and sub-
directories.

e The subdirectory source contains the source files and a Makefile for compilation with
GCC. The subdirectory genEhrhart contains the NmzIntegrate source.

e The subdirectory doc contains the file you are reading and further documentation.

e In the subdirectory example are the input and output files for some examples It contains
all input files of examples of this documentation, except the toy examples of Section
Bl Some very large output files are contained in an extra zip file accessible from the
Normaliz home page.

e The subdirectory singular contains the SINGULAR library normaliz.lib and a PDF
file with documentation.

e The subdirectory macaulay?2 contains the MACAULAY?2 package Normaliz.m2.

e The subdirectory 1ib contains libraries for jNormaliz.
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We provide executables for Windows, Linux (each in a 32 bit and a 64 bit version) and Mac.
Download the archive file corresponding to your system Normaliz2.10<systemname>.zip and
unzip it. This process will store the the executables of Normaliz and NmzIntegrate in the
directory Normaliz2.10. In case you want to run Normaliz from the command line or use it
from other systems, you may have to copy the executables to a directory in the search path for
executables.

Please remove old versions of normaliz, normé64 and normbig from your search path.

Running NmzIntegrate requires the additional download of its executable for your system.

11 Compilation

We only describe the compilation of Normaliz. See the documentation of NmzIntegrate for its
compilation.

11.1 GCC

Produce the executables by calling make in the subdirectory source. You may have to trans-
port the executables to a directory in your search path. jNormaliz expects them in its own
directory.

Note that normaliz needs GMP (including the C++ wrapper) and the Boost collection. There-
fore you must install them first.

We are using OpenMP 3.0. Please make sure that your GCC version is compatible with it
(version > 4.4).

Note the following exceptions:

1. One can compile Windows executables with the Cygwin port of GCC. Unfortunately it
is not compatible to OpenMP.

2. Mac versions of GCC older than 4.5 have a bug that makes it impossible to use OpenMP.

In any case, or if you want to avoid parallelization, you can call mnake OPENMP=no.

11.2 Visual Studio project

The Windows executables provided by us have been compiled with MS Visual Studio and
Intel C++ Composer XE. (Visual C++ itself can only be used without OpenMP.)

If you want to compile Normaliz yourself in this way, please unzip the corresponding zip file
on the Normaliz home page. This will create a subdirectory Visual Studio of the Normaliz
directory. This directory contains the predefined project. We have provided

1. two configurations: Release (with OpenMP) and ReleaseSerial (without OpenMP),
and
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2. two platforms, Win32 and x64.

Instead of GMP we use the MPIR library for the Windows version of normaliz. For con-
venience, the MPIR files have been included in the distribution (in the subdirectory MPIR of
Visual Studio). Please

e copy the library files for Win32 into the 1ib subdirectory of the Visual C++ compiler,
e the library files for x64 to the subdirectory amd64 (or x64) of 1ib, and
e the two header files to the include subdirectory of the compiler.

Moreover, you must install the Boost collection available from http://www.boost.org/. We only
use Boost libraries that are entirely implemented in their headers. So the only preparation
beyond downloading and unzipping is to add the Boost root directory to the list of include
paths. In the Visual Studio C++ IDE, click “Tools | Options... | Projects | VC++ directories”.
Then, in “Show Directories for”, select “Include files” and add the path to the Boost root
directory.

After the compilation with the Intel compiler you must copy the executable to the directories
where they are expected (the Normaliz directory or a directory in the search path).

The source files for Visual Studio are identical to those for GCC.

12 Changes relative to version 2.5

For the history of changes starting from 2.0 see the manual of version 2.7 (still accessible on
the web site). Note that some changes have become obsolete later on.

Changes in version 2.7:
User control, input and output:
1. Only one executable normaliz. Precision controlled by option -B.
2. Slight changes in the wording of the main output file.
3. Introduction of options for large problems. (Obsolete.)
Algorithms and implementation:
Separation of front end and kernel (implemented as a library).
Pyramid based algorithms for large problems (see [6]]).
New algorithm for A-vector. No computation of line shellings in this version.

Dual mode accessible from all input types.

A e

General improvement of memory use (and speed) by more efficient data types.

Changes in version 2.8:

User control, input and output:
1. Use of arbitrary Z-gradings which make rational polytopes accessible.
2. Implied changes in the output files.

3. Simplification of the command line options. (‘“Large” modes now superfluous.)
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Algorithms and implementation:
1. Handling of arbitrary Z-gradings.

2. Substantial improvement of parallelization, based on thorough use of pyramid decompositions
(see [l6]).

3. Faster evaluation of simplicial cones (see [6]).
4. General overhaul of the code.
Changes in version 2.9:

User control, input and output:
1. introduction of type signs.
2. Options for calling NmzIntegrate.

3. Corresponding output options and output files.
Algorithms and implementation:
1. Introduction of NmzIntegrate (independent executable).
2. Faster volume computation by using the heights of simplicial cones attached to unimodular ones.
3. Parallelization of pyramid decomposition also for support hyperplane computation.

Changes in version 2.10:

User control, input and output:
1. Corrections in the output forwarded to NmzIntegrate.
Algorithms and implementation:

1. Normaliz now avoids the production of duplicates of candidates for the Hilbert basis. At the
expense of some computation time, this strategy saves much memory.

13 Copyright and how to cite

Normaliz 2.10 is free software licensed under the GNU General Public License, version 3.
You can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the program.
If not, see http://www.gnu.org/licenses/.

Please refer to Normaliz in any publication for which it has been used:

W. Bruns, B. Ichim and C. Séger: Normaliz. Algorithms for rational cones and affine
monoids. Available from http://www.math.uos.de/normaliz.
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It is now customary to evaluate mathematicians by such data as numbers of publications,
citations and impact factors. The data bases on which such dubious evaluations are based do
not list mathematical software. Therefore we ask you to cite the article [[6] in addition. This is
very helpful for the younger members of the team.
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