from __future__ import (absolute_import, division, print_function, unicode_literals)
import collections
import numpy as np
from ..utils.compat.misc import override__dir__
from ..extern import six
from ..extern.six.moves import zip
from ..units import Unit, IrreducibleUnit
from .. import units as u
from .distances import Distance
from .baseframe import BaseCoordinateFrame, frame_transform_graph, GenericFrame, _get_repr_cls
from .builtin_frames import ICRS
from .representation import (BaseRepresentation, SphericalRepresentation,
UnitSphericalRepresentation)
__all__ = ['SkyCoord']
# Define a convenience mapping. This is used like a module constants
# but is actually dynamically evaluated.
def FRAME_ATTR_NAMES_SET():
"""Set of all possible frame-specific attributes"""
out = set()
for frame_cls in frame_transform_graph.frame_set:
for attr in frame_cls.get_frame_attr_names().keys():
out.add(attr)
return out
[docs]class SkyCoord(object):
"""High-level object providing a flexible interface for celestial coordinate
representation, manipulation, and transformation between systems.
The `SkyCoord` class accepts a wide variety of inputs for initialization.
At a minimum these must provide one or more celestial coordinate values
with unambiguous units. Typically one also specifies the coordinate
frame, though this is not required. The general pattern is for spherical
representations is::
SkyCoord(COORD, [FRAME], keyword_args ...)
SkyCoord(LON, LAT, [FRAME], keyword_args ...)
SkyCoord(LON, LAT, [DISTANCE], frame=FRAME, unit=UNIT, keyword_args ...)
SkyCoord([FRAME], <lon_attr>=LON, <lat_attr>=LAT, keyword_args ...)
It is also possible to input coordinate values in other representations
such as cartesian or cylindrical. In this case one includes the keyword
argument ``representation='cartesian'`` (for example) along with data in
``x``, ``y``, and ``z``.
Examples
--------
The examples below illustrate common ways of initializing a `SkyCoord`
object. For a complete description of the allowed syntax see the
full coordinates documentation. First some imports::
>>> from astropy.coordinates import SkyCoord # High-level coordinates
>>> from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames
>>> from astropy.coordinates import Angle, Latitude, Longitude # Angles
>>> import astropy.units as u
The coordinate values and frame specification can now be provided using
positional and keyword arguments::
>>> c = SkyCoord(10, 20, unit="deg") # defaults to ICRS frame
>>> c = SkyCoord([1, 2, 3], [-30, 45, 8], "icrs", unit="deg") # 3 coords
>>> coords = ["1:12:43.2 +1:12:43", "1 12 43.2 +1 12 43"]
>>> c = SkyCoord(coords, FK4, unit=(u.deg, u.hourangle), obstime="J1992.21")
>>> c = SkyCoord("1h12m43.2s +1d12m43s", Galactic) # Units from string
>>> c = SkyCoord("galactic", l="1h12m43.2s", b="+1d12m43s")
>>> ra = Longitude([1, 2, 3], unit=u.deg) # Could also use Angle
>>> dec = np.array([4.5, 5.2, 6.3]) * u.deg # Astropy Quantity
>>> c = SkyCoord(ra, dec, frame='icrs')
>>> c = SkyCoord(ICRS, ra=ra, dec=dec, obstime='2001-01-02T12:34:56')
>>> c = FK4(1 * u.deg, 2 * u.deg) # Uses defaults for obstime, equinox
>>> c = SkyCoord(c, obstime='J2010.11', equinox='B1965') # Override defaults
>>> c = SkyCoord(w=0, u=1, v=2, unit='kpc', frame='galactic', representation='cartesian')
As shown, the frame can be a `~astropy.coordinates.BaseCoordinateFrame`
class or the corresponding string alias. The frame classes that are built in
to astropy are `ICRS`, `FK5`, `FK4`, `FK4NoETerms`, and `Galactic`.
The string aliases are simply lower-case versions of the class name, and
allow for creating a `SkyCoord` object and transforming frames without
explicitly importing the frame classes.
Parameters
----------
frame : `~astropy.coordinates.BaseCoordinateFrame` class or string, optional
Type of coordinate frame this `SkyCoord` should represent. Defaults to
to ICRS if not given or given as None.
unit : `~astropy.units.Unit`, string, or tuple of :class:`~astropy.units.Unit` or str, optional
Units for supplied ``LON`` and ``LAT`` values, respectively. If
only one unit is supplied then it applies to both ``LON`` and
``LAT``.
obstime : valid `~astropy.time.Time` initializer, optional
Time of observation
equinox : valid `~astropy.time.Time` initializer, optional
Coordinate frame equinox
representation : str or Representation class
Specifies the representation, e.g. 'spherical', 'cartesian', or
'cylindrical'. This affects the positional args and other keyword args
which must correspond to the given representation.
**keyword_args
Other keyword arguments as applicable for user-defined coordinate frames.
Common options include:
ra, dec : valid `~astropy.coordinates.Angle` initializer, optional
RA and Dec for frames where ``ra`` and ``dec`` are keys in the
frame's ``representation_component_names``, including `ICRS`,
`FK5`, `FK4`, and `FK4NoETerms`.
l, b : valid `~astropy.coordinates.Angle` initializer, optional
Galactic ``l`` and ``b`` for for frames where ``l`` and ``b`` are
keys in the frame's ``representation_component_names``, including
the `Galactic` frame.
x, y, z : float or `~astropy.units.Quantity`, optional
Cartesian coordinates values
w, u, v : float or `~astropy.units.Quantity`, optional
Cartesian coordinates values for the Galactic frame.
"""
def __init__(self, *args, **kwargs):
# Parse the args and kwargs to assemble a sanitized and validated
# kwargs dict for initializing attributes for this object and for
# creating the internal self._sky_coord_frame object
args = list(args) # Make it mutable
kwargs = self._parse_inputs(args, kwargs)
# Set internal versions of object state attributes
for attr in FRAME_ATTR_NAMES_SET():
setattr(self, '_' + attr, kwargs[attr])
frame = kwargs['frame']
coord_kwargs = {}
if 'representation' in kwargs:
coord_kwargs['representation'] = _get_repr_cls(kwargs['representation'])
for attr, value in kwargs.items():
if value is not None and (attr in frame.representation_component_names
or attr in frame.get_frame_attr_names()):
coord_kwargs[attr] = value
# Finally make the internal coordinate object.
self._sky_coord_frame = frame.__class__(**coord_kwargs)
if not self._sky_coord_frame.has_data:
raise ValueError('Cannot create a SkyCoord without data')
@property
def frame(self):
return self._sky_coord_frame
@property
def representation(self):
return self.frame.representation
@representation.setter
def representation(self, value):
self.frame.representation = value
def __len__(self):
return len(self.frame)
def __nonzero__(self): # Py 2.x
return self.frame.__nonzero__()
def __bool__(self): # Py 3.x
return self.frame.__bool__()
def __getitem__(self, item):
self_frame = self._sky_coord_frame
try:
# First turn `self` into a mockup of the thing we want - we can copy
# this to get all the right attributes
self._sky_coord_frame = self_frame[item]
return SkyCoord(self)
finally:
# now put back the right frame in self
self._sky_coord_frame = self_frame
def _parse_inputs(self, args, kwargs):
"""
Assemble a validated and sanitized keyword args dict for instantiating a
SkyCoord and coordinate object from the provided `args`, and `kwargs`.
"""
valid_kwargs = {}
# Put the SkyCoord attributes like frame, equinox, obstime, location
# into valid_kwargs dict. `Frame` could come from args or kwargs, so
# set valid_kwargs['frame'] accordingly. The others must be specified
# by keyword args or else get a None default. Pop them off of kwargs
# in the process.
frame = valid_kwargs['frame'] = _get_frame(args, kwargs)
if 'representation' in kwargs:
valid_kwargs['representation'] = _get_repr_cls(kwargs.pop('representation'))
for attr in FRAME_ATTR_NAMES_SET():
valid_kwargs[attr] = kwargs.pop(attr, None)
# Get units
units = _get_units(args, kwargs)
# Grab any frame-specific attr names like `ra` or `l` or `distance` from kwargs
# and migrate to valid_kwargs.
valid_kwargs.update(_get_representation_attrs(frame, units, kwargs))
# Error if anything is still left in kwargs
if kwargs:
raise ValueError('Unrecognized keyword argument(s) {0}'
.format(', '.join("'{0}'".format(key) for key in kwargs)))
# Finally deal with the unnamed args. This figures out what the arg[0] is
# and returns a dict with appropriate key/values for initializing frame class.
if args:
if len(args) == 1:
# One arg which must be a coordinate. In this case
# coord_kwargs will contain keys like 'ra', 'dec', 'distance'
# along with any frame attributes like equinox or obstime which
# were explicitly specified in the coordinate object (i.e. non-default).
coord_kwargs = _parse_coordinate_arg(args[0], frame, units)
elif len(args) <= 3:
frame_attr_names = frame.representation_component_names.keys()
repr_attr_names = frame.representation_component_names.values()
coord_kwargs = {}
for arg, frame_attr_name, repr_attr_name, unit in zip(args, frame_attr_names,
repr_attr_names, units):
attr_class = frame.representation.attr_classes[repr_attr_name]
coord_kwargs[frame_attr_name] = attr_class(arg, unit=unit)
else:
raise ValueError('Must supply no more than three positional arguments, got {}'
.format(len(args)))
# Copy the coord_kwargs into the final valid_kwargs dict. For each
# of the coord_kwargs ensure that there is no conflict with a value
# specified by the user in the original kwargs.
for attr, coord_value in coord_kwargs.items():
if (attr in valid_kwargs
and valid_kwargs[attr] is not None
and valid_kwargs[attr] != coord_value):
raise ValueError("Coordinate attribute '{0}'={1!r} conflicts with "
"keyword argument '{0}'={2!r}"
.format(attr, coord_value, valid_kwargs[attr]))
valid_kwargs[attr] = coord_value
return valid_kwargs
def __getattr__(self, attr):
"""
Overrides getattr to return coordinates that this can be transformed
to, based on the alias attr in the master transform graph.
"""
if '_sky_coord_frame' in self.__dict__:
if self.frame.name == attr:
return self # Should this be a deepcopy of self?
# Anything in the set of all possible frame_attr_names is handled
# here. If the attr is relevant for the current frame then delegate
# to self.frame otherwise get it from self._<attr>.
if attr in FRAME_ATTR_NAMES_SET():
if attr in self.frame.get_frame_attr_names():
return getattr(self.frame, attr)
else:
return getattr(self, '_' + attr)
# Some attributes might not fall in the above category but still
# are available through self._sky_coord_frame.
if not attr.startswith('_') and hasattr(self._sky_coord_frame, attr):
return getattr(self._sky_coord_frame, attr)
# Try to interpret as a new frame for transforming.
frame_cls = frame_transform_graph.lookup_name(attr)
if frame_cls is not None and self.frame.is_transformable_to(frame_cls):
return self.transform_to(attr)
# Fail
raise AttributeError("'{0}' object has no attribute '{1}'"
.format(self.__class__.__name__, attr))
def __setattr__(self, attr, val):
# This is to make anything available through __getattr__ immutable
if '_sky_coord_frame' in self.__dict__:
if self.frame.name == attr:
raise AttributeError("'{0}' is immutable".format(attr))
if (attr in FRAME_ATTR_NAMES_SET() or
(not attr.startswith('_') and
hasattr(self._sky_coord_frame, attr))):
setattr(self._sky_coord_frame, attr, val)
frame_cls = frame_transform_graph.lookup_name(attr)
if frame_cls is not None and self.frame.is_transformable_to(frame_cls):
raise AttributeError("'{0}' is immutable".format(attr))
# Otherwise, do the standard Python attribute setting
super(SkyCoord, self).__setattr__(attr, val)
@override__dir__
def __dir__(self):
"""
Override the builtin `dir` behavior to include:
- Transforms available by aliases
- Attribute / methods of the underlying self.frame object
"""
# determine the aliases that this can be transformed to.
dir_values = set()
for name in frame_transform_graph.get_names():
frame_cls = frame_transform_graph.lookup_name(name)
if self.frame.is_transformable_to(frame_cls):
dir_values.add(name)
# Add public attributes of self.frame
dir_values.update(set(attr for attr in dir(self.frame) if not attr.startswith('_')))
# Add all possible frame attributes
dir_values.update(FRAME_ATTR_NAMES_SET())
return dir_values
def __repr__(self):
clsnm = self.__class__.__name__
coonm = self.frame.__class__.__name__
s = '<{clsnm} ({coonm})'.format(**locals())
crepr = repr(self.frame)
return s + crepr[crepr.index(':'):]
[docs] def to_string(self, style='decimal', **kwargs):
"""
A string representation of the coordinates.
The default styles definitions are::
'decimal': 'lat': {'decimal': True, 'unit': "deg"}
'lon': {'decimal': True, 'unit': "deg"}
'dms': 'lat': {'unit': "deg"}
'lon': {'unit': "deg"}
'hmsdms': 'lat': {'alwayssign': True, 'pad': True, 'unit': "deg"}
'lon': {'pad': True, 'unit': "hour"}
See :meth:`~astropy.coordinates.Angle.to_string` for details and
keyword arguments (the two angles forming the coordinates are are
both :class:`~astropy.coordinates.Angle` instances). Keyword
arguments have precedence over the style defaults and are passed
to :meth:`~astropy.coordinates.Angle.to_string`.
Parameters
----------
style : {'hmsdms', 'dms', 'decimal'}
The formatting specification to use. These encode the three most
common ways to represent coordinates. The default is `decimal`.
kwargs
Keyword args passed to :meth:`~astropy.coordinates.Angle.to_string`.
"""
sph_coord = self.frame.represent_as(SphericalRepresentation)
styles = {'hmsdms': {'lonargs': {'unit': u.hour, 'pad': True},
'latargs': {'unit': u.degree, 'pad': True, 'alwayssign': True}},
'dms': {'lonargs': {'unit': u.degree},
'latargs': {'unit': u.degree}},
'decimal': {'lonargs': {'unit': u.degree, 'decimal': True},
'latargs': {'unit': u.degree, 'decimal': True}}
}
lonargs = {}
latargs = {}
if style in styles:
lonargs.update(styles[style]['lonargs'])
latargs.update(styles[style]['latargs'])
else:
raise ValueError('Invalid style. Valid options are: {0}'.format(",".join(styles)))
lonargs.update(kwargs)
latargs.update(kwargs)
if np.isscalar(sph_coord.lon.value):
coord_string = (sph_coord.lon.to_string(**lonargs)
+ " " +
sph_coord.lat.to_string(**latargs))
else:
coord_string = []
for lonangle, latangle in zip(sph_coord.lon, sph_coord.lat):
coord_string += [(lonangle.to_string(**lonargs)
+ " " +
latangle.to_string(**latargs))]
return coord_string
# High-level convinience methods
[docs] def separation(self, other):
"""
Computes on-sky separation between this coordinate and another.
Parameters
----------
other : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame`
The coordinate to get the separation to.
Returns
-------
sep : `~astropy.coordinates.Angle`
The on-sky separation between this and the ``other`` coordinate.
Notes
-----
The separation is calculated using the Vincenty formula, which
is stable at all locations, including poles and antipodes [1]_.
.. [1] http://en.wikipedia.org/wiki/Great-circle_distance
"""
from . import Angle
from .angle_utilities import angular_separation
if isinstance(other, SkyCoord):
self_in_other_system = self.transform_to(other.frame)
elif isinstance(other, BaseCoordinateFrame) and other.has_data:
# it's a frame
self_in_other_system = self.transform_to(other)
else:
raise TypeError('Can only get separation to another SkyCoord or a '
'coordinate frame with data')
lon1 = self_in_other_system.spherical.lon
lat1 = self_in_other_system.spherical.lat
lon2 = other.spherical.lon
lat2 = other.spherical.lat
# Get the separation as a Quantity, convert to Angle in degrees
sep = angular_separation(lon1, lat1, lon2, lat2)
return Angle(sep, unit=u.degree)
[docs] def separation_3d(self, other):
"""
Computes three dimensional separation between this coordinate
and another.
Parameters
----------
other : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame`
The coordinate to get the separation to.
Returns
-------
sep : `~astropy.coordinates.Distance`
The real-space distance between these two coordinates.
Raises
------
ValueError
If this or the other coordinate do not have distances.
"""
if isinstance(other, SkyCoord):
self_in_other_system = self.transform_to(other.frame)
elif isinstance(other, BaseCoordinateFrame) and other.has_data:
# it's a frame
self_in_other_system = self.transform_to(other)
else:
raise TypeError('Can only get separation to another SkyCoord or a '
'coordinate frame with data')
if self.data.__class__ == UnitSphericalRepresentation:
raise ValueError('This object does not have a distance; cannot '
'compute 3d separation.')
if other.data.__class__ == UnitSphericalRepresentation:
raise ValueError('The other object does not have a distance; '
'cannot compute 3d separation.')
dx = self_in_other_system.cartesian.x - other.cartesian.x
dy = self_in_other_system.cartesian.y - other.cartesian.y
dz = self_in_other_system.cartesian.z - other.cartesian.z
distval = (dx.value ** 2 + dy.value ** 2 + dz.value ** 2) ** 0.5
return Distance(distval, dx.unit)
[docs] def match_to_catalog_sky(self, catalogcoord, nthneighbor=1):
"""
Finds the nearest on-sky matches of this coordinate in a set of
catalog coordinates.
Parameters
----------
catalogcoord : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame`
The base catalog in which to search for matches. Typically this
will be a coordinate object that is an array (i.e.,
``catalogcoord.isscalar == False``)
nthneighbor : int, optional
Which closest neighbor to search for. Typically ``1`` is
desired here, as that is correct for matching one set of
coordinates to another. The next likely use case is ``2``,
for matching a coordinate catalog against *itself* (``1``
is inappropriate because each point will find itself as the
closest match).
Returns
-------
idx : integer array
Indices into ``catalogcoord`` to get the matched points for
each of this object's coordinates. Shape matches this
object.
sep2d : `~astropy.coordinates.Angle`
The on-sky separation between the closest match for each
element in this object in ``catalogcoord``. Shape matches
this object.
dist3d : `~astropy.units.Quantity`
The 3D distance between the closest match for each element
in this object in ``catalogcoord``. Shape matches this
object.
Notes
-----
This method requires `SciPy <http://www.scipy.org>`_ to be
installed or it will fail.
See Also
--------
astropy.coordinates.match_coordinates_sky
"""
from .matching import match_coordinates_sky
if (isinstance(catalogcoord, (SkyCoord, BaseCoordinateFrame))
and catalogcoord.has_data):
self_in_catalog_frame = self.transform_to(catalogcoord)
else:
raise TypeError('Can only get separation to another SkyCoord or a '
'coordinate frame with data')
res = match_coordinates_sky(self_in_catalog_frame, catalogcoord,
nthneighbor=nthneighbor,
storekdtree='_kdtree_sky')
return res
[docs] def match_to_catalog_3d(self, catalogcoord, nthneighbor=1):
"""
Finds the nearest 3-dimensional matches of this coordinate to a set
of catalog coordinates.
This finds the 3-dimensional closest neighbor, which is only different
from the on-sky distance if ``distance`` is set in this object or the
``catalogcoord`` object.
Parameters
----------
catalogcoord : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame`
The base catalog in which to search for matches. Typically this
will be a coordinate object that is an array (i.e.,
``catalogcoord.isscalar == False``)
nthneighbor : int, optional
Which closest neighbor to search for. Typically ``1`` is
desired here, as that is correct for matching one set of
coordinates to another. The next likely use case is
``2``, for matching a coordinate catalog against *itself*
(``1`` is inappropriate because each point will find
itself as the closest match).
Returns
-------
idx : integer array
Indices into ``catalogcoord`` to get the matched points for
each of this object's coordinates. Shape matches this
object.
sep2d : `~astropy.coordinates.Angle`
The on-sky separation between the closest match for each
element in this object in ``catalogcoord``. Shape matches
this object.
dist3d : `~astropy.units.Quantity`
The 3D distance between the closest match for each element
in this object in ``catalogcoord``. Shape matches this
object.
Notes
-----
This method requires `SciPy <http://www.scipy.org>`_ to be
installed or it will fail.
See Also
--------
astropy.coordinates.match_coordinates_3d
"""
from .matching import match_coordinates_3d
if (isinstance(catalogcoord, (SkyCoord, BaseCoordinateFrame))
and catalogcoord.has_data):
self_in_catalog_frame = self.transform_to(catalogcoord)
else:
raise TypeError('Can only get separation to another SkyCoord or a '
'coordinate frame with data')
res = match_coordinates_3d(self_in_catalog_frame, catalogcoord,
nthneighbor=nthneighbor,
storekdtree='_kdtree_3d')
return res
[docs] def position_angle(self, other):
"""
Computes the on-sky position angle (East of North) between this
`SkyCoord` and another.
Parameters
----------
other : `SkyCoord`
The other coordinate to compute the position angle to. It is
treated as the "head" of the vector of the position angle.
Returns
-------
pa : `~astropy.coordinates.Angle`
The (positive) position angle of the vector pointing from ``self``
to ``other``. If either ``self`` or ``other`` contain arrays, this
will be an array following the appropriate `numpy` broadcasting
rules.
Examples
--------
>>> c1 = SkyCoord(0*u.deg, 0*u.deg)
>>> c2 = SkyCoord(1*u.deg, 0*u.deg)
>>> c1.position_angle(c2).degree
90.0
>>> c3 = SkyCoord(1*u.deg, 1*u.deg)
>>> c1.position_angle(c3).degree # doctest: +FLOAT_CMP
44.995636455344844
"""
from . import angle_utilities
if self.frame.name == other.frame.name:
other_in_self_frame = other
else:
other_in_self_frame = other.frame.transform_to(self.frame)
slat = self.represent_as(UnitSphericalRepresentation).lat
slon = self.represent_as(UnitSphericalRepresentation).lon
olat = other_in_self_frame.represent_as(UnitSphericalRepresentation).lat
olon = other_in_self_frame.represent_as(UnitSphericalRepresentation).lon
return angle_utilities.position_angle(slon, slat, olon, olat)
# Name resolve
@classmethod
[docs] def from_name(cls, name, frame='icrs'):
"""
Given a name, query the CDS name resolver to attempt to retrieve
coordinate information for that object. The search database, sesame
url, and query timeout can be set through configuration items in
``astropy.coordinates.name_resolve`` -- see docstring for
`~astropy.coordinates.get_icrs_coordinates` for more
information.
Parameters
----------
name : str
The name of the object to get coordinates for, e.g. ``'M42'``.
frame : str or `BaseCoordinateFrame` class or instance
The frame to transform the object to.
Returns
-------
coord : SkyCoord
Instance of the SkyCoord class.
"""
from .name_resolve import get_icrs_coordinates
icrs_coord = get_icrs_coordinates(name)
icrs_sky_coord = cls(icrs_coord)
if frame in ('icrs', icrs_coord.__class__):
return icrs_sky_coord
else:
return icrs_sky_coord.transform_to(frame)
# <----------------Private utility functions below here------------------------->
def _get_frame_class(frame):
"""
Get a frame class from the input `frame`, which could be a frame name
string, or frame class.
"""
import inspect
if isinstance(frame, six.string_types):
frame_names = frame_transform_graph.get_names()
if frame not in frame_names:
raise ValueError('Coordinate frame {0} not in allowed values {1}'
.format(frame, sorted(frame_names)))
frame_cls = frame_transform_graph.lookup_name(frame)
elif inspect.isclass(frame) and issubclass(frame, BaseCoordinateFrame):
frame_cls = frame
else:
raise ValueError('Coordinate frame must be a frame name or frame class')
return frame_cls
def _get_frame(args, kwargs):
"""
Determine the coordinate frame from input SkyCoord args and kwargs. This
modifies args and/or kwargs in-place to remove the item that provided
`frame`. It also infers the frame if an input coordinate was provided and
checks for conflicts.
This allows for frame to be specified as a string like 'icrs' or a frame
class like ICRS, but not an instance ICRS() since the latter could have
non-default representation attributes which would require a three-way merge.
"""
frame = kwargs.pop('frame', None)
if frame is not None:
# Frame was provided as kwarg so validate and coerce into corresponding frame.
frame_cls = _get_frame_class(frame)
frame_specified_explicitly = True
else:
# Look for the frame in args
for arg in args:
try:
frame_cls = _get_frame_class(arg)
frame_specified_explicitly = True
except ValueError:
pass
else:
args.remove(arg)
break
else:
# Not in args nor kwargs - default to icrs
frame_cls = ICRS
frame_specified_explicitly = False
# Check that the new frame doesn't conflict with existing coordinate frame
# if a coordinate is supplied in the args list. If the frame still had not
# been set by this point and a coordinate was supplied, then use that frame.
for arg in args:
coord_frame_cls = None
if isinstance(arg, BaseCoordinateFrame):
coord_frame_cls = arg.__class__
elif isinstance(arg, SkyCoord):
coord_frame_cls = arg.frame.__class__
if coord_frame_cls is not None:
if not frame_specified_explicitly:
frame_cls = coord_frame_cls
elif frame_cls is not coord_frame_cls:
raise ValueError("Cannot override frame='{0}' of input coordinate with "
"new frame='{1}'. Instead transform the coordinate."
.format(coord_frame_cls.__name__, frame_cls.__name__))
if 'representation' in kwargs:
frame = frame_cls(representation=_get_repr_cls(kwargs['representation']))
else:
frame = frame_cls()
return frame
def _get_units(args, kwargs):
"""
Get the longitude unit and latitude unit from kwargs. Possible enhancement
is to allow input from args as well.
"""
if 'unit' not in kwargs:
units = [None, None, None]
else:
units = kwargs.pop('unit')
if isinstance(units, six.string_types):
units = [x.strip() for x in units.split(',')]
# Allow for input like unit='deg' or unit='m'
if len(units) == 1:
units = [units[0], units[0], units[0]]
elif isinstance(units, (Unit, IrreducibleUnit)):
units = [units, units, units]
try:
units = [(Unit(x) if x else None) for x in units]
units.extend(None for x in range(3 - len(units)))
if len(units) > 3:
raise ValueError()
except:
raise ValueError('Unit keyword must have one to three unit values as '
'tuple or comma-separated string')
return units
def _parse_coordinate_arg(coords, frame, units):
"""
Single unnamed arg supplied. This must be:
- Coordinate frame with data
- Representation
- List or tuple of:
- String which splits into two values
- Iterable with two values
"""
is_scalar = False # Differentiate between scalar and list input
valid_kwargs = {} # Returned dict of lon, lat, and distance (optional)
frame_attr_names = frame.representation_component_names.keys()
repr_attr_names = frame.representation_component_names.values()
repr_attr_classes = frame.representation.attr_classes.values()
n_attr_names = len(repr_attr_names)
# Turn a single string into a list of strings for convenience
if isinstance(coords, six.string_types):
is_scalar = True
coords = [coords]
if isinstance(coords, (SkyCoord, BaseCoordinateFrame)):
# Note that during parsing of `frame` it is checked that any coordinate
# args have the same frame as explicitly supplied, so don't worry here.
if not coords.has_data:
raise ValueError('Cannot initialize from a frame without coordinate data')
data = coords.data.represent_as(frame.representation)
values = [] # List of values corresponding to representation attrs
for repr_attr_name in repr_attr_names:
# If coords did not have an explicit distance then don't include in initializers.
if (isinstance(coords.data, UnitSphericalRepresentation) and
repr_attr_name == 'distance'):
continue
# Get the value from `data` in the eventual representation
values.append(getattr(data, repr_attr_name))
for attr in FRAME_ATTR_NAMES_SET():
value = getattr(coords, attr, None)
use_value = (isinstance(coords, SkyCoord)
or attr not in coords._attr_names_with_defaults)
if use_value and value is not None:
valid_kwargs[attr] = value
elif isinstance(coords, BaseRepresentation):
data = coords.represent_as(frame.representation)
values = [getattr(data, repr_attr_name) for repr_attr_name in repr_attr_names]
elif (isinstance(coords, np.ndarray) and coords.dtype.kind in 'if'
and coords.ndim == 2 and coords.shape[1] <= 3):
# 2-d array of coordinate values. Handle specially for efficiency.
values = coords.transpose() # Iterates over repr attrs
elif isinstance(coords, (collections.Sequence, np.ndarray)):
# Handles generic list-like input.
# First turn into a list of lists like [[v1_0, v2_0, v3_0], ... [v1_N, v2_N, v3_N]]
vals = []
for ii, coord in enumerate(coords):
if isinstance(coord, six.string_types):
coord1 = coord.split()
if len(coord1) == 6:
coord1 = (' '.join(coord1[:3]), ' '.join(coord1[3:]))
coord = coord1
vals.append(coord) # This assumes coord is a sequence at this point
# Do some basic validation of the list elements: all have a length and all
# lengths the same
try:
n_coords = sorted(set(len(x) for x in vals))
except:
raise ValueError('One or more elements of input sequence does not have a length')
if len(n_coords) > 1:
raise ValueError('Input coordinate values must have same number of elements, found {0}'
.format(n_coords))
n_coords = n_coords[0]
# Must have no more coord inputs than representation attributes
if n_coords > n_attr_names:
raise ValueError('Input coordinates have {0} values but {1} representation '
'only accepts {2}'
.format(n_coords, frame.representation.get_name(), n_attr_names))
# Now transpose vals to get [(v1_0 .. v1_N), (v2_0 .. v2_N), (v3_0 .. v3_N)]
# (ok since we know it is exactly rectangular). (Note: can't just use zip(*values)
# because Longitude et al distinguishes list from tuple so [a1, a2, ..] is needed
# while (a1, a2, ..) doesn't work.
values = [list(x) for x in zip(*vals)]
if is_scalar:
values = [x[0] for x in values]
else:
raise ValueError('Cannot parse coordinates from first argument')
# Finally we have a list of values from which to create the keyword args
# for the frame initialization. Validate by running through the appropriate
# class initializer and supply units (which might be None).
try:
for frame_attr_name, repr_attr_class, value, unit in zip(
frame_attr_names, repr_attr_classes, values, units):
valid_kwargs[frame_attr_name] = repr_attr_class(value, unit=unit)
except Exception as err:
raise ValueError('Cannot parse longitude and latitude from first argument: {0}'
.format(err))
return valid_kwargs
def _get_representation_attrs(frame, units, kwargs):
"""
Find instances of the "representation attributes" for specifying data
for this frame. Pop them off of kwargs, run through the appropriate class
constructor (to validate and apply unit), and put into the output
valid_kwargs. "Representation attributes" are the frame-specific aliases
for the underlying data values in the representation, e.g. "ra" for "lon"
for many equatorial spherical representations, or "w" for "x" in the
cartesian representation of Galactic.
"""
frame_attr_names = frame.representation_component_names.keys()
repr_attr_classes = frame.representation.attr_classes.values()
valid_kwargs = {}
for frame_attr_name, repr_attr_class, unit in zip(frame_attr_names, repr_attr_classes, units):
value = kwargs.pop(frame_attr_name, None)
if value is not None:
valid_kwargs[frame_attr_name] = repr_attr_class(value, unit=unit)
return valid_kwargs