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CHAPTER
ONE

DOWNLOADS

Please reference this documentation as https://doi.org/10.5281/zenodo.7037337.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.7037338.

1.1 Source code

* As ftp ftp://ftp.gromacs.org/gromacs/gromacs-2022.3.tar.gz
* As https https://ftp.gromacs.org/gromacs/gromacs-2022.3.tar.gz
e (mdSsum 50389834d8f1a8808b75c7e81bf82133)

Other source code versions may be found at the web site.

1.2 Regression tests

e https://ftp.gromacs.org/regressiontests/regressiontests-2022.3.tar.gz

e (mdSsum 8584acd009f9c98336107b88f245563a)
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CHAPTER
TWO

INSTALLATION GUIDE

2.1 Introduction to building GROMACS

These instructions pertain to building GROMACS 2022.3. You might also want to check the up-to-
date installation instructions.

2.1.1 Quick and dirty installation

1. Get the latest version of your C and C++ compilers.

Check that you have CMake version 3.16.3 or later.

Get and unpack the latest version of the GROMACS tarball.
Make a separate build directory and change to it.

Run cmake with the path to the source as an argument

Run make, make check,andmake install

A R

Source GMXRC to get access to GROMACS
Or, as a sequence of commands to execute:

tar xfz gromacs-2022.3.tar.gz

cd gromacs-2022.3

mkdir build

cd build

cmake .. —-DGMX_ BUILD_OWN_FFTW=ON —-DREGRESSIONTEST_DOWNLOAD=ON
make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

This will download and build first the prerequisite FFT library followed by GROMACS. If you already
have FFTW installed, you can remove that argument to cmake. Overall, this build of GROMACS
will be correct and reasonably fast on the machine upon which cmake ran. On another machine,
it may not run, or may not run fast. If you want to get the maximum value for your hardware with
GROMACS, you will have to read further. Sadly, the interactions of hardware, libraries, and compilers
are only going to continue to get more complex.
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2.1.2 Quick and dirty cluster installation

On a cluster where users are expected to be running across multiple nodes using MPI, make one
installation similar to the above, and another using -DGMX_MP I=on. The latter will install binaries
and libraries named using a default suffix of _mpi ie gmx_mpi. Hence it is safe and common
practice to install this into the same location where the non-MPI build is installed.

2.1.3 Typical installation

As above, and with further details below, but you should consider using the following CMake options
(page 10) with the appropriate value instead of xxx :

e —-DCMAKE_C_COMPILER=xxx equal to the name of the C99 Compiler (page 5) you wish to
use (or the environment variable CC)

* -DCMAKE_CXX_COMPILER=xxx equal to the name of the C++17 compiler (page 5) you wish
to use (or the environment variable CXX)

e —DGMX_MP I=on to build using MPI support (page 6)
e —DGMX_GPU=CUDA to build with NVIDIA CUDA support enabled.
* —-DGMX_GPU=0penCL to build with OpenCL support enabled.

e —DGMX_GPU=SYCL to build with SYCL support enabled (using Intel oneAPI DPC++ by de-
fault).

e -DGMX_SYCL_HIPSYCL=on to build with SYCL support using hipSYCL (requires
-DGMX_GPU=SYCL).

* —DGMX_SIMD=xxx to specify the level of SIMD support (page 10) of the node on which GRO-
MACS will run

* —~DGMX_DOUBLE=o0n to build GROMACS in double precision (slower, and not normally use-
ful)

¢ -DCMAKE_PREFIX_PATH=xxx to add a non-standard location for CMake to search for li-
braries, headers or programs (page 12)

¢ —DCMAKE_INSTALL_PREFIX=xxx to install GROMACS to a non-standard location
(page 10) (default /usr/local/gromacs)

e -DBUILD_SHARED_LIBS=0ff to turn off the building of shared libraries to help with szatic
linking (page 15)

¢ —-DGMX_FFT_LIBRARY=xxx to select whether to use £ ftw3, mk1 or fftpack libraries for
FFT support (page 7)

¢ -DCMAKE_BUILD_TYPE=Debug to build GROMACS in debug mode

2.1.4 Building older versions

Installation instructions for old GROMACS versions can be found at the GROMACS documentation
page.

2.1. Introduction to building GROMACS 4


https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.khronos.org/sycl/
https://github.com/illuhad/hipSYCL
http://manual.gromacs.org/documentation
http://manual.gromacs.org/documentation

GROMACS Documentation, Release 2022.3

2.2 Prerequisites

2.2.1 Platform

GROMACS can be compiled for many operating systems and architectures. These include any dis-
tribution of Linux, Mac OS X or Windows, and architectures including x86, AMD64/x86-64, several
PowerPC including POWERS, ARM v8, and SPARC VIIL

2.2.2 Compiler

GROMACS can be compiled on any platform with ANSI C99 and C++17 compilers, and their re-
spective standard C/C++ libraries. Good performance on an OS and architecture requires choosing a
good compiler. We recommend gcc, because it is free, widely available and frequently provides the
best performance.

You should strive to use the most recent version of your compiler. Since we require full C++17
support the minimum compiler versions supported by the GROMACS team are

* GNU (gec/libstde++) 7
e LLVM (clang/libc++) 7
¢ Microsoft (MSVC) 2019

Other compilers may work (Cray, Pathscale, older clang) but do not offer competitive performance.
We recommend against PGI because the performance with C++ is very bad.

The Intel classic compiler (icc/icpc) is no longer supported in GROMACS. Use Intel’s newer clang-
based compiler from oneAPI, or gcc.

The xlc compiler is not supported and version 16.1 does not compile on POWER architectures for
GROMACS-2022.3. We recommend to use the gcc compiler instead, as it is being extensively tested.

You may also need the most recent version of other compiler toolchain components beside the com-
piler itself (e.g. assembler or linker); these are often shipped by your OS distribution’s binutils pack-
age.

C++17 support requires adequate support in both the compiler and the C++ library. The gcc and
MSVC compilers include their own standard libraries and require no further configuration. If your
vendor’s compiler also manages the standard library library via compiler flags, these will be honored.
For configuration of other compilers, read on.

On Linux, the clang compilers typically use for their C++ library the libstdc++ which comes with
g++. For GROMACS, we require the compiler to support libstc++ version 7.1 or higher. To select
a particular libstdc++ library, provide the path to g++ with ~-DGMX_GPLUSPLUS_PATH=/path/
to/g++.

To build with clang and llvm’s libcxx standard library, use —-DCMAKE_CXX_-
FLAGS=-stdlib=libc++.

If you are running on Mac OS X, the best option is gcc. The Apple clang compiler provided by
MacPorts will work, but does not support OpenMP, so will probably not provide best performance.

For all non-x86 platforms, your best option is typically to use gcc or the vendor’s default or recom-
mended compiler, and check for specialized information below.

For updated versions of gcc to add to your Linux OS, see
e Ubuntu: Ubuntu toolchain ppa page
* RHEL/CentOS: EPEL page or the RedHat Developer Toolset

2.2. Prerequisites 5
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2.2.3 Compiling with parallelization options

For maximum performance you will need to examine how you will use GROMACS and what hard-
ware you plan to run on. Often OpenMP parallelism is an advantage for GROMACS, but support for
this is generally built into your compiler and detected automatically.

GPU support

GROMACS has excellent support for NVIDIA GPUs supported via CUDA. On Linux, NVIDIA
CUDA toolkit with minimum version 11.0 is required, and the latest version is strongly encouraged.
NVIDIA GPUs with at least NVIDIA compute capability 3.5 are required. You are strongly rec-
ommended to get the latest CUDA version and driver that supports your hardware, but beware of
possible performance regressions in newer CUDA versions on older hardware. While some CUDA
compilers (nvcc) might not officially support recent versions of gcc as the back-end compiler, we still
recommend that you at least use a gcc version recent enough to get the best SIMD support for your
CPU, since GROMACS always runs some code on the CPU. It is most reliable to use the same C++
compiler version for GROMACS code as used as the host compiler for nvcc.

To make it possible to use other accelerators, GROMACS also includes OpenCL support. The mini-
mum OpenCL version required is unknown and only 64-bit implementations are supported. The cur-
rent OpenCL implementation is recommended for use with GCN-based AMD GPUs, and on Linux we
recommend the ROCm runtime. Intel integrated GPUs are supported with the Neo drivers. OpenCL is
also supported with NVIDIA GPUs, but using the latest NVIDIA driver (which includes the NVIDIA
OpenCL runtime) is recommended. Also note that there are performance limitations (inherent to the
NVIDIA OpenCL runtime). It is not possible to support both Intel and other vendors’ GPUs with
OpenCL. A 64-bit implementation of OpenCL is required and therefore OpenCL is only supported
on 64-bit platforms.

Since GROMACS 2021, the support for SYCL is added. The current SYCL implementation can be
compiled either with Intel one API DPC++ compiler for Intel GPUs, or with hipSYCL compiler and
ROCm runtime for AMD GFX9 and CDNA GPUs. Using other devices supported by these compilers
is possible, but not recommended.

It is not possible to configure several GPU backends in the same build of GROMACS.

MPI support

GROMACS can run in parallel on multiple cores of a single workstation using its built-in thread-MPI.
No user action is required in order to enable this.

If you wish to run in parallel on multiple machines across a network, you will need to have an MPI
library installed that supports the MPI 2.0 standard. That’s true for any MPI library version released
since about 2009, but the GROMACS team recommends the latest version (for best performance) of
either your vendor’s library, OpenMPI or MPICH.

To compile with MPI set your compiler to the normal (non-MPI) compiler and add -DGMX_MP I=on
to the cmake options. It is possible to set the compiler to the MPI compiler wrapper but it is neither
necessary nor recommended.

2.2. Prerequisites 6
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GPU-aware MPI support

In simulations using multiple GPUs, an MPI implementation with GPU support allows communica-
tion to be performed directly between the distinct GPU memory spaces without staging through CPU
memory, often resulting in higher bandwidth and lower latency communication. The only current
support for this in GROMACS is with a CUDA build targeting Nvidia GPUs using “CUDA-aware”
MPI libraries. For more details, see Introduction to CUDA-aware MPI.

To use CUDA-aware MPI for direct GPU communication we recommend using the latest OpenMPI
version (>=4.1.0) with the latest UCX version (>=1.10), since most GROMACS internal testing on
CUDA -aware support has been performed using these versions. OpenMPI with CUDA-aware support
can be built following the procedure in these OpenMPI build instructions.

With GMX_MPI=0N, GROMACS attempts to automatically detect CUDA support in the underlying
MPI library at compile time, and enables direct GPU communication when this is detected. However,
there are some cases when GROMACS may fail to detect existing CUDA-aware support, in which
case it can be manually enabled by setting environment variable GMX_FORCE_GPU_AWARE_MPI=1
at runtime (although such cases still lack substantial testing, so we urge the user to carefully check
correctness of results against those using default build options, and report any issues).

2.2.4 CMake

GROMACS builds with the CMake build system, requiring at least version 3.16.3. You can check
whether CMake is installed, and what version it is, with cmake —--version. If you need to install
CMake, then first check whether your platform’s package management system provides a suitable
version, or visit the CMake installation page for pre-compiled binaries, source code and installation
instructions. The GROMACS team recommends you install the most recent version of CMake you
can.

2.2.5 Fast Fourier Transform library

Many simulations in GROMACS make extensive use of fast Fourier transforms, and a software library
to perform these is always required. We recommend FFTW (version 3 or higher only) or Intel MKL.
The choice of library can be set with cmake -DGMX_FFT_LIBRARY=<name>, where <name>
is one of fftw3, mkl, or fftpack. FFTPACK is bundled with GROMACS as a fallback, and
is acceptable if simulation performance is not a priority. When choosing MKL, GROMACS will
also use MKL for BLAS and LAPACK (see linear algebra libraries (page 16)). Generally, there is no
advantage in using MKL with GROMACS, and FFTW is often faster. With PME GPU offload support
using CUDA, a GPU-based FFT library is required. The CUDA-based GPU FFT library cuFFT is part
of the CUDA toolkit (required for all CUDA builds) and therefore no additional software component
is needed when building with CUDA GPU acceleration.

Using FFTW

FFTW is likely to be available for your platform via its package management system, but there can
be compatibility and significant performance issues associated with these packages. In particular,
GROMACS simulations are normally run in “mixed” floating-point precision, which is suited for
the use of single precision in FFTW. The default FFTW package is normally in double precision,
and good compiler options to use for FFTW when linked to GROMACS may not have been used.
Accordingly, the GROMACS team recommends either

* that you permit the GROMACS installation to download and build FFTW from source automat-
ically for you (use cmake —-DGMX_BUILD_OWN_FFTW=0ON), or

* that you build FFTW from the source code.

If you build FFTW from source yourself, get the most recent version and follow the FFTW in-
stallation guide. Choose the precision for FFTW (i.e. single/float vs. double) to match whether

2.2. Prerequisites 7


https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.open-mpi.org/faq/?category=buildcuda
http://www.cmake.org/install/
http://www.fftw.org
https://software.intel.com/en-us/intel-mkl
http://www.fftw.org
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization

GROMACS Documentation, Release 2022.3

you will later use mixed or double precision for GROMACS. There is no need to compile FFTW
with threading or MPI support, but it does no harm. On x86 hardware, compile with both
-—enable-sse2and —~—enable-avx for FFTW-3.3.4 and earlier. From FFTW-3.3.5, you should
also add ——enable-avx2 also. On Intel processors supporting 512-wide AVX, including KNL,
add ——enable-avx512 also. FFTW will create a fat library with codelets for all different in-
struction sets, and pick the fastest supported one at runtime. On ARM architectures with SIMD
support and IBM Power8 and later, you definitely want version 3.3.5 or later, and to compile it with
—-—enable-neon and ——enable-vsx, respectively, for SIMD support. If you are using a Cray,
there is a special modified (commercial) version of FFTs using the FFTW interface which can be
slightly faster.

Using MKL

Use MKL bundled with Intel compilers by setting up the compiler environment, e.g., through
source /path/to/compilervars.sh intel64 or similar before running CMake includ-
ing setting -DGMX_FFT_LIBRARY=mk]1.

If you need to customize this further, use

cmake -DGMX_FFT_LIBRARY=mkl \
-DMKL_LIBRARIES="/full/path/to/libone.so; /full/path/to/
—libtwo.so" \
-DMKL_INCLUDE_DIR="/full/path/to/mkl/include"

The full list and order(!) of libraries you require are found in Intel’s MKL documentation for your
system.

Using ARM Performance Libraries

The ARM Performance Libraries provides FFT transforms implementation for ARM architec-
tures. Preliminary support is provided for ARMPL in GROMACS through its FFTW-compatible
API. Assuming that the ARM HPC toolchain environment including the ARMPL paths are set
up (e.g. through loading the appropriate modules like module load Module-Prefix/
arm-hpc-compiler-X.Y/armpl/X.Y) use the following cmake options:

cmake -DGMX_FFT_LIBRARY=fftw3 \
—-DFFTWF_LIBRARY="S5{ARMPIL_DIR/}/lib/libarmpl_lp64d.so" \
~-DFFTWF_INCLUDE_DIR=5{ARMPL_DIR}/include

2.2.6 Other optional build components

* Run-time detection of hardware capabilities can be improved by linking with hwloc. By default
this is turned off since it might not be supported everywhere, but if you have hwloc installed it
should work by just setting ~-DGMX_ HWLOC=0N

¢ Hardware-optimized BLAS and LAPACK libraries are useful for a few of the GROMACS utili-
ties focused on normal modes and matrix manipulation, but they do not provide any benefits for
normal simulations. Configuring these is discussed at linear algebra libraries (page 16).

* The built-in GROMACS trajectory viewer gmx view requires X11 and Motif/Lesstif libraries
and header files. You may prefer to use third-party software for visualization, such as VMD or
PyMol.

¢ An external TNG library for trajectory-file handling can be used by setting -DGMX_ -
EXTERNAL_TNG=yes, but TNG 1.7.10 is bundled in the GROMACS source already.

* The Imfit library for Levenberg-Marquardt curve fitting is used in GROMACS. Only Imfit 7.0
is supported. A reduced version of that library is bundled in the GROMACS distribution,
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and the default build uses it. That default may be explicitly enabled with ~-DGMX_USE_ -
LMFIT=internal. To use an external Imfit library, set -DGMX_USE_LMFIT=external,
and adjust CMAKE_PREFIX_PATH as needed. Imfit support can be disabled with ~-DGMX_ —
USE_LMFIT=none.

* zlib is used by TNG for compressing some kinds of trajectory data

¢ Building the GROMACS documentation is optional, and requires ImageMagick, pdflatex, bib-
tex, doxygen, python 3.6, sphinx 1.6.1, and pygments.

* The GROMACS utility programs often write data files in formats suitable for the Grace plotting
tool, but it is straightforward to use these files in other plotting programs, too.

* Set -DGMX_PYTHON_PACKAGE=0N when configuring GROMACS with CMake to enable ad-
ditional CMake targets for the gmxapi Python package and sample_restraint package from the
main GROMACS CMake build. This supports additional testing and documentation generation.

2.3 Doing a build of GROMACS

This section will cover a general build of GROMACS with CMake (page 7), but it is not an exhaustive
discussion of how to use CMake. There are many resources available on the web, which we suggest
you search for when you encounter problems not covered here. The material below applies specifi-
cally to builds on Unix-like systems, including Linux, and Mac OS X. For other platforms, see the
specialist instructions below.

2.3.1 Configuring with CMake

CMake will run many tests on your system and do its best to work out how to build GROMACS for
you. If your build machine is the same as your target machine, then you can be sure that the defaults
and detection will be pretty good. However, if you want to control aspects of the build, or you are
compiling on a cluster head node for back-end nodes with a different architecture, there are a few
things you should consider specifying.

The best way to use CMake to configure GROMACS is to do an “out-of-source” build, by making
another directory from which you will run CMake. This can be outside the source directory, or a
subdirectory of it. It also means you can never corrupt your source code by trying to build it! So,
the only required argument on the CMake command line is the name of the directory containing the
CMakeLists.txt file of the code you want to build. For example, download the source tarball and
use

tar xfz gromacs-2022.3.tgz
cd gromacs-2022.3

mkdir build-gromacs

cd build-gromacs

cmake

You will see cmake report a sequence of results of tests and detections done by the GROMACS build
system. These are written to the cmake cache, kept in CMakeCache.txt. You can edit this file
by hand, but this is not recommended because you could make a mistake. You should not attempt to
move or copy this file to do another build, because file paths are hard-coded within it. If you mess
things up, just delete this file and start again with cmake.

If there is a serious problem detected at this stage, then you will see a fatal error and some suggestions
for how to overcome it. If you are not sure how to deal with that, please start by searching on the web
(most computer problems already have known solutions!) and then consult the gmx-users mailing
list. There are also informational warnings that you might like to take on board or not. Piping the
output of cmake through less or tee can be useful, too.

Once cmake returns, you can see all the settings that were chosen and information about them by
using e.g. the curses interface
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ccmake

You can actually use ccmake (available on most Unix platforms) directly in the first step, but then
most of the status messages will merely blink in the lower part of the terminal rather than be written
to standard output. Most platforms including Linux, Windows, and Mac OS X even have native
graphical user interfaces for cmake, and it can create project files for almost any build environment
you want (including Visual Studio or Xcode). Check out running CMake for general advice on what
you are seeing and how to navigate and change things. The settings you might normally want to
change are already presented. You may make changes, then re-configure (using c), so that it gets
a chance to make changes that depend on yours and perform more checking. It may take several
configuration passes to reach the desired configuration, in particular if you need to resolve errors.

When you have reached the desired configuration with ccmake, the build system can be generated
by pressing g. This requires that the previous configuration pass did not reveal any additional settings
(if it did, you need to configure once more with c). With cmake, the build system is generated after
each pass that does not produce errors.

You cannot attempt to change compilers after the initial run of cmake. If you need to change, clean
up, and start again.

Where to install GROMACS

GROMACS is installed in the directory to which CMAKE_INSTALL_PREFIX points. It may not
be the source directory or the build directory. You require write permissions to this directory. Thus,
without super-user privileges, CMAKE_INSTALL_PREFIX will have to be within your home direc-
tory. Even if you do have super-user privileges, you should use them only for the installation phase,
and never for configuring, building, or running GROMACS!

Using CMake command-line options

Once you become comfortable with setting and changing options, you may know in advance how
you will configure GROMACS. If so, you can speed things up by invoking cmake and passing the
various options at once on the command line. This can be done by setting cache variable at the
cmake invocation using ~-DOPTION=VALUE. Note that some environment variables are also taken
into account, in particular variables like CC and CXX.

For example, the following command line

cmake .. —-DGMX_GPU=CUDA -DGMX_MPI=ON -DCMAKE_INSTALL_PREFIX=/home/
—marydoe/programs

can be used to build with CUDA GPUs, MPI and install in a custom location. You can even save that
in a shell script to make it even easier next time. You can also do this kind of thing with ccmake, but
you should avoid this, because the options set with —D will not be able to be changed interactively in
that run of ccmake.

SIMD support

GROMACS has extensive support for detecting and using the SIMD capabilities of many modern
HPC CPU architectures. If you are building GROMACS on the same hardware you will run it on,
then you don’t need to read more about this, unless you are getting configuration warnings you do not
understand. By default, the GROMACS build system will detect the SIMD instruction set supported
by the CPU architecture (on which the configuring is done), and thus pick the best available SIMD
parallelization supported by GROMACS. The build system will also check that the compiler and
linker used also support the selected SIMD instruction set and issue a fatal error if they do not.

Valid values are listed below, and the applicable value with the largest number in the list is generally
the one you should choose. In most cases, choosing an inappropriate higher number will lead to

2.3. Doing a build of GROMACS 10


http://www.cmake.org/runningcmake/

GROMACS Documentation, Release 2022.3

compiling a binary that will not run. However, on a number of processor architectures choosing the
highest supported value can lead to performance loss, e.g. on Intel Skylake-X/SP and AMD Zen.

1. None For use only on an architecture either lacking SIMD, or to which GROMACS has not yet
been ported and none of the options below are applicable.

2. SSE2 This SIMD instruction set was introduced in Intel processors in 2001, and AMD in 2003.
Essentially all x86 machines in existence have this, so it might be a good choice if you need to
support dinosaur x86 computers too.

3. SSE4.1 Present in all Intel core processors since 2007, but notably not in AMD Magny-Cours.
Still, almost all recent processors support this, so this can also be considered a good baseline if
you are content with slow simulations and prefer portability between reasonably modern pro-
CEssors.

4. AVX_128_FMA AMD Bulldozer, Piledriver (and later Family 15h) processors have this but it
is NOT supported on any AMD processors since Zenl.

5. AVX_ 256 Intel processors since Sandy Bridge (2011). While this code will work on the AMD
Bulldozer and Piledriver processors, it is significantly less efficient than the AVX_128_FMA
choice above - do not be fooled to assume that 256 is better than 128 in this case.

6. AVX2_128 AMD Zen/Zen2 and Hygon Dhyana microarchitecture processors; it will enable
AVX2 with 3-way fused multiply-add instructions. While these microarchitectures do support
256-bit AVX2 instructions, hence AVX2_256 is also supported, 128-bit will generally be faster,
in particular when the non-bonded tasks run on the CPU — hence the default AVX2_128. With
GPU offload however AVX2_ 256 can be faster on Zen processors.

7. AVX2_256 Present on Intel Haswell (and later) processors (2013), and it will also enable Intel
3-way fused multiply-add instructions.

8. AVX_512 Skylake-X desktop and Skylake-SP Xeon processors (2017); it will generally be
fastest on the higher-end desktop and server processors with two 512-bit fused multiply-add
units (e.g. Core i9 and Xeon Gold). However, certain desktop and server models (e.g. Xeon
Bronze and Silver) come with only one AVX512 FMA unit and therefore on these processors
AVX2_ 256 is faster (compile- and runtime checks try to inform about such cases). Additionally,
with GPU accelerated runs AVX2_256 can also be faster on high-end Skylake CPUs with both
512-bit FMA units enabled.

9. AVX_512_KNL Knights Landing Xeon Phi processors
10. IBM_VvSX Power7, Power8, Power9 and later have this.
11. ARM_NEON_ASIMD 64-bit ARMvS and later.

12. ARM_SVE 64-bit ARMvS and later with the Scalable Vector Extensions (SVE). The SVE vector
length is fixed at CMake configure time. The default vector length is automatically detected,
and this can be changed via the GMX_SIMD_ARM_SVE_LENGTH CMake variable. Minimum
required compiler versions are GNU >= 10, LLVM >=13, or ARM >= 21.1. For maximum
performance we strongly suggest the latest gcc compilers, or at least LLVM 14 (when released)
or ARM 22.0 (when released). Lower performance has been observed with LLVM 13 and Arm
compiler 21.1.

The CMake configure system will check that the compiler you have chosen can target the architecture
you have chosen. mdrun will check further at runtime, so if in doubt, choose the lowest number you
think might work, and see what mdrun says. The configure system also works around many known
issues in many versions of common HPC compilers.

A further GMX_SIMD=Reference option exists, which is a special SIMD-like implementation
written in plain C that developers can use when developing support in GROMACS for new SIMD
architectures. It is not designed for use in production simulations, but if you are using an architecture
with SIMD support to which GROMACS has not yet been ported, you may wish to try this option
instead of the default GMX__SIMD=None, as it can often out-perform this when the auto-vectorization
in your compiler does a good job. And post on the GROMACS mailing lists, because GROMACS
can probably be ported for new SIMD architectures in a few days.
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CMake advanced options

The options that are displayed in the default view of ccmake are ones that we think a reasonable
number of users might want to consider changing. There are a lot more options available, which
you can see by toggling the advanced mode in ccmake on and off with t. Even there, most of the
variables that you might want to change have a CMAKE__ or GMX__ prefix. There are also some options
that will be visible or not according to whether their preconditions are satisfied.

Helping CMake find the right libraries, headers, or programs
If libraries are installed in non-default locations their location can be specified using the following
variables:

¢ CMAKE_ INCLUDE_PATH for header files

e CMAKE_LIBRARY_PATH for libraries

* CMAKE_PREFIX_PATH for header, libraries and binaries (e.g. /usr/local).

The respective include, 1ib, or bin is appended to the path. For each of these variables, a list of

TR

paths can be specified (on Unix, separated with “:”). These can be set as environment variables like:

CMAKE_PREFIX _PATH=/opt/fftw:/opt/cuda cmake

(assuming bash shell). Alternatively, these variables are also cmake options, so they can be set like
-DCMAKE_PREFIX_PATH=/opt/fftw:/opt/cuda.

The CC and CXX environment variables are also useful for indicating to cmake which compilers to
use. Similarly, CFLAGS/CXXFLAGS can be used to pass compiler options, but note that these will
be appended to those set by GROMACS for your build platform and build type. You can customize
some of this with advanced CMake options such as CMAKE_C_FLAGS and its relatives.

See also the page on CMake environment variables.

CUDA GPU acceleration

If you have the CUDA Toolkit installed, you can use cmake with:

cmake .. —-DGMX_GPU=CUDA -DCUDA_TOOLKIT_ ROOT DIR=/usr/local/cuda

(or whichever path has your installation). In some cases, you might need to specify manually which
of your C++ compilers should be used, e.g. with the advanced option CUDA_HOST_COMPILER.

By default, code will be generated for the most common CUDA architectures. However, to reduce
build time and binary size we do not generate code for every single possible architecture, which in
rare cases (say, Tegra systems) can result in the default build not being able to use some GPUs. If
this happens, or if you want to remove some architectures to reduce binary size and build time, you
can alter the target CUDA architectures. This can be done either with the GMX_CUDA_TARGET_SM
or GMX_CUDA_TARGET_COMPUTE CMake variables, which take a semicolon delimited string with
the two digit suffixes of CUDA (virtual) architectures names, for instance “35;50;51;52;53;60”. For
details, see the “Options for steering GPU code generation” section of the nvcc man / help or Chapter
6. of the nvec manual.

The GPU acceleration has been tested on AMD64/x86-64 platforms with Linux, Mac OS X and
Windows operating systems, but Linux is the best-tested and supported of these. Linux running on
POWER 8 and ARM v8 CPUs also works well.

Experimental support is available for compiling CUDA code, both for host and device, using clang
(version 6.0 or later). A CUDA toolkit is still required but it is used only for GPU device code gener-
ation and to link against the CUDA runtime library. The clang CUDA support simplifies compilation
and provides benefits for development (e.g. allows the use code sanitizers in CUDA host-code). Ad-
ditionally, using clang for both CPU and GPU compilation can be beneficial to avoid compatibility
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issues between the GNU toolchain and the CUDA toolkit. clang for CUDA can be triggered using the
GMX_CLANG_CUDA=0ON CMake option. Target architectures can be selected with GMX_CUDA_ -
TARGET_SM, virtual architecture code is always embedded for all requested architectures (hence
GMX_CUDA_TARGET_COMPUTE is ignored). Note that this is mainly a developer-oriented fea-
ture and it is not recommended for production use as the performance can be significantly lower than
that of code compiled with nvce (and it has also received less testing). However, note that since clang
5.0 the performance gap is only moderate (at the time of writing, about 20% slower GPU kernels), so
this version could be considered in non performance-critical use-cases.

OpenCL GPU acceleration

The primary targets of the GROMACS OpenCL support is accelerating simulations on AMD and
Intel hardware. For AMD, we target both discrete GPUs and APUs (integrated CPU+GPU chips),
and for Intel we target the integrated GPUs found on modern workstation and mobile hardware. The
GROMACS OpenCL on NVIDIA GPUs works, but performance and other limitations make it less
practical (for details see the user guide).

To build GROMACS with OpenCL support enabled, two components are required: the OpenCL head-
ers and the wrapper library that acts as a client driver loader (so-called ICD loader). The additional,
runtime-only dependency is the vendor-specific GPU driver for the device targeted. This also con-
tains the OpenCL compiler. As the GPU compute kernels are compiled on-demand at run time, this
vendor-specific compiler and driver is not needed for building GROMACS. The former, compile-time
dependencies are standard components, hence stock versions can be obtained from most Linux dis-
tribution repositories (e.g. opencl-headers and ocl-icd-libopencll on Debian/Ubuntu).
Only the compatibility with the required OpenCL version unknown needs to be ensured. Alterna-
tively, the headers and library can also be obtained from vendor SDKs, which must be installed in
a path found in CMAKE_PREFIX_PATH (or via the environment variables AMDAPPSDKROOT or
CUDA_PATH).

To trigger an OpenCL build the following CMake flags must be set

cmake .. —-DGMX_GPU=0OpenCL

To build with support for Intel integrated GPUs, it is required to add ~-DGMX_GPU_NB_CLUSTER_—
SIZE=4 to the cmake command line, so that the GPU kernels match the characteristics of the hard-
ware. The Neo driver is recommended.

On Mac OS, an AMD GPU can be used only with OS version 10.10.4 and higher; earlier OS versions
are known to run incorrectly.

By default, any cIFFT library on the system will be used with GROMACS, but if none is found then
the code will fall back on a version bundled with GROMACS. To require GROMACS to link with an
external library, use

cmake .. —-DGMX_GPU=0OpenCL -DclFFT_ROOT_DIR=/path/to/your/clFFT -
—DGMX_EXTERNAL_CLFFT=TRUE

SYCL GPU acceleration
SYCL is a modern portable heterogeneous acceleration API, with multiple implementations targeting
different hardware platforms (similar to OpenCL).
Currently, supported platforms in GROMACS are:
¢ Intel GPUs using Intel oneAPI DPC++ (both OpenCL and LevelZero backends),

* AMD GPUs with hipSYCL: only discrete GPUs with GFX9 (RX Vega 64, Pro VII, Instinct
MI25, Instinct MI50) and CDNA (Instinct MI100) architectures,

* NVIDIA GPUs (experimental) using either hipSYCL or open-source Intel LLVM.
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Feature support is broader than that of the OpenCL, but not yet on par with CUDA.

The SYCL support in GROMACS is intended to eventually replace OpenCL as an acceleration mech-
anism for AMD and Intel hardware.

Note: SYCL support in GROMACS is less mature than either OpenCL or CUDA. Please, pay extra
attention to simulation correctness when you are using it.

SYCL GPU acceleration for Intel GPUs

You should install the recent Intel oneAPI DPC++ compiler toolkit. For GROMACS 2022, version
2021.4 is recommended. Using open-source Intel LLVM is possible, but not extensively tested. We
also recommend installing the most recent Neo driver.

With the toolkit installed and added to the environment (usually by running source /opt/
intel/oneapi/setvars.sh or using an appropriate module load on an HPC system), the
following CMake flags must be set:

cmake .. —-DCMAKE_C_COMPILER=icx —-DCMAKE_CXX_COMPILER=icpx —-DGMX_
—~GPU=SYCL

SYCL GPU acceleration for AMD GPUs

Using the most recent hipSYCL develop branch and the most recent ROCm release is recom-
mended.

Additionally, we strongly recommend using the ROCm-bundled LLVM for building both hipSYCL
and GROMACS.

The following CMake command can be used when configuring hipSYCL to ensure that the proper
Clang is used (assuming ROCM_PATH is set correctly, e.g. to /opt/rocm in the case of default
installation):

cmake .. —-DCMAKE_C_COMPILER=S{ROCM_PATH}/1lvm/bin/clang —-DCMAKE_
«CXX_COMPILER=${ROCM_PATH)}/1llvm/bin/clang++ —-DLLVM_DIR=5{ROCM
PATH}/11lvm/1lib/cmake/11lvm/

After compiling and installing hipSYCL, the following settings can be used for building GROMACS
itself (set HIPSYCL_TARGETS to the target hardware):

cmake .. —-DCMAKE_C_COMPILER=${ROCM _PATH}/1lvm/bin/clang —DCMAKE_
—CXX_COMPILER=${ROCM PATH/}/1lvm/bin/clang++ —-DGMX_GPU=SYCL -DGMX_
—SYCL_HIPSYCL=ON -DHIPSYCL_TARGETS='hip:gfxXYZ'

SYCL GPU acceleration for NVIDIA GPUs

SYCL support for NVIDIA GPUs is highly experimental. For production, please use CUDA (CUDA
GPU acceleration (page 12)). Note that FFT is not currently supported on NVIDIA devices when
using SYCL, PME offload is only possible in mixed mode (-pme gpu -pmefft cpu).

NVIDIA GPUs can be used with either hipSYCL or the open-source Intel LLVM.

For hipSYCL, make sure that hipSYCL itself is compiled with CUDA support, and supply proper de-
vices via HIPSYCL_TARGETS (e.g., -DHIPSYCL_TARGETS=cuda:sm_75). When compiling
for CUDA, we recommend using the mainline Clang, not the ROCm-bundled one.

For Intel LLVM, make sure it is compiled with CUDA and OpenMP support, then use the following
CMake invocation:

2.3. Doing a build of GROMACS 14


https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/intel/llvm
https://github.com/intel/compute-runtime/releases
https://github.com/illuhad/hipSYCL
https://developer.nvidia.com/cuda-zone
https://github.com/illuhad/hipSYCL
https://github.com/intel/llvm

GROMACS Documentation, Release 2022.3

cmake .. —-DCMAKE_C_COMPILER=/path/to/intel/clang —-DCMAKE_CXX_
:HCOMPILER:/path/to/intel/clang++ —-DGMX_GPU=SYCL -DGMX_GPU_NB__
—CLUSTER_SIZE=8 -DSYCL_CXX_FLAGS_EXTRA=-fsycl-targets=nvptx64-
—nvidia-cuda

SYCL GPU compilation options

The following flags can be passed to CMake in order to tune GROMACS:

—-DGMX_GPU_NB_CLUSTER_SIZE changes the data layout of non-bonded kernels. Default values:
4 when compiling with Intel oneAPI DPC++, 8 when compiling with hipSYCL. Those are
reasonable defaults for Intel and AMD devices, respectively.

-DGMX_SYCL_USE_USM switches between SYCL buffers (OFF) and USM (ON) for data manage-
ment. Default: on (for performance reasons).

Static linking

Dynamic linking of the GROMACS executables will lead to a smaller disk footprint when installed,
and so is the default on platforms where we believe it has been tested repeatedly and found to work.
In general, this includes Linux, Windows, Mac OS X and BSD systems. Static binaries take more
space, but on some hardware and/or under some conditions they are necessary, most commonly when
you are running a parallel simulation using MPI libraries (e.g. Cray).

e To link GROMACS binaries statically against the internal GROMACS libraries, set
—-DBUILD_SHARED_LIBS=O0OFF.

* To link statically against external (non-system) libraries as well, set —-DGMX_PREFER_ -
STATIC_LIBS=ON. Note, that in general cmake picks up whatever is available, so this
option only instructs cmake to prefer static libraries when both static and shared are avail-
able. If no static version of an external library is available, even when the aforementioned
option is ON, the shared library will be used. Also note that the resulting binaries will still
be dynamically linked against system libraries on platforms where that is the default. To use
static system libraries, additional compiler/linker flags are necessary, e.g. —static-libgcc
—-static-libstdc++.

e To attempt to link a fully static binary set -DGMX_BUILD_SHARED_EXE=OFF. This will
prevent CMake from explicitly setting any dynamic linking flags. This option also sets
-DBUILD_SHARED_LIBS=OFF and -DGMX_PREFER_STATIC_LIBS=O0N by default, but
the above caveats apply. For compilers which don’t default to static linking, the required flags
have to be specified. On Linux, this is usually CFLAGS=-static CXXFLAGS=-static.

gmxapi C++ API

For dynamic linking builds and on non-Windows platforms, an extra library and headers
are installed by setting —-DGMXAPI=ON (default). Build targets gmxapi-cppdocs and
gmxapi-cppdocs—dev produce documentation in docs/api-user and docs/api-dev, re-
spectively. For more project information and use cases, refer to the tracked Issue 2585, associated
GitHub gmxapi projects, or DOI 10.1093/bioinformatics/bty484.

gmxapi is not yet tested on Windows or with static linking, but these use cases are targeted for future
versions.
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Portability aspects

A GROMACS build will normally not be portable, not even across hardware with the same base
instruction set, like x86. Non-portable hardware-specific optimizations are selected at configure-
time, such as the SIMD instruction set used in the compute kernels. This selection will be done by
the build system based on the capabilities of the build host machine or otherwise specified to cmake
during configuration.

Often it is possible to ensure portability by choosing the least common denominator of SIMD support,
e.g. SSE2 for x86. In rare cases of very old x86 machines, ensure that you use cmake -DGMX_-—
USE_RDTSCP=0ff if any of the target CPU architectures does not support the RDTSCP instruction.
However, we discourage attempts to use a single GROMACS installation when the execution environ-
ment is heterogeneous, such as a mix of AVX and earlier hardware, because this will lead to programs
(especially mdrun) that run slowly on the new hardware. Building two full installations and locally
managing how to call the correct one (e.g. using a module system) is the recommended approach.
Alternatively, one can use different suffixes to install several versions of GROMACS in the same
location. To achieve this, one can first build a full installation with the least-common-denominator
SIMD instruction set, e.g. ~-DGMX_SIMD=SSE2, in order for simple commands like gmx grompp
to work on all machines, then build specialized gmx binaries for each architecture present in the
heterogeneous environment. By using custom binary and library suffixes (with CMake variables
-DGMX_BINARY_ SUFFIX=xxx and -DGMX_LIBS_SUFFIX=xxx), these can be installed to the
same location.

Linear algebra libraries

As mentioned above, sometimes vendor BLAS and LAPACK libraries can provide performance en-
hancements for GROMACS when doing normal-mode analysis or covariance analysis. For simplic-
ity, the text below will refer only to BLAS, but the same options are available for LAPACK. By
default, CMake will search for BLAS, use it if it is found, and otherwise fall back on a version of
BLAS internal to GROMACS. The cmake option ~-DGMX_EXTERNAL_BLAS=on will be set ac-
cordingly. The internal versions are fine for normal use. If you need to specify a non-standard path
to search, use ~-DCMAKE_PREFIX_PATH=/path/to/search. If you need to specify a library
with a non-standard name (e.g. ESSL on Power machines or ARMPL on ARM machines), then set
-DGMX_BLAS_USER=/path/to/reach/lib/libwhatever.a.

If you are using Inte]l MKL for FFT, then the BLAS and LAPACK it provides are used automatically.
This could be over-ridden with GMX_BLAS_USER, etc.

On Apple platforms where the Accelerate Framework is available, these will be automatically used
for BLAS and LAPACK. This could be over-ridden with GMX_BLAS_USER, etc.

Building with MiMiC QM/MM support

MiMiC QM/MM interface integration will require linking against MiMiC communication library,
that establishes the communication channel between GROMACS and CPMD. The MiMiC Commu-
nication library can be downloaded here. Compile and install it. Check that the installation folder
of the MiMiC library is added to CMAKE_PREFIX_PATH if it is installed in non-standard location.
Building QM/MM-capable version requires double-precision version of GROMACS compiled with
MPI support:

¢ -DGMX_DOUBLE=ON -DGMX_MPI -DGMX_MIMIC=ON

2.3. Doing a build of GROMACS 16


https://software.intel.com/en-us/intel-mkl
https://gitlab.com/MiMiC-projects/CommLib

GROMACS Documentation, Release 2022.3

Building with CP2K QM/MM support

CP2K QM/MM interface integration will require linking against libcp2k library, that incorporates
CP2K functionality into GROMACS.

1. Download, compile and install CP2K (version 8.1 or higher is required). CP2K latest distribu-
tion can be downloaded here. For CP2K specific instructions please follow. You can also check
instructions on the official CP2K web-page.

2. Make 1ibcp2k. a library by executing the following command:: make ARCH=<your
arch file> VERSION=<your version like psmp> libcp2k

The library archive (e.g. libcp2k.a) should appear in the <cp2k dir>/lib/<arch>/
<version>/ directory.

3. Configure GROMACS with cmake, adding the following flags.

Build should be static: * —DBUILD_SHARED_LIBS=0FF -DGMXAPI=OFF -DGMX_-—
INSTALL_NBLIB_API=OFF

Double precision in general is better than single for QM/MM (however both options are viable): *
—-DGMX_DOUBLE=0ON

FFT, BLAS and LAPACK libraries should be the same between CP2K and GROMACS. Use the
following flags to do so:

e —DGMX_FFT_LIBRARY=<your library like fftw3> -DFFTWF_-
LIBRARY=<path to library> -DFFTWF_INCLUDE_DIR=<path to
directory with headers>

¢ -DGMX_BLAS_USER=<path to your BLAS>
¢ —-DGMX_LAPACK_USER=<path to your LAPACK>
4. Compilation of QM/MM interface is controled by the following flags.
—DGMX_CP2K=0ON Activates QM/MM interface compilation
—-DCP2K_DIR="<path to cp2k>/lib/local/psmp Directory with libcp2k.a library

-DCP2K_LINKER FLAGS="<combination of LDFLAGS and LIBS>" Other libraries
used by CP2K. Typically that should be combination of LDFLAGS and LIBS from the ARCH
file used for CP2K compilation. Sometimes ARCH file could have several lines defining
LDFLAGS and LIBS or even split one line into several using “". In that case all of them should
be concatenated into one long string without any extra slashes or quotes.

Changing the names of GROMACS binaries and libraries

It is sometimes convenient to have different versions of the same GROMACS programs installed.
The most common use cases have been single and double precision, and with and without MPI. This
mechanism can also be used to install side-by-side multiple versions of mdrun optimized for different
CPU architectures, as mentioned previously.

By default, GROMACS will suffix programs and libraries for such builds with _d for double preci-
sion and/or _mpi for MPI (and nothing otherwise). This can be controlled manually with GMX_ -
DEFAULT_SUFFIX (ON/OFF), GMX_BINARY_SUFFIX (takes a string) and GMX_LIBS_-
SUFFIX (also takes a string). For instance, to set a custom suffix for programs and libraries, one
might specify:

cmake .. —-DGMX_DEFAULT_SUFFIX=OFF —-DGMX_BINARY_SUFFIX=_mod —-DGMX_
—LIBS_SUFFIX=_mod

Thus the names of all programs and libraries will be appended with _mod.

2.3. Doing a build of GROMACS
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Changing installation tree structure

By default, a few different directories under CMAKE_INSTALL_PREF IX are used when when GRO-
MACS is installed. Some of these can be changed, which is mainly useful for packaging GROMACS
for various distributions. The directories are listed below, with additional notes about some of them.
Unless otherwise noted, the directories can be renamed by editing the installation paths in the main
CMakeLists.txt.

bin/ The standard location for executables and some scripts. Some of the scripts hardcode the
absolute installation prefix, which needs to be changed if the scripts are relocated. The name of
the directory can be changed using CMAKE_INSTALL_BINDIR CMake variable.

include/gromacs/ The standard location for installed headers.

1ib/ The standard location for libraries. The default depends on the system, and is determined by
CMake. The name of the directory can be changed using CMAKE_ INSTALL_LIBDIR CMake
variable.

lib/pkgconfig/ Information about the installed 1ibgromacs library for pkg—configis in-
stalled here. The 1ib/ part adapts to the installation location of the libraries. The installed files
contain the installation prefix as absolute paths.

share/cmake/ CMake package configuration files are installed here.

share/gromacs/ Various data files and some documentation go here. The first part can be
changed using CMAKE_INSTALL_DATADIR, and the second by using GMX_INSTALL_-
DATASUBDIR Using these CMake variables is the preferred way of changing the installation
path for share/gromacs/top/, since the path to this directory is built into 1ibgromacs
as well as some scripts, both as a relative and as an absolute path (the latter as a fallback if
everything else fails).

share/man/ Installed man pages go here.

2.3.2 Compiling and linking

Once you have configured with cmake, you can build GROMACS with make. It is expected that this
will always complete successfully, and give few or no warnings. The CMake-time tests GROMACS
makes on the settings you choose are pretty extensive, but there are probably a few cases we have not
thought of yet. Search the web first for solutions to problems, but if you need help, ask on gmx-users,
being sure to provide as much information as possible about what you did, the system you are building
on, and what went wrong. This may mean scrolling back a long way through the output of make to
find the first error message!

If you have a multi-core or multi-CPU machine with N processors, then using

make —-j N

will generally speed things up by quite a bit. Other build generator systems supported by cmake (e.g.
ninja) also work well.

2.3.3 Installing GROMACS

Finally, make install will install GROMACS in the directory given in CMAKE_INSTALL_-
PREFIX. If this is a system directory, then you will need permission to write there, and you should
use super-user privileges only for make install and not the whole procedure.
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2.3.4 Getting access to GROMACS after installation

GROMACS installs the script GMXRC in the bin subdirectory of the installation directory (e.g. /
usr/local/gromacs/bin/GMXRC), which you should source from your shell:

source /your/installation/prefix/here/bin/GMXRC

It will detect what kind of shell you are running and set up your environment for using GROMACS.
You may wish to arrange for your login scripts to do this automatically; please search the web for
instructions on how to do this for your shell.

Many of the GROMACS programs rely on data installed in the share/gromacs subdirectory of the
installation directory. By default, the programs will use the environment variables set in the GMXRC
script, and if this is not available they will try to guess the path based on their own location. This
usually works well unless you change the names of directories inside the install tree. If you still need
to do that, you might want to recompile with the new install location properly set, or edit the GMXRC
script.

GROMACS also installs a CMake cache file to help with building client software (using the
-C option when configuring the client software with CMake.) For an installation at /your/
installation/prefix/here, hints files will be installed at /your/installation/
prefix/share/cmake/gromacs${GMX_LIBS_SUFFIX}/gromacs—hints$ {GMX_-—
LIBS_SUFFIX}.cmake where ${GMX_LIBS_SUFFIX} is as documented above (page 17).

2.3.5 Testing GROMACS for correctness

Since 2011, the GROMACS development uses an automated system where every new code change
is subject to regression testing on a number of platforms and software combinations. While this
improves reliability quite a lot, not everything is tested, and since we increasingly rely on cutting
edge compiler features there is non-negligible risk that the default compiler on your system could
have bugs. We have tried our best to test and refuse to use known bad versions in cmake, but we
strongly recommend that you run through the tests yourself. It only takes a few minutes, after which
you can trust your build.

The simplest way to run the checks is to build GROMACS with -DREGRESSIONTEST_DOWNLOAD,
and run make check. GROMACS will automatically download and run the tests for you. Al-
ternatively, you can download and unpack the GROMACS regression test suite https://ftp.gromacs.
org/regressiontests/regressiontests-2022.3.tar.gz tarball yourself and use the advanced cmake option
REGRESSIONTEST_PATH to specify the path to the unpacked tarball, which will then be used for
testing. If the above does not work, then please read on.

The regression tests are also available from the download section. Once you have downloaded them,
unpack the tarball, source GMXRC as described above, and run ./gmxtest.pl all inside the
regression tests folder. You can find more options (e.g. adding double when using double precision,
or —only expanded to run just the tests whose names match “expanded”) if you just execute the
script without options.

Hopefully, you will get a report that all tests have passed. If there are individual failed tests it could
be a sign of a compiler bug, or that a tolerance is just a tiny bit too tight. Check the output files
the script directs you too, and try a different or newer compiler if the errors appear to be real. If you
cannot get it to pass the regression tests, you might try dropping a line to the GROMACS users forum,
but then you should include a detailed description of your hardware, and the output of gmx mdrun
—-version (which contains valuable diagnostic information in the header).
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Non-standard suffix

If your gmx program has been suffixed in a non-standard way, then the . /gmxtest.pl -suffix
option will let you specify that suffix to the test machinery. Youcanuse . /gmxtest.pl —-double
to test the double-precision version. You can use ./gmxtest.pl -crosscompiling to stop
the test harness attempting to check that the programs can be run. You can use ./gmxtest.pl
-mpirun srun if your command to run an MPI program is called srun.

Running MPI-enabled tests

The make check target also runs integration-style tests that may run with MPI if GMX_-
MPI=ON was set. To make these work with various possible MPI libraries, you may need
to set the CMake variables MPIEXEC, MPTEXEC_NUMPROC_FLAG, MPIEXEC_PREFLAGS and
MPIEXEC_POSTFLAGS so that mdrun-mpi-test_mpi would run on multiple ranks via the shell

command
MPIEXEC MPIEXEC_NUMPROC_FLAG NUMPROC MPIEXEC_PREFLAGS} \
mdrun-mpi-test_mpi MPIEXEC POSTFLAGS} —-otherflags

A typical example for SLURM is

cmake .. -DGMX MPI=on -DMPIEXEC=srun —-DMPIEXEC_NUMPROC_FLAG=-n -
—~DMPIEXEC_PREFLAGS= -DMPIEXEC_POSTFLAGS=

2.3.6 Testing GROMACS for performance

We are still working on a set of benchmark systems for testing the performance of GROMACS. Until
that is ready, we recommend that you try a few different parallelization options, and experiment with
tools such as gmx tune_pme.

2.3.7 Having difficulty?

You are not alone - this can be a complex task! If you encounter a problem with installing GROMACS,
then there are a number of locations where you can find assistance. It is recommended that you follow
these steps to find the solution:

1. Read the installation instructions again, taking note that you have followed each and every step
correctly.

2. Search the GROMACS webpage and users emailing list for information on the er-
ror. Adding site:https://mailman-1.sys.kth.se/pipermail/gromacs.
org_gmx—users to a Google search may help filter better results.

3. Search the internet using a search engine such as Google.

4. Post to the GROMACS users emailing list gmx-users for assistance. Be sure to give a full
description of what you have done and why you think it did not work. Give details about
the system on which you are installing. Copy and paste your command line and as much of
the output as you think might be relevant - certainly from the first indication of a problem.
In particular, please try to include at least the header from the mdrun logfile, and preferably
the entire file. People who might volunteer to help you do not have time to ask you interactive
detailed follow-up questions, so you will get an answer faster if you provide as much information
as you think could possibly help. High quality bug reports tend to receive rapid high quality
answers.
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2.4 Special instructions for some platforms

2.4.1 Building on Windows

Building on Windows using native compilers is rather similar to building on Unix, so please start by
reading the above. Then, download and unpack the GROMACS source archive. Make a folder in
which to do the out-of-source build of GROMACS. For example, make it within the folder unpacked
from the source archive, and call it build—-gromacs.

For CMake, you can either use the graphical user interface provided on Windows, or you can use a
command line shell with instructions similar to the UNIX ones above. If you open a shell from within
your IDE (e.g. Microsoft Visual Studio), it will configure the environment for you, but you might
need to tweak this in order to get either a 32-bit or 64-bit build environment. The latter provides the
fastest executable. If you use a normal Windows command shell, then you will need to either set up
the environment to find your compilers and libraries yourself, or run the vcvarsall.bat batch
script provided by MSVC (just like sourcing a bash script under Unix).

With the graphical user interface, you will be asked about what compilers to use at the initial config-
uration stage, and if you use the command line they can be set in a similar way as under UNIX.

Unfortunately -DGMX_BUILD_OWN_FFTW=ON (see Using FFTW (page 7)) does not work on Win-
dows, because there is no supported way to build FFTW on Windows. You can either build FFTW
some other way (e.g. MinGW), or use the built-in fftpack (which may be slow), or using MKL

(page 8).

For the build, you can either load the generated solutions file into e.g. Visual Studio, or use the
command line with cmake —-build so the right tools get used.

2.4.2 Building on Cray

GROMACS builds mostly out of the box on modern Cray machines, but you may need to specify the
use of static binaries with ~-DGMX_BUILD_SHARED_EXE=off, and you may need to set the F77
environmental variable to £tn when compiling FFTW. The ARM ThunderX2 Cray XC50 machines
differ only in that the recommended compiler is the ARM HPC Compiler (armclang).

2.4.3 Building on Solaris

The built-in GROMACS processor detection does not work on Solaris, so it is strongly recommended
that you build GROMACS with ~-DGMX_HWLOC=on and ensure that the CMAKE_PREFIX_PATH
includes the path where the hwloc headers and libraries can be found. At least version 1.11.8 of hwloc
is recommended.

Oracle Developer Studio is not a currently supported compiler (and does not currently compile GRO-
MACS correctly, perhaps because the thread-MPI atomics are incorrectly implemented in GRO-
MACS).

2.4.4 Intel Xeon Phi

Xeon Phi processors, hosted or self-hosted, are supported. The Knights Landing-based Xeon Phi
processors behave like standard x86 nodes, but support a special SIMD instruction set. When cross-
compiling for such nodes, use the AVX_512_KNL SIMD flavor. Knights Landing processors support
so-called “clustering modes” which allow reconfiguring the memory subsystem for lower latency.
GROMACS can benefit from the quadrant or SNC clustering modes. Care needs to be taken to
correctly pin threads. In particular, threads of an MPI rank should not cross cluster and NUMA
boundaries. In addition to the main DRAM memory, Knights Landing has a high-bandwidth stacked
memory called MCDRAM. Using it offers performance benefits if it is ensured that mdrun runs
entirely from this memory; to do so it is recommended that MCDRAM is configured in “Flat mode”
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and mdrun is bound to the appropriate NUMA node (use e.g. numactl --membind 1 with
quadrant clustering mode).

2.5 Tested platforms

While it is our best belief that GROMACS will build and run pretty much everywhere, it is important
that we tell you where we really know it works because we have tested it. Every commit in our
git source code repository is currently tested with a range of configuration options on x86 with gcc
versions including 7 and 11, clang versions including 7 and 13, CUDA versions 11.0 and 11.4.2, and
a version of oneAPI containing Intel’s clang-based compiler. For this testing, we use Ubuntu 20.04
operating system. Other compiler, library, and OS versions are tested less frequently. For details, you
can have a look at the continuous integration server used by GROMACS, which uses GitLab runner
on a local k8s x86 cluster with NVIDIA, AMD, and Intel GPU support.

We test irregularly on ARM v8, Fujitsu A64FX, Cray, Power9, and other environments, and with
other compilers and compiler versions, too.

2.6 Support

Please refer to the manual for documentation, downloads, and release notes for any GROMACS
release.

Visit the user forums for discussions and advice.

Report bugs at https://gitlab.com/gromacs/gromacs/-/issues
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CHAPTER
THREE

USER GUIDE

This guide provides
* material introducing GROMACS
* practical advice for making effective use of GROMACS.

For getting, building and installing GROMACS, see the Installation guide (page 3). For background
on algorithms and implementations, see the reference manual part (page 305) of the documentation.
If you have questions not answered by these resources, please visit the GROMACS users forum and
search for a potential answer or ask a question from the community.

Please reference this documentation as https://doi.org/10.5281/zenodo.7037337.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.7037338.

3.1 Known issues affecting users of GROMACS

Here is a non-exhaustive list of issues that are we are aware of that are affecting regular users of
GROMACS.

3.1.1 Unable to compile with CUDA 11.3

Due to a bug in the nvcc compiler, it is currently not possible to compile NVIDIA GPU-enabled
GROMACS with version 11.3 of the CUDA compiler. We recommend using CUDA 11.4 or newer.
Issue 4037

3.1.2 Verlet buffer underestimated for inhomogeneous systems

The current Verlet buffer estimation code assumes that the density in the system is uniform. This leads
to an underestimate of the buffer for strongly inhomogeneous systems. The temporary solution to this
is to lower the verlet-buffer-tolerance parameter value by the factor between the uniform density and
the local density. In the 2023 release this correction will be performed automatically.

Issue 4509
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3.1.3 Verlet buffer underestimated when using only rA-12 potentials

When only the repulsive part of the Lennard-Jones potential is used, as can be the case in coarse-
grained systems, the Verlet buffer can be underestimated due to the extremely non-linear nature of
the r*-12 potential. A temporary solution is to decrease the verlet-buffer-tolerance until you get a
non-zero Verlet buffer. This issue will be fixed in the 2023 release.

3.1.4 Build is fragile with gcc 7 and CUDA

Different forms of gcc 7 have different behaviour when compiling test programs with nvce. This
prevents GROMACS from reliably testing compilation flags for use with nvcc. So in this case we
use flags unilaterally and this could lead to compilation errors. The best way to avoid these potential
problems is to use a more recent version of gcc.

Issue 4478

3.1.5 SYCL build unstable when using oneAPI with LevelZero backend

There are multiple issues with different versions of Intel oneAPI when using the LevelZero backend.

In many cases, it works fine, and if it fails, it does so explicitly (either crash or hang), so it should be
fine to experiment with.

For most cases, we recommend using OpenCL backend (the default) when running SYCL build of
GROMACS on Intel GPUs.

Issue 4219 Issue 4354

3.1.6 Unable to build with CUDA 11.6 and gcc-11

A bug in the nvcce toolchain version 11.6.1 makes it impossible to build recent GROMACS with gcc-
11. As these two are the default versions in Ubuntu 22.04 users are recommended to either install
and use an older version of gcc (version 9.x) has been reported to work, or manually update the nvcc
toolchain to version 11.6.2.

Issue 4574

3.2 Getting started

3.2.1 Flow Chart

This is a flow chart of a typical GROMACS MD run of a protein in a box of water. A more detailed
example is available in Getting started (page 24). Several steps of energy minimization may be
necessary, these consist of cycles: gmx grompp (page 169) -> gmx mdrun (page 186).

3.2. Getting started
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eiwit.pdb

Generate a GROMACS topology
gmx pdb2gmx

conf.gro

Enlarge the box
gmx editconf topol.top

conf.gro

Y

Solvate protein
gmx solvate grompp.mdp

émf.grétopol.top

Generate mdrun input file
gmx grompp

opol.tpr

Run the simulation (EM or MD) Continuation
gmx mdrun < state.cpt

traj.xtc / traj.trr\ener.edr

Aé[lril}ngiS Analysis
gy viow | | 9mx energy

In this chapter we assume the reader is familiar with Molecular Dynamics and familiar with Unix,
including the use of a text editor such as jot, emacs or vi. We furthermore assume the GROMACS
software is installed properly on your system. When you see a line like

1s -1

you are supposed to type the contents of that line on your computer terminal.
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3.2.2 Setting up your environment

In order to check whether you have access to GROMACS, please start by entering the command:

gmx -version

This command should print out information about the version of GROMACS installed. If this, in
contrast, returns the phrase

gmx: command not found.

then you have to find where your version of GROMACS is installed. In the default case, the binaries
are located in /usr/local/gromacs/bin, however, you can ask your local system administrator
for more information, and then follow the advice for Getting access to GROMACS after installation
(page 19).

3.2.3 Flowchart of typical simulation

A typical simulation workflow with GROMACS is illustrated here (page 24).

3.2.4 Important files

Here is an overview of the most important GROMACS file types that you will encounter.

Molecular Topology file (. top)

The molecular topology file is generated by the program gmx pdb2gmx (page 204). gmx pdb2gmx
(page 204) translates a pdb (page 452) structure file of any peptide or protein to a molecular topology
file. This topology file contains a complete description of all the interactions in your peptide or
protein.

Topology #include file mechanism

When constructing a system topology in a fop (page 455) file for presentation to grompp, GROMACS
uses a built-in version of the so-called C preprocessor, cpp (in GROMACS 3, it really was cpp). cpp
interprets lines like:

#include "ions.itp"

by looking for the indicated file in the current directory, the GROMACS share/top directory as indi-
cated by the GMXLIB environment variable, and any directory indicated by a —T flag in the value of
the include run parameter (page 37) in the mdp (page 450) file. It either finds this file or reports
a warning. (Note that when you supply a directory name, you should use Unix-style forward slashes
‘/’, not Windows-style backslashes ‘' for separators.) When found, it then uses the contents exactly as
if you had cut and pasted the included file into the main file yourself. Note that you shouldn’t go and
do this copy-and-paste yourself, since the main purposes of the include file mechanism are to re-use
previous work, make future changes easier, and prevent typos.

Further, cpp interprets code such as:

#ifdef POSRES_WATER

; Position restraint for each water oxygen

[ position_restraints ]

;1 funct fex fcy fcz
1 1 1000 1000 1000

#endif
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by testing whether the preprocessor variable POSRES_WATER was defined somewhere (i.e. “if de-
fined”). This could be done with #define POSRES_WATER earlier in the rop (page 455) file (or its
#include files), with a —D flag in the include run parameter as above, or on the command line to
cpp. The function of the —D flag is borrowed from the similar usage in cpp. The string that follows
—D must match exactly; using ~-DPOSRES will not trigger #1fdef POSREor#ifdef DPOSRES.
This mechanism allows you to change your mdp (page 450) file to choose whether or not you want po-
sition restraints on your solvent, rather than your 7op (page 455) file. Note that preprocessor variables
are not the same as shell environment variables.

Molecular Structure file (. gro, .pdb)

When gmx pdb2gmx (page 204) is executed to generate a molecular topology, it also translates the
structure file (pdb (page 452) file) to a GROMOS structure file (gro (page 447) file). The main
difference between a pdb (page 452) file and a gromos file is their format and that a gro (page 447)
file can also hold velocities. However, if you do not need the velocities, you can also use a pdb
(page 452) file in all programs. To generate a box of solvent molecules around the peptide, the
program gmx solvate (page 229) is used. First the program gmx editconf (page 153) should be used
to define a box of appropriate size around the molecule. gmx solvate (page 229) solvates a solute
molecule (the peptide) into any solvent (in this case, water). The output of gmx solvate (page 229)
is a gromos structure file of the peptide solvated in water. gmx solvate (page 229) also changes the
molecular topology file (generated by gmx pdb2gmx (page 204)) to add solvent to the topology.

Molecular Dynamics parameter file (.mdp)

The Molecular Dynamics Parameter (mdp (page 450)) file contains all information about the Molecu-
lar Dynamics simulation itself e.g. time-step, number of steps, temperature, pressure etc. The easiest
way of handling such a file is by adapting a sample mdp (page 450) file. A sample mdp file (page 450)
is available.

Index file (. ndx)

Sometimes you may need an index file to specify actions on groups of atoms (e.g. temperature
coupling, accelerations, freezing). Usually the default index groups will be sufficient, so for this
demo we will not consider the use of index files.

Run input file (. tpr)

The next step is to combine the molecular structure (gro (page 447) file), topology (fop (page 455) file)
MD-parameters (mdp (page 450) file) and (optionally) the index file (ndx (page 451)) to generate a
run input file (1pr (page 456) extension). This file contains all information needed to start a simulation
with GROMACS. The gmx grompp (page 169) program processes all input files and generates the run
input 7pr (page 456) file.

Trajectory file (.trr, .tng, or .xtc)

Once the run input file is available, we can start the simulation. The program which starts the simu-
lation is called gmx mdrun (page 186). The only input file of gmx mdrun (page 186) that you usually
need in order to start a run is the run input file (pr (page 456) file). The typical output files of gmx
mdrun (page 186) are the trajectory file (trr (page 457) file), a logfile (log (page 449) file), and perhaps
a checkpoint file (cpt (page 445) file).

3.2. Getting started 27



GROMACS Documentation, Release 2022.3

3.2.5 Tutorial material

There are several third-party tutorials available that cover aspects of using GROMACS. Further infor-
mation can also be found in the How to (page 295) section.

3.2.6 Background reading

¢ Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J. (1981) Intermolecular
Forces, chapter Interaction models for water in relation to protein hydration, pp 331-342. Dor-
drecht: D. Reidel Publishing Company Dordrecht

* Kabsch, W., Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.

e Mierke, D.F., Kessler, H. (1991). Molecular dynamics with dimethyl sulfoxide as a solvent.
Conformation of a cyclic hexapeptide. J. Am. Chem. Soc. 113, 9446.

 Stryer, L. (1988). Biochemistry vol. 1, p. 211. New York: Freeman, 3 edition.

3.3 System preparation

There are many ways to prepare a simulation system to run with GROMACS. These often vary with
the kind of scientific question being considered, or the model physics involved. A protein-ligand
atomistic free-energy simulation might need a multi-state topology, while a coarse-grained simulation
might need to manage defaults that suit systems with higher density.

3.3.1 Steps to consider

The following general guidance should help with planning successful simulations. Some stages are
optional for some kinds of simulations.

1. Clearly identify the property or phenomena of interest to be studied by performing the simula-
tion. Do not continue further until you are clear on this! Do not run your simulation and then
seek to work out how to use it to test your hypothesis, because it may be unsuitable, or the
required information was not saved.

2. Select the appropriate tools to be able to perform the simulation and observe the property or
phenomena of interest. It is important to read and familiarize yourself with publications by
other researchers on similar systems. Choices of tools include:

* software with which to perform the simulation (consideration of force field may influence
this decision)

* the force field, which describes how the particles within the system interact with each other.
Select one that is appropriate for the system being studied and the property or phenomena of
interest. This is a very important and non-trivial step! Consider now how you will analyze
your simulation data to make your observations.

3. Obtain or generate the initial coordinate file for each molecule to be placed within the system.
Many different software packages are able to build molecular structures and assemble them into
suitable configurations.

4. Generate the raw starting structure for the system by placing the molecules within the coordi-
nate file as appropriate. Molecules may be specifically placed or arranged randomly. Several
non-GROMACS tools are useful here; within GROMACS gmx solvate (page 229), gmx insert-
molecules (page 180) and gmx genconf (page 166) solve frequent problems.

5. Obtain or generate the topology file for the system, using (for example) gmx pdb2gmx
(page 204), gmx x2top (page 257), SwissParam (for CHARMM forcefield), PRODRG (for
GROMOS96 43A1), Automated Topology Builder (for GROMOS96 53A6), MKTOP (for
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OPLS/AA) or your favourite text editor in concert with chapter 5 of the GROMACS Reference
Manual. For the AMBER force fields, antechamber or acpype might be appropriate.

6. Describe a simulation box (e.g. using gmx editconf (page 153)) whose size is appropriate for
the eventual density you would like, fill it with solvent (e.g. using gmx solvate (page 229)), and
add any counter-ions needed to neutralize the system (e.g. using gmx grompp (page 169) and
gmx insert-molecules (page 180)). In these steps you may need to edit your topology file to stay
current with your coordinate file.

7. Run an energy minimization on the system (using gmx grompp (page 169) and gmx mdrun
(page 186)). This is required to sort out any bad starting structures caused during generation
of the system, which may cause the production simulation to crash. It may be necessary also
to minimize your solute structure in vacuo before introducing solvent molecules (or your lipid
bilayer or whatever else). You should consider using flexible water models and not using bond
constraints or frozen groups. The use of position restraints and/or distance restraints should be
evaluated carefully.

8. Select the appropriate simulation parameters for the equilibration simulation (defined in mdp
(page 450) file). You need to choose simulation parameters that are consistent with how force
field was derived. You may need to simulate at NVT with position restraints on your solvent
and/or solute to get the temperature almost right, then relax to NPT to fix the density (which
should be done with Berendsen until after the density is stabilized, before a further switch to
a barostat that produces the correct ensemble), then move further (if needed) to reach your
production simulation ensemble (e.g. NVT, NVE). If you have problems here with the system
blowing up (page 284), consider using the suggestions on that page, e.g. position restraints on
solutes, or not using bond constraints, or using smaller integration timesteps, or several gentler
heating stage(s).

9. Run the equilibration simulation for sufficient time so that the system relaxes sufficiently in the
target ensemble to allow the production run to be commenced (using gmx grompp (page 169)
and gmx mdrun (page 186), then gmx energy (page 158) and Visualization Software (page 302)).

10. Select the appropriate simulation parameters for the production simulation (defined in mdp
(page 450) file). In particular, be careful not to re-generate the velocities. You still need to
be consistent with how the force field was derived and how to measure the property or phenom-
ena of interest.

3.3.2 Tips and tricks
Database files

The share/top directory of a GROMACS installation contains numerous plain-text helper files
with the .dat file extension. Some of the command-line tools (see Command-line reference
(page 107)) refer to these, and each tool documents which files it uses, and how they are used.

If you need to modify these files (e.g. to introduce new atom types with VDW radii into vdwradii.
dat), you can copy the file from your installation directory into your working directory, and the
GROMACS tools will automatically load the copy from your working directory rather than the stan-
dard one. To suppress all the standard definitions, use an empty file in the working directory.
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3.4 Managing long simulations

Molecular simulations often extend beyond the lifetime of a single UNIX command-line process. It is
useful to be able to stop and restart the simulation in a way that is equivalent to a single run. When grm.x
mdrun (page 186) is halted, it writes a checkpoint file that can restart the simulation exactly as if there
was no interruption. To do this, the checkpoint retains a full-precision version of the positions and
velocities, along with state information necessary to restart algorithms e.g. that implement coupling to
external thermal reservoirs. A restart can be attempted using e.g. a gro (page 447) file with velocities,
but since the gro (page 447) file has significantly less precision, and none of the coupling algorithms
will have their state carried over, such a restart is less continuous than a normal MD step.

Such a checkpoint file is also written periodically by gmx mdrun (page 186) during the run. The
interval is given by the —cpt flag to gmx mdrun (page 186). When gmx mdrun (page 186) attemps to
write each successive checkpoint file, it first renames the old file with the suffix _prewv, so that even
if something goes wrong while writing the new checkpoint file, only recent progress can be lost.

gmx mdrun (page 186) can be halted in several ways:
* the number of simulation nsteps (page 39) can expire
* the user issues a termination signal (e.g. with Ctrl-C on the terminal)
* the job scheduler issues a termination signal when time expires

e when gmx mdrun (page 186) detects that the length specified with —maxh has elapsed (this
option is useful to help cooperate with a job scheduler, but can be problematic if jobs can be
suspended)

» some kind of catastrophic failure, such as loss of power, or a disk filling up, or a network failing

To use the checkpoint file for a restart, use a command line such as

gmx mdrun -cpi state

which directs mdrun to use the checkpoint file (which is named state.cpt by default). You can
choose to give the output checkpoint file a different name with the —cpo flag, but if so then you
must provide that name as input to —cpi when you later use that file. You can query the contents of
checkpoint files with gmx check (page 123) and gmx dump (page 151).

3.4.1 Appending to output files

By default, gmx mdrun (page 186) will append to the old output files. If the previous part ended in
a regular way, then the performance data at the end of the log file will will be removed, some new
information about the run context written, and the simulation will proceed. Otherwise, mdrun will
truncate all the output files back to the time of the last written checkpoint file, and continue from
there, as if the simulation stopped at that checkpoint in a regular way.

You can choose not to append the output files by using the —-noappend flag, which forces mdrun
to write each output to a separate file, whose name includes a “.partXXXX" string to describe which
simulation part is contained in this file. This numbering starts from zero and increases monotonically
as simulations are restarted, but does not reflect the number of simulation steps in each part. The
simulation-part (page 39) option can be used to set this number manually in gmx grompp
(page 169), which can be useful if data has been lost, e.g. through filesystem failure or user error.

Appending will not work if any output files have been modified or removed after mdrun wrote them,
because the checkpoint file maintains a checksum of each file that it will verify before it writes to
them again. In such cases, you must either restore the file, name them as the checkpoint file expects,
or continue with —noappend. If your original run used ~de ffnm, and you want appending, then
your continuations must also use —de f fnm.
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3.4.2 Backing up your files

You should arrange to back up your simulation files frequently. Network file systems on clusters can
be configured in more or less conservative ways, and this can lead gmx mdrun (page 186) to be told
that a checkpoint file has been written to disk when actually it is still in memory somewhere and
vulnerable to a power failure or disk that fills or fails in the meantime. The UNIX tool rsync can be
a useful way to periodically copy your simulation output to a remote storage location, which works
safely even while the simulation is underway. Keeping a copy of the final checkpoint file from each
part of a job submitted to a cluster can be useful if a file system is unreliable.

3.4.3 Extending a .tpr file

If the simulation described by 7pr (page 456) file has completed and should be extended, use the gmx
convert-tpr (page 133) tool to extend the run, e.g.

gmx convert-tpr —-s previous.tpr -extend timetoextendby -o next.tpr
gmx mdrun -s next.tpr -cpli state.cpt

The time can also be extended using the —~unt il and -nsteps options. Note that the original mdp
(page 450) file may have generated velocities, but that is a one-time operation within gmx grompp
(page 169) that is never performed again by any other tool.

3.4.4 Changing mdp options for a restart

If you wish to make changes to your simulations settings other than length, then you should do so in
the mdp (page 450) file or topology, and then call

gmx grompp —f possibly-changed.mdp -p possibly-changed.top -c,
—original.gro -t state.cpt -o new.tpr
gmx mdrun —-s new.tpr -cpi state.cpt

to instruct gmx grompp (page 169) to copy the full-precision coordinates and velocities in the check-
point file into the new pr (page 456) file. You should consider your choices for t init (page 39),
init-step (page 39), nsteps (page 39) and simulation-part (page 39). You should gen-
erally not regenerate velocities with gen-vel (page 52), and generally select continuation
(page 53) so that constraints are not re-applied before the first integration step.

3.4.5 Restarts without checkpoint files

It used to be possible to continue simulations without the checkpoint files. As this approach could be
unreliable or lead to unphysical results, only restarts from checkpoints are permitted now.

3.4.6 Are continuations exact?

If you had a computer with unlimited precision, or if you integrated the time-discretized equations
of motion by hand, exact continuation would lead to identical results. But since practical computers
have limited precision and MD is chaotic, trajectories will diverge very rapidly even if one bit is
different. Such trajectories will all be equally valid, but eventually very different. Continuation
using a checkpoint file, using the same code compiled with the same compiler and running on the
same computer architecture using the same number of processors without GPUs (see next section)
would lead to binary identical results. However, by default the actual work load will be balanced
across the hardware according to the observed execution times. Such trajectories are in principle not
reproducible, and in particular a run that took place in more than one part will not be identical with
an equivalent run in one part - but neither of them is better in any sense.
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3.4.7 Reproducibility

The following factors affect the reproducibility of a simulation, and thus its output:
¢ Precision (mixed / double) with double giving “better”” reproducibility.

¢ Number of cores, due to different order in which forces are accumulated. For instance (a+b)+c
is not necessarily binary identical to a+(b+c) in floating-point arithmetic.

* Type of processors. Even within the same processor family there can be slight differences.
* Optimization level when compiling.

* Optimizations at run time: e.g. the FFTW library that is typically used for fast Fourier trans-
forms determines at startup which version of their algorithms is fastest, and uses that for the
remainder of the calculations. Since the speed estimate is not deterministic, the results may vary
from run to run.

* Random numbers used for instance as a seed for generating velocities (in GROMACS at the
preprocessing stage).

 Uninitialized variables in the code (but there shouldn’t be any)
* Dynamic linking to different versions of shared libraries (e.g. for FFTs)

* Dynamic load balancing, since particles are redistributed to processors based on elapsed wall-
clock time, which will lead to (a+b)+c != a+(b+c) issues as above

* Number of PME-only ranks (for paralle]l PME simulations)

e MPI reductions typically do not guarantee the order of the operations, and so the absence of
associativity for floating-point arithmetic means the result of a reduction depends on the order
actually chosen

* On GPUs, the reduction of e.g. non-bonded forces has a non-deterministic summation order, so
any fast implementation is non-reprodudible by design.

The important question is whether it is a problem if simulations are not completely reproducible.
The answer is yes and no. Reproducibility is a cornerstone of science in general, and hence it is
important. The Central Limit Theorem tells us that in the case of infinitely long simulations, all
observables converge to their equilibrium values. Molecular simulations in GROMACS adhere to
this theorem, and hence, for instance, the energy of your system will converge to a finite value, the
diffusion constant of your water molecules will converge to a finite value, and so on. That means
all the important observables, which are the values you would like to get out of your simulation, are
reproducible. Each individual trajectory is not reproducible, however.

However, there are a few cases where it would be useful if trajectories were reproducible, too. These
include developers doing debugging, and searching for a rare event in a trajectory when, if it occurs,
you want to have manually saved your checkpoint file so you can restart the simulation under different
conditions, e.g. writing output much more frequently.

In order to obtain this reproducible trajectory, it is important to look over the list above and eliminate
the factors that could affect it. Further, using

gmx mdrun —-reprod

will eliminate all sources of non-reproducibility that it can, i.e. same executable + same hardware +
same shared libraries + same run input file + same command line parameters will lead to reproducible
results.
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3.5 Answers to frequently asked questions (FAQs)

3.5.1 Questions regarding GROMACS installation

1. Do I need to compile all utilities with MPI?

With one rarely-used exception (pme_error (page 206)), only mdrun (page 186) is able to use the
MPI (page 6) parallelism. So you only need to use the -DGMX_MP I=on flag when configuring
(page 9) for a build intended to run the main simulation engine mdrun (page 186). Generally that
is desirable when running on a multi-node cluster, and necessary when using multi-simulation
algorithms. Usually also installing a build of GROMACS configured without MPI is convenient
for users.

2. Should my version be compiled using double precision?

In general, GROMACS only needs to be build in its default mixed-precision mode. For more
details, see the discussion in Chapter 2 of the reference manual. Sometimes, usage may also de-
pend on your target system, and should be decided upon according to the individual instructions

(page 21).

3.5.2 Questions concerning system preparation and preprocessing

1. Where can I find a solvent coordinate file (page 444) for use with solvate (page 229)?

Suitable equilibrated boxes of solvent structure files (page 444) can be found in the $SGMXDIR/
share/gromacs/top directory. That location will be searched by default by solvate
(page 229), for example by using ~cs spc216.gro as an argument. Other solvent boxes
can be prepared by the user as described on the manual page for solvate (page 229) and else-
where. Note that suitable topology files will be needed for the solvent boxes to be useful in
grompp (page 169). These are available for some force fields, and may be found in the respec-
tive subfolder of SGMXDIR/share/gromacs/top.

2. How to prevent solvate (page 229) from placing waters in undesired places?

Water placement is generally well behaved when solvating proteins, but can be difficult when
setting up membrane or micelle simulations. In those cases, waters may be placed in between the
alkyl chains of the lipids, leading to problems later during the simulation (page 284). You can
either remove those waters by hand (and do the accounting for molecule types in the fopology
(page 455) file), or set up a local copy of the vdwradii . dat file from the SGMXLIB directory,
specific for your project and located in your working directory. In it, you can increase the vdW
radius of the atoms, to suppress such interstitial insertions. Recommended e.g. at a common
tutorial is the use of 0.375 instead of 0.15.

1. How do I provide multiple definitions of bonds / dihedrals in a topology?

You can add additional bonded terms beyond those that are normally defined for a residue
(e.g. when defining a special ligand) by including additional copies of the respective lines
under the [ bonds ], [ pairs ], [ angles ] and [ dihedrals ] sections in the
[ moleculetype ] section for your molecule, found either in the izp (page 449) file or the
topology (page 455) file. This will add those extra terms to the potential energy evaluation, but
will not remove the previous ones. So be careful with duplicate entries. Also keep in mind
that this does not apply to duplicated entries for [ bondtypes ], [ angletypes ], or
[ dihedraltypes ], in force-field definition files, where duplicates overwrite the previous
values.

2. Do Ireally need a gro (page 447) file?

The gro (page 447) file is used in GROMACS as a unified structure file (page 444) format that
can be read by all utilities. The large majority of GROMACS routines can also use other file
types such as pdb (page 452), with the limitations that no velocities are available in this case
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(page 27). If you need a text-based format with more digits of precision, the g96 (page 447)
format is suitable and supported.

3. Do I always need to run pdb2gmx (page 204) when I already produced an itp (page 449) file
elsewhere?

You don’t need to prepare additional files if you already have all itp (page 449) and rop
(page 455) files prepared through other tools.

Examples for those are CHARMM-GUI, ATB (Automated Topology Builder), pmx. and PRO-
DRG.

4. How can I build in missing atoms?

GROMACS has no support for building coordinates of missing non-hydrogen atoms. If your
system is missing some part, you will have to add the missing pieces using external programs
to avoid the missing atom (page 100) error. This can be done using programs such as Chimera
in combination with Modeller, Swiss PDB Viewer, Maestro. Do not run a simulation that had
missing atoms unless you know exactly why it will be stable.

5. Why is the total charge of my system not an integer like it should be?

In floating point (page 293) math, real numbers can not be displayed to arbitrary precision (for
more on this, see e.g. Wikipedia). This means that very small differences to the final integer
value will persist, and GROMACS will not lie to you and round those values up or down. If
your charge differs from the integer value by a larger amount, e.g. at least 0.01, this usually
means that something went wrong during your system preparation

3.5.3 Questions regarding simulation methodology

1. Should I couple a handful of ions to their own temperature-coupling bath?

No. You need to consider the minimal size of your temperature coupling groups, as explained
in Thermostats (page 282) and more specifically in What not to do (page 283), as well as the
implementation of your chosen thermostat as described in the reference manual.

2. Why do my grompp restarts always start from time zero?
You can choose different values for t init (page 39) and init-step (page 39).
3. Why can’t I do conjugate gradient minimization with constraints?

Minimization with the conjugate gradient scheme can not be performed with constraints as
described in the reference manual, and some additional information on Wikipedia.

4. How do I hold atoms in place in my energy minimization or simulation?

Groups may be frozen in place using freeze groups (see the reference manual). It is more
common to use a set of position restraints, to place penalties on movement of the atoms. Files
that control this kind of behaviour can be created using genrestr (page 168).

5. How do I extend a completed a simulation to longer times?

Please see the section on Managing long simulations (page 30). You can either prepare a new
mdp (page 450) file, or extend the simulation time in the original 7pr (page 456) file using
convert-tpr (page 133).

6. How should I compute a single-point energy?

This is best achieved with the —rerun option to mdrun (page 186). See the Re-running a
simulation (page 77) section.
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3.5.4 Parameterization and Force Fields

1. T want to simulate a molecule (protein, DNA, etc.) which complexes with various transition
metal ions, iron-sulfur clusters, or other exotic species. Parameters for these exotic species
aren’t available in force field X. What should I do?

First, you should consider how well MD (page 286) will actually describe your system (e.g.
see some of the recent literature). Many species are infeasible to model without either atomic
polarizability, or QM treatments. Then you need to prepare your own set of parameters and add
a new residue to your force field (page 287) of choice. Then you will have to validate that your
system behaves in a physical way, before continuing your simulation studies. You could also try
to build a more simplified model that does not rely on the complicated additions, as long as it
still represents the correct real object in the laboratory.

2. Should I take parameters from one force field and apply them inside another that is missing
them?

NO. Molecules parametrized for a given force field (page 287) will not behave in a physical
manner when interacting with other molecules that have been parametrized according to differ-
ent standards. If your required molecule is not included in the force field you need to use, you
will have to parametrize it yourself according to the methodology of this force field.

3.5.5 Analysis and Visualization

1. Why am I seeing bonds being created when I watch the trajectory?

Most visualization softwares determine the bond status of atoms depending on a set of prede-
fined distances. So the bonding pattern created by them might not be the one defined in your
topology (page 455) file. What matters is the information encoded in there. If the software has
read a tpr (page 456) file, then the information is in reliable agreement with the topology you
supplied to grompp (page 169).

2. When visualizing a trajectory from a simulation using PBC, why are there holes or my peptide
leaving the simulation box?

Those holes and molecules moving around are just a result of molecules ranging over the box
boundaries and wrapping around (page 281), and are not a reason for concern. You can fix the
visualization using trjconv (page 241) to prepare the structure for analysis.

3. Why is my total simulation time not an integer like it should be?

As the simulation time is calculated using floating point arithmetic (page 293), rounding errors
can occur but are not of concern.

3.6 Force fields in GROMACS

3.6.1 AMBER

AMBER (Assisted Model Building and Energy Refinement) refers both to a set of molecular mechan-
ical force fields (page 287) for the simulation of biomolecules and a package of molecular simulation
programs.

GROMACS versions higher than 4.5 support the following AMBER force fields natively:
» AMBER%
* AMBER96
* AMBER99
* AMBER99SB
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* AMBER99SB-ILDN
* AMBERO3
* AMBERGS
Information concerning the force field can be found using the following information:
e AMBER Force Fields - background about the AMBER force fields
* AMBER Programs - information about the AMBER suite of programs for molecular simulation

e ANTECHAMBER/GAFF - Generalized Amber Force Field (GAFF) which is supposed to
provide parameters suitable for small molecules that are compatible with the AMBER pro-
tein/nucleic acid force fields. It is available either together with AMBER, or through the an-
techamber package, which is also distributed separately. There are scripts available for con-
verting AMBER systems (set up, for example, with GAFF) to GROMACS (amb2gmx.pl, or
ACPYPE), but they do require AmberTools installation to work.

Older GROMACS versions need a separate installation of the ffamber ports:

» Using AMBER Force Field in GROMACS - known as the “ffamber ports,” a number of AMBER
force fields, complete with documentation.

» Using the ffamber ports with GROMACS requires that the input structure files adhere to the
AMBER nomenclature for residues. Problematic residues involve termini (prefixed with N and
C), lysine (either LYN or LYP), histidine (HID, HIE, or HIS), and cysteine (CYN or CYX).
Please see the ffamber documentation.

3.6.2 CHARMM

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a both a set of force fields and a
software package for molecular dynamics (page 286) simulations and analysis. Includes united atom
(CHARMM19) and all atom (CHARMM?22, CHARMM?27, CHARMM36) force fields (page 287).
The CHARMM27 force field has been ported to GROMACS and is officially supported as of version
4.5. CHARMM36 force field files can be obtained from the MacKerell lab website, which regularly
produces up-to-date CHARMM force field files in GROMACS format.

For using CHARMM36 in GROMACS 5.0 and newer, please use the following settings in the mdp

(page 450) file:

constraints = h-bonds
cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2

rvdw = 1.2

rvdw—-switch = 1.0
coulombtype = PME
rcoulomb = 1.2
DispCorr = no

Note that dispersion correction should be applied in the case of lipid monolayers, but not bilayers.

Please also note that the switching distance is a matter of some debate in lipid bilayer simulations, and
it is dependent to some extent on the nature of the lipid. Some studies have found that an 0.8-1.0 nm
switch is appropriate, others argue 0.8-1.2 nm is best, and yet others stand by 1.0-1.2 nm. The user is
cautioned to thoroughly investigate the force field literature for their chosen lipid(s) before beginning
a simulation!

Anyone using very old versions of GROMACS may find this script useful:
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CHARMM to GROMACS - perl scripts intended to facilitate calculations using GRO-
MACS programs and CHARMM forcefields (needed for GROMACS versions < 4.5).
(link)

3.6.3 GROMOS

GROMOS is is a general-purpose molecular dynamics computer simulation package for the study of
biomolecular systems. It also incorporates its own force field covering proteins, nucleotides, sugars
etc. and can be applied to chemical and physical systems ranging from glasses and liquid crystals, to
polymers and crystals and solutions of biomolecules.

GROMACS supports the GROMOS force fields, with all parameters provided in the distribution for
43al, 43a2, 45a3, 53a5, 53a6 and 54a7. The GROMOS force fields are united atom force fields
(page 287), i.e. without explicit aliphatic (non-polar) hydrogens.

* GROMOS 53a6 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).
* GROMOS 53a5 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).

* GROMOS 43alp - 43al modified to contain SEP (phosphoserine), TPO (phosphothreonine),
and PTR (phosphotyrosine) (all PO42- forms), and SEPH, TPOH, PTRH (PO4H- forms).

3.6.4 OPLS

OPLS (Optimized Potential for Liquid Simulations) is a set of force fields developed by Prof. William
L. Jorgensen for condensed phase simulations, with the latest version being OPLS-AA/M.

The standard implementations for those force fields are the BOSS and MCPRO programs developed
by the Jorgensen group

As there is no central web-page to point to, the user is advised to consult the original literature for the
united atom (OPLS-UA) and all atom (OPLS-AA) force fields, as well as the Jorgensen group page

3.7 Molecular dynamics parameters (.mdp options)

3.7.1 General information

Default values are given in parentheses, or listed first among choices. The first option in the list is
always the default option. Units are given in square brackets. The difference between a dash and an
underscore is ignored.

A sample mdp file (page 450) is available. This should be appropriate to start a normal simulation.
Edit it to suit your specific needs and desires.

Preprocessing

include
directories to include in your topology. Format: -I/home/john/mylib -I../
otherlib

define
defines to pass to the preprocessor, default is no defines. You can use any defines to control
options in your customized topology files. Options that act on existing rop (page 455) file
mechanisms include

-DFLEXIBLE will use flexible water instead of rigid water into your topology, this
can be useful for normal mode analysis.
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-DPOSRES will trigger the inclusion of posre.itp into your topology, used for
implementing position restraints.

Run control

integrator
(Despite the name, this list includes algorithms that are not actually integrators over time.
integrator=steep (page 38) and all entries following it are in this category)

md
A leap-frog algorithm for integrating Newton’s equations of motion.

md-vv

A velocity Verlet algorithm for integrating Newton’s equations of motion. For constant
NVE simulations started from corresponding points in the same trajectory, the trajectories
are analytically, but not binary, identical to the integrator=md (page 38) leap-frog
integrator. The kinetic energy, which is determined from the whole step velocities and is
therefore slightly too high. The advantage of this integrator is more accurate, reversible
Nose-Hoover and Parrinello-Rahman coupling integration based on Trotter expansion, as
well as (slightly too small) full step velocity output. This all comes at the cost off extra
computation, especially with constraints and extra communication in parallel. Note that for
nearly all production simulations the integrator=md (page 38) integrator is accurate
enough.

md-vv-avek
A velocity Verlet algorithm identical to integrator=md-vv (page 38), except that the
kinetic energy is determined as the average of the two half step kinetic energies as in the
integrator=md (page 38) integrator, and this thus more accurate. With Nose-Hoover
and/or Parrinello-Rahman coupling this comes with a slight increase in computational cost.

sd
An accurate and efficient leap-frog stochastic dynamics integrator. With constraints, coor-
dinates needs to be constrained twice per integration step. Depending on the computational
cost of the force calculation, this can take a significant part of the simulation time. The
temperature for one or more groups of atoms (tc—grps (page 49)) is set with ref—t
(page 49), the inverse friction constant for each group is set with tau—t (page 49). The
parameters t coupl (page 48) and nsttcouple (page 49) are ignored. The random gen-
erator is initialized with 1d-seed (page 41). When used as a thermostat, an appropriate
value for tau—t (page 49) is 2 ps, since this results in a friction that is lower than the
internal friction of water, while it is high enough to remove excess heat NOTE: tempera-
ture deviations decay twice as fast as with a Berendsen thermostat with the same tau—t

(page 49).

bd
An Euler integrator for Brownian or position Langevin dynamics, the velocity is the force
divided by a friction coefficient (bd—fric (page 41)) plus random thermal noise (ref -t
(page 49)). When bd—-fric (page 41) is 0, the friction coefficient for each particle is
calculated as mass/ tau—t (page 49), as for the integrator integrator=sd (page 38).
The random generator is initialized with 1d-seed (page 41).

steep
A steepest descent algorithm for energy minimization. The maximum step size is emstep
(page 41), the tolerance is emt ol (page 41).

cg
A conjugate gradient algorithm for energy minimization, the tolerance is emt o1 (page 41).
CG is more efficient when a steepest descent step is done every once in a while, this is de-
termined by nstcgsteep (page 41). For a minimization prior to a normal mode analysis,
which requires a very high accuracy, GROMACS should be compiled in double precision.
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l-bfgs
A quasi-Newtonian algorithm for energy minimization according to the low-memory
Broyden-Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster than
Conjugate Gradients, but due to the correction steps necessary it is not (yet) parallelized.

nm
Normal mode analysis is performed on the structure in the 7pr (page 456) file. GROMACS
should be compiled in double precision.

tpi

Test particle insertion. The last molecule in the topology is the test particle. A trajectory
must be provided to mdrun -rerun. This trajectory should not contain the molecule
to be inserted. Insertions are performed nsteps (page 39) times in each frame at ran-
dom locations and with random orientiations of the molecule. When nst1ist (page 42)
is larger than one, nst1ist (page 42) insertions are performed in a sphere with radius
rtpi (page 41) around a the same random location using the same pair list. Since pair
list construction is expensive, one can perform several extra insertions with the same list
almost for free. The random seed is set with 1d-seed (page 41). The temperature for
the Boltzmann weighting is set with re f-t (page 49), this should match the temperature
of the simulation of the original trajectory. Dispersion correction is implemented correctly
for TPI. All relevant quantities are written to the file specified with mdrun -tpi. The
distribution of insertion energies is written to the file specified with mdrun -tpid. No
trajectory or energy file is written. Parallel TPI gives identical results to single-node TPI.
For charged molecules, using PME with a fine grid is most accurate and also efficient, since
the potential in the system only needs to be calculated once per frame.

tpic
Test particle insertion into a predefined cavity location. The procedure is the same as for
integrator=tpi (page 39), except that one coordinate extra is read from the trajectory,
which is used as the insertion location. The molecule to be inserted should be centered at
0,0,0. GROMACS does not do this for you, since for different situations a different way
of centering might be optimal. Also rtpi (page 41) sets the radius for the sphere around
this location. Neighbor searching is done only once per frame, nst1ist (page 42) is
not used. Parallel integrator=tpic (page 39) gives identical results to single-rank
integrator=tpic (page 39).

mimic
Enable MiMiC QM/MM coupling to run hybrid molecular dynamics. Keey in mind that
its required to launch CPMD compiled with MiMiC as well. In this mode all options
regarding integration (T-coupling, P-coupling, timestep and number of steps) are ignored
as CPMD will do the integration instead. Options related to forces computation (cutoffs,
PME parameters, etc.) are working as usual. Atom selection to define QM atoms is read
from OMMM-grps (page 73)

tinit
(0) [ps] starting time for your run (only makes sense for time-based integrators)
dt
(0.001) [ps] time step for integration (only makes sense for time-based integrators)

nsteps
(0) maximum number of steps to integrate or minimize, -1 is no maximum

init-step
(0) The starting step. The time at step i in a run is calculated as: t = tinit (page 39) + dt
(page 39) * (init-step (page 39) + i). The free-energy lambda is calculated as: lambda =
init-lambda (page 65) + delta-lambda (page 65) * (init—-step (page 39) + i). Also
non-equilibrium MD parameters can depend on the step number. Thus for exact restarts or
redoing part of a run it might be necessary to set 1nit-step (page 39) to the step number of
the restart frame. gmx convert-tpr (page 133) does this automatically.

simulation-part
(0) A simulation can consist of multiple parts, each of which has a part number. This option
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specifies what that number will be, which helps keep track of parts that are logically the same
simulation. This option is generally useful to set only when coping with a crashed simulation
where files were lost.

mts

no
Evaluate all forces at every integration step.

yes
Use a multiple timing-stepping integrator to evaluate some forces, as specified by
mts—level2-forces (page 40) every mts—level2-factor (page 40) integration
steps. All other forces are evaluated at every step. MTS is currently only supported with
integrator=md (page 38).

mts-levels
(2) The number of levels for the multiple time-stepping scheme. Currently only 2 is supported.

mts-level2-forces

(longrange-nonbonded) A list of one or more force groups that will be evaluated only every
mts—-levelZ-rfactor (page 40) steps. Supported entries are: longrange—-nonbonded,
nonbonded, pair, dihedral, angle, pull and awh. With pair the listed pair forces
(such as 1-4) are selected. With dihedral all dihedrals are selected, including cmap. All other
forces, including all restraints, are evaluated and integrated every step. When PME or Ewald
is used for electrostatics and/or LJ interactions, longrange—nonbonded can not be omitted
here.

mts-level2-factor
(2) [steps] Interval for computing the forces in level 2 of the multiple time-stepping scheme

comm-mode

Linear
Remove center of mass translational velocity

Angular
Remove center of mass translational and rotational velocity

Linear-acceleration-correction
Remove center of mass translational velocity. Correct the center of mass position assuming
linear acceleration over nstcomm (page 40) steps. This is useful for cases where an accel-
eration is expected on the center of mass which is nearly constant over nst comm (page 40)
steps. This can occur for example when pulling on a group using an absolute reference.

None
No restriction on the center of mass motion

nstcomm

(100) [steps] frequency for center of mass motion removal
comm—-grps

group(s) for center of mass motion removal, default is the whole system
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Langevin dynamics

bd-fric
(0) [amu ps’'] Brownian dynamics friction coefficient. When bd-fric (page 41) is 0, the
friction coefficient for each particle is calculated as mass/ tau—t (page 49).

ld-seed
(-1) [integer] used to initialize random generator for thermal noise for stochastic and Brownian
dynamics. When 1d-seed (page 41) is set to -1, a pseudo random seed is used. When running
BD or SD on multiple processors, each processor uses a seed equal to 1 d—seed (page 41) plus
the processor number.

Energy minimization

emtol
(10.0) [kJ mol"! nm™'] the minimization is converged when the maximum force is smaller than
this value

emstep
(0.01) [nm] initial step-size

nstcgsteep
(1000) [steps] frequency of performing 1 steepest descent step while doing conjugate gradient
energy minimization.

nbfgscorr
(10) Number of correction steps to use for L-BFGS minimization. A higher number is (at least
theoretically) more accurate, but slower.

Shell Molecular Dynamics

When shells or flexible constraints are present in the system the positions of the shells and the lengths
of the flexible constraints are optimized at every time step until either the RMS force on the shells and
constraints is less than emt ol (page 41), or a maximum number of iterations niter (page 41) has
been reached. Minimization is converged when the maximum force is smaller than emt o1 (page 41).
For shell MD this value should be 1.0 at most.

niter
(20) maximum number of iterations for optimizing the shell positions and the flexible con-
straints.

festep
(0) [ps?] the step size for optimizing the flexible constraints. Should be chosen as mu/(d2V/dq2)
where mu is the reduced mass of two particles in a flexible constraint and d2V/dq?2 is the second
derivative of the potential in the constraint direction. Hopefully this number does not differ too
much between the flexible constraints, as the number of iterations and thus the runtime is very
sensitive to fcstep. Try several values!

Test particle insertion

rtpi
(0.05) [nm] the test particle insertion radius, see integrators integrator=tpi (page 39) and
integrator=tpic (page 39)
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Output control

nstxout
(0) [steps] number of steps that elapse between writing coordinates to the output trajectory file
(trr (page 457)), the last coordinates are always written unless 0, which means coordinates are
not written into the trajectory file.

nstvout
(0) [steps] number of steps that elapse between writing velocities to the output trajectory file
(trr (page 457)), the last velocities are always written unless 0, which means velocities are not
written into the trajectory file.

nstfout
(0) [steps] number of steps that elapse between writing forces to the output trajectory file (¢rr
(page 457)), the last forces are always written, unless 0, which means forces are not written into
the trajectory file.

nstlog
(1000) [steps] number of steps that elapse between writing energies to the log file, the last
energies are always written.

nstcalcenergy
(100) number of steps that elapse between calculating the energies, 0 is never. This option
is only relevant with dynamics. This option affects the performance in parallel simulations,
because calculating energies requires global communication between all processes which can
become a bottleneck at high parallelization.

nstenergy
(1000) [steps] number of steps that elapse between writing energies to energy file, the last en-
ergies are always written, should be a multiple of nstcalcenergy (page 42). Note that the
exact sums and fluctuations over all MD steps modulo nstcalcenergy (page 42) are stored
in the energy file, so gmx energy (page 158) can report exact energy averages and fluctuations
also when nstenergy (page 42) > 1

nstxout-compressed
(0) [steps] number of steps that elapse between writing position coordinates using lossy com-
pression (xzc (page 458) file), O for not writing compressed coordinates output.

compressed-x—precision
(1000) [real] precision with which to write to the compressed trajectory file

compressed-x—-grps
group(s) to write to the compressed trajectory file, by default the whole system is written (if
nstxout—-compressed (page 42) > 0)

energygrps
group(s) for which to write to write short-ranged non-bonded potential energies to the energy

file (not supported on GPUs)

Neighbor searching

cutoff-scheme

Verlet
Generate a pair list with buffering. The buffer size is automatically set based on
verlet-buffer—tolerance (page 43), unless this is set to -1, in which case r1ist
(page 44) will be used.

group
Generate a pair list for groups of atoms, corresponding to the charge groups in the topology.
This option is no longer supported.
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nstlist
(10) [steps]

>0

Frequency to update the neighbor list. When  dynamics and
verlet-buffer—tolerance (page 43) set, nstlist (page 42) is actually a
minimum value and gmx mdrun (page 186) might increase it, unless it is set to 1. With
parallel simulations and/or non-bonded force calculation on the GPU, a value of 20 or 40
often gives the best performance. With energy minimization this parameter is not used as
the pair list is updated when at least one atom has moved by more than half the pair list
buffer size.

The neighbor list is only constructed once and never updated. This is mainly useful for
vacuum simulations in which all particles see each other. But vacuum simulations are
(temporarily) not supported.

<0
Unused.

pbc

xyz
Use periodic boundary conditions in all directions.

no
Use no periodic boundary conditions, ignore the box. To simulate without cut-offs, set all
cut-offs and nst1ist (page 42) to 0. For best performance without cut-offs on a single
MPI rank, set nst1ist (page 42) to zero and ns-type=simple.

Xy
Use periodic boundary conditions in x and y directions only. This works only with
ns—type=grid and can be used in combination with walls (page 54). Without walls
or with only one wall the system size is infinite in the z direction. Therefore pressure cou-
pling or Ewald summation methods can not be used. These disadvantages do not apply
when two walls are used.

periodic-molecules

no
molecules are finite, fast molecular PBC can be used

yes
for systems with molecules that couple to themselves through the periodic boundary con-
ditions, this requires a slower PBC algorithm and molecules are not made whole in the
output

verlet-buffer-tolerance
(0.005) [kJ mol! ps’l]

Used when performing a simulation with dynamics. This sets the maximum allowed error for
pair interactions per particle caused by the Verlet buffer, which indirectly sets r11ist (page 44).
Asboth nst1ist (page 42) and the Verlet buffer size are fixed (for performance reasons), par-
ticle pairs not in the pair list can occasionally get within the cut-off distance during nst1ist
(page 42) -1 steps. This causes very small jumps in the energy. In a constant-temperature ensem-
ble, these very small energy jumps can be estimated for a given cut-off and r1ist (page 44).
The estimate assumes a homogeneous particle distribution, hence the errors might be slightly
underestimated for multi-phase systems. (See the reference manual for details). For longer
pair-list life-time (nst 11ist (page 42) -1) * dt (page 39) the buffer is overestimated, because
the interactions between particles are ignored. Combined with cancellation of errors, the actual
drift of the total energy is usually one to two orders of magnitude smaller. Note that the gen-
erated buffer size takes into account that the GROMACS pair-list setup leads to a reduction in
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the drift by a factor 10, compared to a simple particle-pair based list. Without dynamics (energy
minimization etc.), the buffer is 5% of the cut-off. For NVE simulations the initial temperature
is used, unless this is zero, in which case a buffer of 10% is used. For NVE simulations the
tolerance usually needs to be lowered to achieve proper energy conservation on the nanosec-
ond time scale. To override the automated buffer setting, use verlet-buffer-tolerance
(page 43) =-1 and set r1ist (page 44) manually.

rlist

(1) [nm] Cut-off distance for the short-range neighbor list. With dynamics, this is by default set
by the verlet-buffer-tolerance (page 43) option and the value of r1ist (page 44) is
ignored. Without dynamics, this is by default set to the maximum cut-off plus 5% buffer, except
for test particle insertion, where the buffer is managed exactly and automatically. For NVE
simulations, where the automated setting is not possible, the advised procedure is to run gmx
grompp (page 169) with an NVT setup with the expected temperature and copy the resulting
value of r11ist (page 44) to the NVE setup.

Electrostatics

coulombtype

Cut-off
Plain cut-off with pair list radius r1ist (page 44) and Coulomb cut-off rcoulomb
(page 45), where r1ist (page 44) >= rcoulomb (page 45).

Ewald
Classical Ewald sum electrostatics. The real-space cut-off rcoulomb (page 45) should
be equal to r1ist (page 44). Use e.g. rlist (page 44) =0.9, rcoulomb (page 45)
=0.9. The highest magnitude of wave vectors used in reciprocal space is controlled by
fourierspacing (page 47). The relative accuracy of direct/reciprocal space is con-
trolled by ewald-rtol (page 47).

NOTE: Ewald scales as O(N*?) and is thus extremely slow for large systems. It is included
mainly for reference - in most cases PME will perform much better.

PME

Fast smooth Particle-Mesh Ewald (SPME) electrostatics. Direct space is similar to the
Ewald sum, while the reciprocal part is performed with FFTs. Grid dimensions are con-
trolled with fourierspacing (page 47) and the interpolation order with pme-order
(page 47). With a grid spacing of 0.1 nm and cubic interpolation the electrostatic forces
have an accuracy of 2-3¥10™. Since the error from the vdw-cutoff is larger than this you
might try 0.15 nm. When running in parallel the interpolation parallelizes better than the
FFT, so try decreasing grid dimensions while increasing interpolation.

P3M-AD
Particle-Particle Particle-Mesh algorithm with analytical derivative for for long range elec-
trostatic interactions. The method and code is identical to SPME, except that the influence
function is optimized for the grid. This gives a slight increase in accuracy.

Reaction-Field
Reaction field electrostatics with Coulomb cut-off rcoulomb (page 45), where riist
(page 44) >= rvdw (page 46). The dielectric constant beyond the cut-off is epsilon-rf
(page 45). The dielectric constant can be set to infinity by setting epsilon-rf (page 45)
=0.

User
Currently unsupported. gmx mdrun (page 186) will now expect to find a file table.xvg
with user-defined potential functions for repulsion, dispersion and Coulomb. When pair
interactions are present, gmx mdrun (page 186) also expects to find a file tablep . xvg for
the pair interactions. When the same interactions should be used for non-bonded and pair
interactions the user can specify the same file name for both table files. These files should
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contain 7 columns: the x value, £ (x),-f' (x),g(x),-g"' (x),h(x),-h"' (x), where
f (x) is the Coulomb function, g (x) the dispersion function and h (x) the repulsion
function. When vdwtype (page 45) is not set to User the values for g, —g', h and —h'
are ignored. For the non-bonded interactions x values should run from O to the largest cut-
off distance + table-extension (page 47) and should be uniformly spaced. For the
pair interactions the table length in the file will be used. The optimal spacing, which is used
for non-user tables, is 0. 002 nm when you run in mixed precision or 0.0005 nm when
you run in double precision. The function value at x=0 is not important. More information
is in the printed manual.

PME-Switch
Currently unsupported. A combination of PME and a switch function for the direct-space
part (see above). rcoulomb (page 45) is allowed to be smaller than r11ist (page 44).

PME-User
Currently unsupported. A combination of PME and user tables (see above). rcoulomb
(page 45) is allowed to be smaller than r1ist (page 44). The PME mesh contribution is
subtracted from the user table by gmx mdrun (page 186). Because of this subtraction the
user tables should contain about 10 decimal places.

PME-User-Switch
Currently unsupported. A combination of PME-User and a switching function (see above).
The switching function is applied to final particle-particle interaction, i.e. both to the user
supplied function and the PME Mesh correction part.

coulomb-modifier

Potential-shift
Shift the Coulomb potential by a constant such that it is zero at the cut-off. This makes the
potential the integral of the force. Note that this does not affect the forces or the sampling.

None
Use an unmodified Coulomb potential. This can be useful when comparing energies with
those computed with other software.

rcoulomb-switch
(0) [nm] where to start switching the Coulomb potential, only relevant when force or potential
switching is used

rcoulomb
(1) [nm] The distance for the Coulomb cut-off. Note that with PME this value can be increased
by the PME tuning in gmx mdrun (page 186) along with the PME grid spacing.

epsilon-r
(1) The relative dielectric constant. A value of 0 means infinity.

epsilon-rf
(0) The relative dielectric constant of the reaction field. This is only used with reaction-field
electrostatics. A value of 0 means infinity.

Van der Waals

vdwtype

Cut-off
Plain cut-off with pair list radius r1ist (page 44) and VAW cut-off rvdw (page 46),
where r1ist (page 44) >= rvdw (page 46).

PME
Fast smooth Particle-mesh Ewald (SPME) for VAW interactions. The grid dimensions
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are controlled with fourierspacing (page 47) in the same way as for electrostat-
ics, and the interpolation order is controlled with pme—-order (page 47). The relative
accuracy of direct/reciprocal space is controlled by ewald-rtol—-17 (page 47), and
the specific combination rules that are to be used by the reciprocal routine are set using
1j-pme-comb-rule (page 47).

Shift
This functionality is deprecated and replaced by using vdwt ype=Cut—-off (page 45)
with vdw-modifier=Force-switch (page 46). The LI (not Buckingham) poten-
tial is decreased over the whole range and the forces decay smoothly to zero between
rvdw-switch (page 46) and rvdw (page 46).

Switch
This functionality is deprecated and replaced by using vdwt ype=Cut—-off (page 45)
with vdw-modifier=Potential-switch (page 46). The LJ (not Buckingham) po-
tential is normal out to rvdw-switch (page 46), after which it is switched off to reach
zero at rvdw (page 46). Both the potential and force functions are continuously smooth,
but be aware that all switch functions will give rise to a bulge (increase) in the force (since
we are switching the potential).

User
Currently unsupported. See user for coulombt ype (page 44). The function value at zero
is not important. When you want to use LJ correction, make sure that rvdw (page 46)
corresponds to the cut-off in the user-defined function. When coulombt ype (page 44) is
not set to User the values for the £ and —f ' columns are ignored.

vdw-modifier

Potential-shift
Shift the Van der Waals potential by a constant such that it is zero at the cut-off. This
makes the potential the integral of the force. Note that this does not affect the forces or the
sampling.

None
Use an unmodified Van der Waals potential. This can be useful when comparing energies
with those computed with other software.

Force-switch
Smoothly switches the forces to zero between rvdw-switch (page 46) and rvdw
(page 46). This shifts the potential shift over the whole range and switches it to zero at
the cut-off. Note that this is more expensive to calculate than a plain cut-off and it is not
required for energy conservation, since Potential-shift conserves energy just as well.

Potential-switch
Smoothly switches the potential to zero between rvdw-switch (page 46) and rvdw
(page 46). Note that this introduces articifically large forces in the switching region and is
much more expensive to calculate. This option should only be used if the force field you
are using requires this.

rvdw—-switch
(0) [nm] where to start switching the LJ force and possibly the potential, only relevant when
force or potential switching is used

rvdw
(1) [nm] distance for the LJ or Buckingham cut-off

DispCorr

no
don’t apply any correction

EnerPres
apply long range dispersion corrections for Energy and Pressure
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Ener
apply long range dispersion corrections for Energy only

Tables

table—-extension
(1) [nm] Extension of the non-bonded potential lookup tables beyond the largest cut-off dis-
tance. With actual non-bonded interactions the tables are never accessed beyond the cut-off.
But a longer table length might be needed for the 1-4 interactions, which are always tabulated
irrespective of the use of tables for the non-bonded interactions.

energygrp—table

Currently unsupported. When user tables are used for electrostatics and/or VAW, here one can
give pairs of energy groups for which separate user tables should be used. The two energy
groups will be appended to the table file name, in order of their definition in energygrps
(page 42), separated by underscores. For example, if energygrps = Na Cl Sol and
energygrp-table = Na Na Na C1, gmx mdrun (page 186) will read table_Na_Na.
xvg and table_Na_Cl.xvg in addition to the normal table.xvg which will be used for
all other energy group pairs.

Ewald

fourierspacing

(0.12) [nm] For ordinary Ewald, the ratio of the box dimensions and the spacing determines a
lower bound for the number of wave vectors to use in each (signed) direction. For PME and
P3M, that ratio determines a lower bound for the number of Fourier-space grid points that will
be used along that axis. In all cases, the number for each direction can be overridden by entering
a non-zero value for that fourier—-nx (page 47) direction. For optimizing the relative load
of the particle-particle interactions and the mesh part of PME, it is useful to know that the
accuracy of the electrostatics remains nearly constant when the Coulomb cut-off and the PME
grid spacing are scaled by the same factor. Note that this spacing can be scaled up along with
rcoulomb (page 45) by the PME tuning in gmx mdrun (page 186).

fourier—nx
fourier—-ny

fourier-nz
(0) Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when
using PME or P3M. These values override fourierspacing (page 47) per direction. The
best choice is powers of 2, 3, 5 and 7. Avoid large primes. Note that these grid sizes can
be reduced along with scaling up rcoulomb (page 45) by the PME tuning in gmx mdrun
(page 186).

pme-order
(4) Interpolation order for PME. 4 equals cubic interpolation. You might try 6/8/10 when run-
ning in parallel and simultaneously decrease grid dimension.

ewald-rtol
(1073) The relative strength of the Ewald-shifted direct potential at rcoulomb (page 45) is
given by ewald-rtol (page 47). Decreasing this will give a more accurate direct sum, but
then you need more wave vectors for the reciprocal sum.

ewald-rtol-1j
(10) When doing PME for VdW-interactions, ewald-rtol—17 (page 47) is used to con-
trol the relative strength of the dispersion potential at rvdw (page 46) in the same way as
ewald-rtol (page 47) controls the electrostatic potential.

1lj—pme—-comb—-rule
(Geometric) The combination rules used to combine VdW-parameters in the reciprocal part of

3.7. Molecular dynamics parameters (.mdp options) 47



GROMACS Documentation, Release 2022.3

LJ-PME. Geometric rules are much faster than Lorentz-Berthelot and usually the recommended
choice, even when the rest of the force field uses the Lorentz-Berthelot rules.

Geometric
Apply geometric combination rules

Lorentz-Berthelot
Apply Lorentz-Berthelot combination rules

ewald-geometry

3d
The Ewald sum is performed in all three dimensions.

3dc
The reciprocal sum is still performed in 3D, but a force and potential correction applied in
the z dimension to produce a pseudo-2D summation. If your system has a slab geometry in
the x—vy plane you can try to increase the z-dimension of the box (a box height of 3 times
the slab height is usually ok) and use this option.

epsilon-surface
(0) This controls the dipole correction to the Ewald summation in 3D. The default value of zero
means it is turned off. Turn it on by setting it to the value of the relative permittivity of the
imaginary surface around your infinite system. Be careful - you shouldn’t use this if you have
free mobile charges in your system. This value does not affect the slab 3DC variant of the long
range corrections.

Temperature coupling

tcoupl

no
No temperature coupling.

berendsen
Temperature coupling with a Berendsen thermostat to a bath with temperature ref-t
(page 49), with time constant tau—t (page 49). Several groups can be coupled sepa-
rately, these are specified in the t c—grps (page 49) field separated by spaces. This is a
historical thermostat needed to be able to reproduce previous simulations, but we strongly
recommend not to use it for new production runs. Consult the manual for details.

nose—hoover
Temperature coupling using a Nose-Hoover extended ensemble. The reference temperature
and coupling groups are selected as above, but in this case tau—t (page 49) controls the
period of the temperature fluctuations at equilibrium, which is slightly different from a
relaxation time. For NVT simulations the conserved energy quantity is written to the energy
and log files.

andersen
Temperature coupling by randomizing a fraction of the particle velocities at each timestep.
Reference temperature and coupling groups are selected as above. tau—t (page 49) is the
average time between randomization of each molecule. Inhibits particle dynamics some-
what, but little or no ergodicity issues. Currently only implemented with velocity Verlet,
and not implemented with constraints.

andersen-massive
Temperature coupling by randomizing velocities of all particles at infrequent timesteps.
Reference temperature and coupling groups are selected as above. tau—t (page 49) is the
time between randomization of all molecules. Inhibits particle dynamics somewhat, but
little or no ergodicity issues. Currently only implemented with velocity Verlet.
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v-rescale
Temperature coupling using velocity rescaling with a stochastic term (JCP 126, 014101).
This thermostat is similar to Berendsen coupling, with the same scaling using tau-t
(page 49), but the stochastic term ensures that a proper canonical ensemble is generated.
The random seed is set with 1 d—seed (page 41). This thermostat works correctly even for
tau-t (page 49) =0. For NVT simulations the conserved energy quantity is written to the
energy and log file.

nsttcouple
(-1) The frequency for coupling the temperature. The default value of -1 sets nsttcouple
(page 49) equal to 10, or fewer steps if required for accurate integration. Note that the default
value is not 1 because additional computation and communication is required for obtaining the
kinetic energy. For velocity Verlet integrators nsttcouple (page 49) is set to 1.

nh-chain-length
(10) The number of chained Nose-Hoover thermostats for velocity Verlet integrators, the leap-
frog integrator=md (page 38) integrator only supports 1. Data for the NH chain vari-
ables is not printed to the edr (page 446) file by default, but can be turned on with the
print—-nose-hoover—chain-variables (page 49) option.

print-nose-hoover-chain-variables

no
Do not store Nose-Hoover chain variables in the energy file.

yes
Store all positions and velocities of the Nose-Hoover chain in the energy file.

tc—grps
groups to couple to separate temperature baths

tau-t
[ps] time constant for coupling (one for each group in t c—grps (page 49)), -1 means no tem-
perature coupling

ref-t
[K] reference temperature for coupling (one for each group in t c—grps (page 49))

Pressure coupling

pcoupl

no
No pressure coupling. This means a fixed box size.

Berendsen
Exponential relaxation pressure coupling with time constant tau-p (page 50). The box
is scaled every nstpcouple (page 50) steps. This barostat does not yield a correct ther-
modynamic ensemble; it is only included to be able to reproduce previous runs, and we
strongly recommend against using it for new simulations. See the manual for details.

C-rescale
Exponential relaxation pressure coupling with time constant tau-p (page 50), includ-
ing a stochastic term to enforce correct volume fluctuations. The box is scaled every
nstpcouple (page 50) steps. It can be used for both equilibration and production, but
presently it cannot be used for full anisotropic coupling.

Parrinello-Rahman
Extended-ensemble pressure coupling where the box vectors are subject to an equation of
motion. The equation of motion for the atoms is coupled to this. No instantaneous scaling
takes place. As for Nose-Hoover temperature coupling the time constant tau—p (page 50)
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is the period of pressure fluctuations at equilibrium. This is probably a better method when
you want to apply pressure scaling during data collection, but beware that you can get very
large oscillations if you are starting from a different pressure. For simulations where the
exact fluctations of the NPT ensemble are important, or if the pressure coupling time is very
short it may not be appropriate, as the previous time step pressure is used in some steps of
the GROMACS implementation for the current time step pressure.

MTTK

Martyna-Tuckerman-Tobias-Klein implementation, only useable with
integrator=md-vv (page 38) or integrator=md-vv-avek (page 38), very
similar to Parrinello-Rahman. As for Nose-Hoover temperature coupling the time constant
tau—p (page 50) is the period of pressure fluctuations at equilibrium. This is probably
a better method when you want to apply pressure scaling during data collection, but
beware that you can get very large oscillations if you are starting from a different pressure.
Currently (as of version 5.1), it only supports isotropic scaling, and only works without
constraints.

pcoupltype
Specifies the kind of isotropy of the pressure coupling used. Each kind takes one or more values
for compressibility (page 50) and ref-p (page 50). Only a single value is permitted for
tau-p (page 50).

isotropic
Isotropic pressure coupling with time constant tau—p (page 50). One value each for
compressibility (page 50) and ref-p (page 50) is required.

semiisotropic
Pressure coupling which is isotropic in the x and y direction, but different in the z direction.
This can be useful for membrane simulations. Two values each for compressibility
(page 50) and ref—p (page 50) are required, for x/y and z directions respectively.

anisotropic
Same as before, but 6 values are needed for xx, vy, zz, xy/yx, xz/zx and yz/zy com-
ponents, respectively. When the off-diagonal compressibilities are set to zero, a rectangular
box will stay rectangular. Beware that anisotropic scaling can lead to extreme deformation
of the simulation box.

surface-tension

Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure cou-
pling for the z-direction, while the surface tension is coupled to the x/y dimensions of the
box. The first ref-p (page 50) value is the reference surface tension times the num-
ber of surfaces bar nm, the second value is the reference z-pressure bar. The two
compressibility (page 50) values are the compressibility in the x/y and z direc-
tion respectively. The value for the z-compressibility should be reasonably accurate since
it influences the convergence of the surface-tension, it can also be set to zero to have a box
with constant height.

nstpcouple
(-1) The frequency for coupling the pressure. The default value of -1 sets nstpcouple
(page 50) equal to 10, or fewer steps if required for accurate integration. Note that the de-
fault value is not 1 because additional computation and communication is required for obtaining
the virial. For velocity Verlet integrators nstpcouple (page 50) is set to 1.

tau-p
(1) [ps] The time constant for pressure coupling (one value for all directions).

compressibility
[bar''] The compressibility (NOTE: this is now really in bar'!) For water at 1 atm and 300 K
the compressibility is 4.5e-5 bar™'. The number of required values is implied by pcoupltype
(page 50).

ref-p
[bar] The reference pressure for coupling. The number of required values is implied by
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pcoupltype (page 50).

refcoord-scaling

no
The reference coordinates for position restraints are not modified. Note that with this option
the virial and pressure might be ill defined, see here (page 379) for more details.

all
The reference coordinates are scaled with the scaling matrix of the pressure coupling.

com
Scale the center of mass of the reference coordinates with the scaling matrix of the pressure
coupling. The vectors of each reference coordinate to the center of mass are not scaled.
Only one COM is used, even when there are multiple molecules with position restraints.
For calculating the COM of the reference coordinates in the starting configuration, periodic
boundary conditions are not taken into account. Note that with this option the virial and
pressure might be ill defined, see here (page 379) for more details.

Simulated annealing

Simulated annealing is controlled separately for each temperature group in GROMACS. The refer-
ence temperature is a piecewise linear function, but you can use an arbitrary number of points for
each group, and choose either a single sequence or a periodic behaviour for each group. The actual
annealing is performed by dynamically changing the reference temperature used in the thermostat
algorithm selected, so remember that the system will usually not instantaneously reach the reference
temperature!

annealing
Type of annealing for each temperature group

no
No simulated annealing - just couple to reference temperature value.

single
A single sequence of annealing points. If your simulation is longer than the time of the last
point, the temperature will be coupled to this constant value after the annealing sequence
has reached the last time point.

periodic
The annealing will start over at the first reference point once the last reference time is
reached. This is repeated until the simulation ends.

annealing-npoints
A list with the number of annealing reference/control points used for each temperature group.
Use 0 for groups that are not annealed. The number of entries should equal the number of
temperature groups.

annealing-time
List of times at the annealing reference/control points for each group. If you are using periodic
annealing, the times will be used modulo the last value, i.e. if the values are 0, 5, 10, and 15, the
coupling will restart at the Ops value after 15ps, 30ps, 45ps, etc. The number of entries should
equal the sum of the numbers given in annealing-—npoints (page 51).

annealing-temp
List of temperatures at the annealing reference/control points for each group. The number of
entries should equal the sum of the numbers given in annealing-npoints (page 51).

Confused? OK, let’s use an example. Assume you have two temperature groups, set the
group selections to annealing = single periodic, the number of points of each group
to annealing-npoints = 3 4, the times to annealing-time = 0 3 6 0 2 4 6 and
finally temperatures to annealing-temp = 298 280 270 298 320 320 298. The first
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group will be coupled to 298K at Ops, but the reference temperature will drop linearly to reach 280K
at 3ps, and then linearly between 280K and 270K from 3ps to 6ps. After this is stays constant, at
270K. The second group is coupled to 298K at Ops, it increases linearly to 320K at 2ps, where it
stays constant until 4ps. Between 4ps and 6ps it decreases to 298K, and then it starts over with the
same pattern again, i.e. rising linearly from 298K to 320K between 6ps and 8ps. Check the summary
printed by gmx grompp (page 169) if you are unsure!

Velocity generation

gen-vel

no
Do not generate velocities. The velocities are set to zero when there are no velocities in the
input structure file.

yes
Generate velocities in gmx grompp (page 169) according to a Maxwell distribution at tem-
perature gen—-temp (page 52), with random seed gen—-seed (page 52). This is only
meaningful with integrator=md (page 38).

gen—-temp
(300) [K] temperature for Maxwell distribution

gen-seed
(-1) [integer] used to initialize random generator for random velocities, when gen-seed
(page 52) is set to -1, a pseudo random seed is used.

Bonds

constraints
Controls which bonds in the topology will be converted to rigid holonomic constraints. Note that
typical rigid water models do not have bonds, but rather a specialized [settles] directive,
so are not affected by this keyword.

none
No bonds converted to constraints.

h-bonds
Convert the bonds with H-atoms to constraints.

all-bonds
Convert all bonds to constraints.

h-angles
Convert all bonds to constraints and convert the angles that involve H-atoms to bond-
constraints.

all-angles
Convert all bonds to constraints and all angles to bond-constraints.

constraint-algorithm
Chooses which solver satisfies any non-SETTLE holonomic constraints.

LINCS
LINear Constraint Solver. With domain decomposition the parallel version P-LINCS is
used. The accuracy in set with 1 incs—-order (page 53), which sets the number of ma-
trices in the expansion for the matrix inversion. After the matrix inversion correction the
algorithm does an iterative correction to compensate for lengthening due to rotation. The
number of such iterations can be controlled with 1incs—iter (page 53). The root mean
square relative constraint deviation is printed to the log file every nst I1og (page 42) steps.
If a bond rotates more than 1incs-warnangle (page 53) in one step, a warning will be
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printed both to the log file and to stderr. LINCS should not be used with coupled angle
constraints.

SHAKE
SHAKE is slightly slower and less stable than LINCS, but does work with angle constraints.
The relative tolerance is set with shake—-tol (page 53), 0.0001 is a good value for “nor-
mal” MD. SHAKE does not support constraints between atoms on different decomposition
domains, so it can only be used with domain decomposition when so-called update-groups
are used, which is usally the case when only bonds involving hydrogens are constrained.
SHAKE can not be used with energy minimization.

continuation
This option was formerly known as unconstrained-start.

no
apply constraints to the start configuration and reset shells

yes
do not apply constraints to the start configuration and do not reset shells, useful for exact
coninuation and reruns

shake-tol
(0.0001) relative tolerance for SHAKE

lincs-order

(4) Highest order in the expansion of the constraint coupling matrix. When constraints form
triangles, an additional expansion of the same order is applied on top of the normal expan-
sion only for the couplings within such triangles. For “normal” MD simulations an order of 4
usually suffices, 6 is needed for large time-steps with virtual sites or BD. For accurate energy
minimization in double precision an order of 8 or more might be required. Note that in sin-
gle precision an order higher than 6 will often lead to worse accuracy due to amplification of
rounding errors. With domain decomposition, the cell size is limited by the distance spanned
by lincs—-order (page 53) +1 constraints. When one wants to scale further than this limit,
one can decrease 1incs-order (page 53) and increase 1incs—iter (page 53), since the
accuracy does not deteriorate when (1+ 1incs—iter (page 53) )* 1incs-order (page 53)
remains constant.

lincs-iter
(1) Number of iterations to correct for rotational lengthening in LINCS. For normal runs a single
step is sufficient, but for NVE runs where you want to conserve energy accurately or for accurate
energy minimization in double precision you might want to increase it to 2. Note that in single
precision using more than 1 iteration will often lead to worse accuracy due to amplification of
rounding errors.

lincs-warnangle
(30) [deg] maximum angle that a bond can rotate before LINCS will complain

morse

no
bonds are represented by a harmonic potential

yes
bonds are represented by a Morse potential
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Energy group exclusions

energygrp—excl
Pairs of energy groups for which all non-bonded interactions are excluded. An example: if you
have two energy groups Protein and SOL, specifying energygrp—excl = Protein
Protein SOL SOL would give only the non-bonded interactions between the protein and the
solvent. This is especially useful for speeding up energy calculations with mdrun -rerun
and for excluding interactions within frozen groups.

Walls

nwall
(0) When set to 1 there is a wall at z=0, when set to 2 there is also a wall at z=z-box.
Walls can only be used with pbc (page 43) =xy. When set to 2, pressure coupling and Ewald
summation can be used (it is usually best to use semiisotropic pressure coupling with the x/y
compressibility set to 0, as otherwise the surface area will change). Walls interact wit the rest
of the system through an optional wall-atomtype (page 54). Energy groups wallO and
walll (for nwall (page 54) =2) are added automatically to monitor the interaction of energy
groups with each wall. The center of mass motion removal will be turned off in the z-direction.

wall-atomtype
the atom type name in the force field for each wall. By (for example) defining a special wall
atom type in the topology with its own combination rules, this allows for independent tuning of
the interaction of each atomtype with the walls.

wall-type

9-3
LJ integrated over the volume behind the wall: 9-3 potential

10-4
LJ integrated over the wall surface: 10-4 potential

12-6
direct LJ potential with the z distance from the wall

table
user defined potentials indexed with the z distance from the wall, the tables are read analogously
to the energygrp—table (page 47) option, where the first name is for a “normal” energy
group and the second name is wall0 or wall1l, only the dispersion and repulsion columns are
used

wall-r-linpot
(-1) [nm] Below this distance from the wall the potential is continued linearly and thus the force
is constant. Setting this option to a postive value is especially useful for equilibration when
some atoms are beyond a wall. When the value is <=0 (<0 for wa 11—t ype (page 54) =table),
a fatal error is generated when atoms are beyond a wall.

wall-density
[nm>] / [nm™2] the number density of the atoms for each wall for wall types 9-3 and 10-4

wall-ewald-zfac
(3) The scaling factor for the third box vector for Ewald summation only, the minimum is
2. Ewald summation can only be used with nwall (page 54) =2, where one should use
ewald-geometry (page 48) =3dc. The empty layer in the box serves to decrease the un-
physical Coulomb interaction between periodic images.
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COM pulling

Sets whether pulling on collective variables is active. Note that where pulling coordinates are
applicable, there can be more than one (set with pull-ncoords (page 56)) and multiple re-
lated mdp (page 450) variables will exist accordingly. Documentation references to things like
pull-coordl-vec (page 58) should be understood to apply to to the applicable pulling coor-
dinate, eg. the second pull coordinate is described by pull-coord2-vec, pull-coord2-k, and so on.

pull

no
No center of mass pulling. All the following pull options will be ignored (and if present in
the mdp (page 450) file, they unfortunately generate warnings)

yes
Center of mass pulling will be applied on 1 or more groups using 1 or more pull coordinates.

pull-cylinder-r
(1.5) [nm] the radius of the cylinder for pull-coordl-geometry=cylinder (page 57)

pull-constr-tol
(10°) the relative constraint tolerance for constraint pulling

pull-print-com

no
do not print the COM for any group

yes
print the COM of all groups for all pull coordinates

pull-print-ref-value

no
do not print the reference value for each pull coordinate

yes
print the reference value for each pull coordinate

pull-print-components

no
only print the distance for each pull coordinate

yes
print the distance and Cartesian components selected in pull—-coordl—dim (page 58)

pull-nstxout
(50) frequency for writing out the COMs of all the pull group (0 is never)

pull-nstfout
(50) frequency for writing out the force of all the pulled group (0 is never)

pull-pbc-ref-prev-step-com

no
Use the reference atom (pull—-groupl-pbcatom (page 56)) for the treatment of peri-
odic boundary conditions.

yes
Use the COM of the previous step as reference for the treatment of periodic boundary con-
ditions. The reference is initialized using the reference atom (pull-groupl-pbcatom
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(page 56)), which should be located centrally in the group. Using the COM from the previ-
ous step can be useful if one or more pull groups are large.

pull-xout—-average

no
Write the instantaneous coordinates for all the pulled groups.

yes
Write the average coordinates (since last output) for all the pulled groups. N.b., some
analysis tools might expect instantaneous pull output.

pull-fout-average

no
Write the instantaneous force for all the pulled groups.

yes
Write the average force (since last output) for all the pulled groups. N.b., some analysis
tools might expect instantaneous pull output.

pull-ngroups
(1) The number of pull groups, not including the absolute reference group, when used. Pull
groups can be reused in multiple pull coordinates. Below only the pull options for group 1 are
given, further groups simply increase the group index number.

pull-ncoords
(1) The number of pull coordinates. Below only the pull options for coordinate 1 are given,
further coordinates simply increase the coordinate index number.

pull-groupl—-name
The name of the pull group, is looked up in the index file or in the default groups to obtain the
atoms involved.

pull-groupl-weights
Optional relative weights which are multiplied with the masses of the atoms to give the total
weight for the COM. The number should be 0, meaning all 1, or the number of atoms in the pull
group.

pull-groupl-pbcatom

(0) The reference atom for the treatment of periodic boundary conditions inside the group (this
has no effect on the treatment of the pbc between groups). This option is only important
when the diameter of the pull group is larger than half the shortest box vector. For deter-
mining the COM, all atoms in the group are put at their periodic image which is closest to
pull-groupl-pbcatom (page 56). A value of 0 means that the middle atom (number wise)
is used, which is only safe for small groups. gmx grompp (page 169) checks that the maximum
distance from the reference atom (specifically chosen, or not) to the other atoms in the group is
not too large. This parameter is not used with pull—-coordl-geometry (page 57) cylinder.
A value of -1 turns on cosine weighting, which is useful for a group of molecules in a periodic
system, e.g. a water slab (see Engin et al. J. Chem. Phys. B 2010).

pull-coordl-type

umbrella
Center of mass pulling using an umbrella potential between the reference group and one or
more groups.

constraint
Center of mass pulling using a constraint between the reference group and one or more
groups. The setup is identical to the option umbrella, except for the fact that a rigid con-
straint is applied instead of a harmonic potential. Note that this type is not supported in
combination with multiple time stepping.
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constant-force
Center of mass pulling using a linear potential and therefore a constant force. For this
option there is no reference position and therefore the parameters pull-coordl-init
(page 58) and pull-coordl—-rate (page 58) are not used.

flat-bottom
At distances above pull-coordl-init (page 58) a harmonic potential is applied, oth-
erwise no potential is applied.

flat-bottom-high
At distances below pull-coordl-init (page 58) a harmonic potential is applied, oth-
erwise no potential is applied.

external-potential
An external potential that needs to be provided by another module.

pull-coordl-potential-provider
The name of the external module that provides the potential for the case where
pull-coordl-type (page 56) is external-potential.

pull-coordl-geometry

distance
Pull along the vector connecting the two groups. Components can be selected with
pull-coordl—-dim (page 58).

direction
Pull in the direction of pull-coordl-vec (page 58).

direction—-periodic
As pull-coordl-geometry=direction (page 57), but does not apply periodic box
vector corrections to keep the distance within half the box length. This is (only) useful
for pushing groups apart by more than half the box length by continuously changing the
reference location using a pull rate. With this geometry the box should not be dynamic (e.g.
no pressure scaling) in the pull dimensions and the pull force is not added to the virial.

direction-relative

As pull-coordl—-geometry=direction (page 57), but the pull vector is the vector
that points from the COM of a third to the COM of a fourth pull group. This means that
4 groups need to be supplied in pull-coordl—-groups (page 58). Note that the pull
force will give rise to a torque on the pull vector, which is turn leads to forces perpendicular
to the pull vector on the two groups defining the vector. If you want a pull group to move
between the two groups defining the vector, simply use the union of these two groups as
the reference group.

cylinder

Designed for pulling with respect to a layer where the reference COM is given
by a local cylindrical part of the reference group. The pulling is in the direc-
tion of pull-coordl-vec (page 58). From the first of the two groups in
pull-coordl-groups (page 58) a cylinder is selected around the axis going through
the COM of the second group with direction pull-coordl-vec (page 58) with radius
pull-cylinder—r (page 55). Weights of the atoms decrease continously to zero as
the radial distance goes from O to pull-cylinder—r (page 55) (mass weighting is also
used). The radial dependence gives rise to radial forces on both pull groups. Note that the
radius should be smaller than half the box size. For tilted cylinders they should be even
smaller than half the box size since the distance of an atom in the reference group from
the COM of the pull group has both a radial and an axial component. This geometry is not
supported with constraint pulling.

angle
Pull along an angle defined by four groups. The angle is defined as the angle between two
vectors: the vector connecting the COM of the first group to the COM of the second group
and the vector connecting the COM of the third group to the COM of the fourth group.
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angle—-axis
As pull-coordl-geometry=angle (page 57) but the second vector is given by
pull-coordl-vec (page 58). Thus, only the two groups that define the first vector
need to be given.

dihedral
Pull along a dihedral angle defined by six groups. These pairwise define three vectors: the
vector connecting the COM of group 1 to the COM of group 2, the COM of group 3 to the
COM of group 4, and the COM of group 5 to the COM group 6. The dihedral angle is then
defined as the angle between two planes: the plane spanned by the the two first vectors and
the plane spanned the two last vectors.

transformation
Transforms other pull coordinates using a mathematical expression defined by
pull-coordl-expression (page 58). Pull coordinates of lower indices can be used
as variables to this pull coordinate. Thus, pull transformation coordinates should have a
higher pull coordinate index than all pull coordinates they transform.

pull-coordl-expression
Mathematical expression to transform pull coordinates of lower indices to a new one. The pull
coordinates are referred to as variables in the equation so that pull-coord!’s value becomes ‘x1’,
pull-coord? value becomes ‘x2’ etc. The mathematical expression are evaluated using muParser.
Only relevant if pull-coordl-geometry (page 57)is setto transformation.

pull-coordl-dx
(1e-9) Size of finite difference to use in numerical derivation of the pull coordinate with re-
spect to other pull coordinates. The current implementation uses a simple first order finite
difference method to perform derivation so that f’(x) = (f(x+dx)-f(x))/dx Only relevant if
pull-coordl-geometry (page 57)is setto transformation.

pull-coordl—-groups
The group indices on which this pull coordinate will operate. The number of group indices
required is geometry dependent. The first index can be 0, in which case an absolute reference of
pull-coordl-origin (page 58)isused. With an absolute reference the system is no longer
translation invariant and one should think about what to do with the center of mass motion.

pull-coordl-dim

(Y Y Y) Selects the dimensions that this pull coordinate acts on and that are
printed to the output files when pull-print-components (page 55) =
pull-coordl-start=yes (page 58). With pull-coordl-geometry (page 57)
= pull-coordl-geometry=distance (page 57), only Cartesian components set to Y
contribute to the distance. Thus setting this to Y Y N results in a distance in the x/y plane.
With other geometries all dimensions with non-zero entries in pull-coordl—-vec (page 58)
should be set to Y, the values for other dimensions only affect the output.

pull-coordl-origin
(0.0 0.0 0.0) The pull reference position for use with an absolute reference.

pull-coordl-vec
(0.0 0.0 0.0) The pull direction. gmx grompp (page 169) normalizes the vector.

pull-coordl-start

no
do not modify pull-coordl-init (page 58)

yes
add the COM distance of the starting conformation to pull-coordl—init (page 58)
pull-coordl-init
(0.0) [nm] or [deg] The reference distance or reference angle at t=0.

pull-coordl-rate
(0) [nm/ps] or [deg/ps] The rate of change of the reference position or reference angle.

3.7. Molecular dynamics parameters (.mdp options) 58



GROMACS Documentation, Release 2022.3

pull-coordl-k
(0) [kJ mol'! nm™2] or [kJ mol'! nm™'] or [kJ mol"! rad?] or [kJ mol™!' rad!] The force constant.
For umbrella pulling this is the harmonic force constant in kJ mol"! nm (or kJ mol™! rad? for
angles). For constant force pulling this is the force constant of the linear potential, and thus
the negative (!) of the constant force in kJ mol”' nm™' (or kJ mol™! rad’! for angles). Note that
for angles the force constant is expressed in terms of radians (while pull-coordl-init
(page 58) and pull-coordl—-rate (page 58) are expressed in degrees).

pull-coordl-kB
(pull-k1) [kJ mol' nm?] or [kJ] mol"' nm'] or [kJ mol! rad?] or [kJ mol’ rad'] As
pull-coordl-k (page59), but for state B. This is only used when free-energy (page 65)
is turned on. The force constant is then (1 - lambda) * pull-coordl -k (page 59) + lambda
* pull-coordl-kB (page 59).

AWH adaptive biasing

awh

no
No biasing.

yes
Adaptively bias a reaction coordinate using the AWH method and estimate the correspond-
ing PMFE. The PMF and other AWH data are written to energy file at an interval set by
awh-nstout (page 60) and can be extracted with the gmx awh tool. The AWH coor-
dinate can be multidimensional and is defined by mapping each dimension to a pull coor-
dinate index. This is only allowed if pull-coordl-type=external-potential
(page 57) and pull-coordl-potential-provider (page 57) = awh for the con-
cerned pull coordinate indices. Pull geometry ‘direction-periodic’ is not supported by
AWH.

awh-potential

convolved
The applied biasing potential is the convolution of the bias function and a set of harmonic
umbrella potentials (see awh—potential=umbrella (page 59) below). This results in
a smooth potential function and force. The resolution of the potential is set by the force
constant of each umbrella, see awhl-diml-force—-constant (page 62). This option
is not compatible with using the free energy lambda state as an AWH reaction coordinate.

umbrella
The potential bias is applied by controlling the position of an harmonic potential using
Monte-Carlo sampling. The force constant is set with awh1-diml-force-constant
(page 62). The umbrella location is sampled using Monte-Carlo every awh-nstsample
(page 60) steps. This is option is required when using the free energy lambda state as an
AWH reaction coordinate. Apart from that, this option is mainly for comparison and testing
purposes as there are no advantages to using an umbrella.

awh-share-multisim

no
AWH will not share biases across simulations started with gmx mdrun (page 186) option
-multidir. The biases will be independent.

yes
With gmx mdrun (page 186) and option -mult idir the bias and PMF estimates for biases
with awh1-share—group (page 61) >0 will be shared across simulations with the biases
with the same awhl-share—-group (page 61) value. The simulations should have the
same AWH settings for sharing to make sense. gmx mdrun (page 186) will check whether
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the simulations are technically compatible for sharing, but the user should check that bias
sharing physically makes sense.

awh-seed
(-1) Random seed for Monte-Carlo sampling the umbrella position, where -1 indicates to gener-
ate a seed. Only used with awh—-potential=umbrella (page 59).

awh—-nstout
(100000) Number of steps between printing AWH data to the energy file, should be a multiple
of nstenergy (page 42).

awh—-nstsample
(10) Number of steps between sampling of the coordinate value. This sampling is the basis for
updating the bias and estimating the PMF and other AWH observables.

awh-nsamples—-update
(10) The number of coordinate samples used for each AWH update. The update interval in steps
is awh—nstsample (page 60) times this value.

awh-nbias
(1) The number of biases, each acting on its own coordinate. The following options should be
specified for each bias although below only the options for bias number 1 is shown. Options for
other bias indices are obtained by replacing ‘1’ by the bias index.

awhl-error-init

(10.0) [kJ mol''] Estimated initial average error of the PMF for this bias. This value to-
gether with the given diffusion constant(s) awhl-diml-diffusion (page 62) determine
the initial biasing rate. The error is obviously not known a priori. Only a rough esti-
mate of awhl-error—-init (page 60) is needed however. As a general guideline, leave
awhl-error—init (page 60) to its default value when starting a new simulation. On the
other hand, when there is a priori knowledge of the PMF (e.g. when an initial PMF estimate is
provided, see the awh1-user—data (page 61) option) then awh1-error—init (page 60)
should reflect that knowledge.

awhl-growth

exp-linear

Each bias keeps a reference weight histogram for the coordinate samples. Its size sets the mag-
nitude of the bias function and free energy estimate updates (few samples corresponds to large
updates and vice versa). Thus, its growth rate sets the maximum convergence rate. By default,
there is an initial stage in which the histogram grows close to exponentially (but slower than the
sampling rate). In the final stage that follows, the growth rate is linear and equal to the sampling
rate (set by awh—nstsample (page 60)). The initial stage is typically necessary for efficient
convergence when starting a new simulation where high free energy barriers have not yet been
flattened by the bias.

linear

As awhl-growth=exp-1linear (page 60) but skip the initial stage. This may be useful if
there is a priori knowledge (see awhl-error-init (page 60)) which eliminates the need for
an initial stage. This is also the setting compatible with awh1-target=1local-boltzmann

(page 61).
awhl-equilibrate-histogram

no
Do not equilibrate histogram.

yes
Before entering the initial stage (see awhl—-growth=exp—linear (page 60)), make
sure the histogram of sampled weights is following the target distribution closely enough
(specifically, at least 80% of the target region needs to have a local relative error of less than
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20%). This option would typically only be used when awh1-share—-group (page 61) >
0 and the initial configurations poorly represent the target distribution.

awhl-target

constant
The bias is tuned towards a constant (uniform) coordinate distribution in the defined
sampling interval (defined by [awhl-diml-start (page 62), awhl-diml-end
(page 62)]).

cutoff
Similar to awhl-target=constant (page 61), but the target distribution is propor-
tional to 1/(1 + exp(F - awhl-target=cutoff (page 61))), where F is the free energy
relative to the estimated global minimum. This provides a smooth switch of a flat target
distribution in regions with free energy lower than the cut-off to a Boltzmann distribution
in regions with free energy higher than the cut-off.

boltzmann
The target distribution is a Boltzmann distribtution with a scaled beta (inverse temperature)
factor given by awh1-target-beta-scaling (page 61). E.g., a value of 0.1 would
give the same coordinate distribution as sampling with a simulation temperature scaled by
10.

local-boltzmann
Same target distribution and use of awhl-target-beta-scaling (page 61) but the
convergence towards the target distribution is inherently local i.e., the rate of change of the
bias only depends on the local sampling. This local convergence property is only compat-
ible with awh1-growth=1inear (page 60), since for awhl-growth=exp—linear
(page 60) histograms are globally rescaled in the initial stage.

awhl-target-beta-scaling
(0) For awhl-target=boltzmann (page 61) and awhl-target=local-boltzmann
(page 61) it is the unitless beta scaling factor taking values in (0,1).

awhl-target—-cutoff
(0) [kJ mol'!] For awh1-target=cutoff (page 61) this is the cutoff, should be > 0.

awhl-user-data

no
Initialize the PMF and target distribution with default values.

yes

Initialize the PMF and target distribution with user provided data. For awh-nbias
(page 60) = 1, gmx mdrun (page 186) will expect a file awhinit.xvg to be present
in the run directory. For multiple biases, gmx mdrun (page 186) expects files awhinitl.
xvg, awhinit?2.xvg, etc. The file name can be changed with the —awh option. The first
awh1-ndim (page 62) columns of each input file should contain the coordinate values,
such that each row defines a point in coordinate space. Column awhl-ndim (page 62) +
1 should contain the PMF value (in kT) for each point. The target distribution column can
either follow the PMF (column awhI-ndim (page 62) + 2) or be in the same column as
written by gmx awh (page 119).

awhl-share—-group

Do not share the bias.

positive
Share the bias and PMF estimates between simulations. This currently only works be-
tween biases with the same index. Note that currently sharing within a single simulation is
not supported. The bias will be shared across simulations that specify the same value for
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awhl-share—group (page 61). To enable this, use awh-share-multisim=yes
(page 59) and the gmx mdrun (page 186) option -multidir. Sharing may increase con-
vergence initially, although the starting configurations can be critical, especially when shar-
ing between many biases.

awhl-ndim
(1) [integer] Number of dimensions of the coordinate, each dimension maps to 1 pull coordinate.
The following options should be specified for each such dimension. Below only the options for
dimension number 1 is shown. Options for other dimension indices are obtained by replacing
‘1’ by the dimension index.

awhl-diml-coord—-provider

pull
The pull module is providing the reaction coordinate for this dimension. With multiple
time-stepping, AWH and pull should be in the same MTS level.

fep-lambda
The free energy lambda state is the reaction coordinate for this dimension. The lambda
states to use are specified by fep—lambdas (page 65), vdw—lambdas (page 66),
coul-lambdas (page 66) etc. This is not compatible with delta-lambda. It also re-
quires calc-lambda-neighbors to be -1. With multiple time-stepping, AWH should be in the
slow level. This option requires awh-potential=umbrella (page59).

awhl-diml-coord-index
(1) Index of the pull coordinate defining this coordinate dimension.

awhl-diml-force-constant
(0) [kJ mol"! nm] or [kJ mol™! rad?] Force constant for the (convolved) umbrella potential(s)
along this coordinate dimension.

awhl-diml-start

(0.0) [nm] or [deg] Start value of the sampling interval along this dimension. The range
of allowed values depends on the relevant pull geometry (see pull-coordl-geometry
(page 57)). For dihedral geometries awhl-diml-start (page 62) greater than
awhl-diml-end (page 62) is allowed. The interval will then wrap around from +period/2
to -period/2. For the direction geometry, the dimension is made periodic when the direction is
along a box vector and covers more than 95% of the box length. Note that one should not apply
pressure coupling along a periodic dimension.

awhl-diml-end
(0.0) [nm] or [deg] End value defining the sampling interval together with awh1-diml-start
(page 62).

awhl-diml-diffusion
(109) [nmzlps], [radzlps] or [ps’l] Estimated diffusion constant for this coordinate dimension
determining the initial biasing rate. This needs only be a rough estimate and should not critically
affect the results unless it is set to something very low, leading to slow convergence, or very high,
forcing the system far from equilibrium. Not setting this value explicitly generates a warning.

awhl-diml-cover-diameter

(0.0) [nm] or [deg] Diameter that needs to be sampled by a single simulation around
a coordinate value before the point is considered covered in the initial stage (see
awhl-growth=exp—1inear (page 60)). A value > 0 ensures that for each covering there is
a continuous transition of this diameter across each coordinate value. This is trivially true for in-
dependent simulations but not for for multiple bias-sharing simulations (awh1-share-group
(page 61)>0). For a diameter = 0, covering occurs as soon as the simulations have sampled the
whole interval, which for many sharing simulations does not guarantee transitions across free
energy barriers. On the other hand, when the diameter >= the sampling interval length, covering
occurs when a single simulation has independently sampled the whole interval.

3.7. Molecular dynamics parameters (.mdp options) 62



GROMACS Documentation, Release 2022.3

Enforced rotation

These mdp (page 450) parameters can be used enforce the rotation of a group of atoms, e.g. a protein
subunit. The reference manual describes in detail 13 different potentials that can be used to achieve
such a rotation.

rotation

no
No enforced rotation will be applied. All enforced rotation options will be ignored (and if
present in the mdp (page 450) file, they unfortunately generate warnings).

yes
Apply the rotation potential specified by rot-type0 (page 63) to the group of atoms
given under the rot —~group0 (page 63) option.

rot—-ngroups
(1) Number of rotation groups.

rot-group0
Name of rotation group 0 in the index file.

rot-type0
(iso) Type of rotation potential that is applied to rotation group 0. Can be of of the follow-
ing: iso, iso-pf, pm, pm-pf, rm, rm-pf, rm2, rm2-pf, flex, flex—t, flex2, or
flex2-t.

rot-massw0
(no) Use mass weighted rotation group positions.

rot-vecO
(1.0 0.0 0.0) Rotation vector, will get normalized.

rot-pivot0
(0.0 0.0 0.0) [nm] Pivot point for the potentials i so, pm, rm, and rm2.

rot-ratel
(0) [degree ps™'] Reference rotation rate of group 0.

rot-kO0
(0) [kJ mol! nm] Force constant for group 0.

rot—-slab-dist0
(1.5) [nm] Slab distance, if a flexible axis rotation type was chosen.

rot-min—-gauss0
(0.001) Minimum value (cutoff) of Gaussian function for the force to be evaluated (for the
flexible axis potentials).

rot-eps0
(0.0001) [nm?] Value of additive constant epsilon for rm2 « and £1ex2* potentials.

rot-fit-method0
(rmsd) Fitting method when determining the actual angle of a rotation group (can be one of
rmsd, norm, or potential).

rot-potfit-nsteps0
(21) For fit type potential, the number of angular positions around the reference angle for
which the rotation potential is evaluated.

rot-potfit-step0
(0.25) For fit type potential, the distance in degrees between two angular positions.

rot-nstrout
(100) Output frequency (in steps) for the angle of the rotation group, as well as for the torque
and the rotation potential energy.
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rot—-nstsout
(1000) Output frequency for per-slab data of the flexible axis potentials, i.e. angles, torques and
slab centers.

NMR refinement

disre

no
ignore distance restraint information in topology file

simple
simple (per-molecule) distance restraints.

ensemble
distance restraints over an ensemble of molecules in one simulation box. Nor-
mally, one would perform ensemble averaging over multiple simulations, using mdrun
—-multidir. The environment variable GMX_DISRE_ENSEMBLE_SIZE sets the num-
ber of systems within each ensemble (usually equal to the number of directories supplied
tomdrun -multidir).

disre-weighting

equal
divide the restraint force equally over all atom pairs in the restraint

conservative
the forces are the derivative of the restraint potential, this results in an weighting of the
atom pairs to the reciprocal seventh power of the displacement. The forces are conservative
when disre-tau (page 64) is zero.

disre-mixed

no
the violation used in the calculation of the restraint force is the time-averaged violation

yes
the violation used in the calculation of the restraint force is the square root of the product
of the time-averaged violation and the instantaneous violation

disre-fc
(1000) [kJ mol"! nm™?] force constant for distance restraints, which is multiplied by a (possibly)
different factor for each restraint given in the fac column of the interaction in the topology file.

disre-tau
(0) [ps] time constant for distance restraints running average. A value of zero turns off time
averaging.

nstdisreout
(100) [steps] period between steps when the running time-averaged and instantaneous distances
of all atom pairs involved in restraints are written to the energy file (can make the energy file
very large)

orire

no
ignore orientation restraint information in topology file

yes
use orientation restraints, ensemble averaging can be performed with mdrun
-multidir
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orire-fc
(0) [kJ mol!] force constant for orientation restraints, which is multiplied by a (possibly) dif-
ferent weight factor for each restraint, can be set to zero to obtain the orientations from a free
simulation

orire-tau
(0) [ps] time constant for orientation restraints running average. A value of zero turns off time
averaging.

orire-fitgrp
fit group for orientation restraining. This group of atoms is used to determine the rotation R
of the system with respect to the reference orientation. The reference orientation is the starting
conformation of the first subsystem. For a protein, backbone is a reasonable choice

nstorireout
(100) [steps] period between steps when the running time-averaged and instantaneous orienta-
tions for all restraints, and the molecular order tensor are written to the energy file (can make
the energy file very large)

Free energy calculations

free-energy

no
Only use topology A.

yes

Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the deriva-
tive of the Hamiltonian with respect to lambda (as specified with dhdl-derivatives
(page 68)), or the Hamiltonian differences with respect to other lambda values (as specified
with foreign lambda) to the energy file and/or to dhdl . xvg, where they can be processed
by, for example gmx bar (page 120). The potentials, bond-lengths and angles are interpo-
lated linearly as described in the manual. When sc-alpha (page 67) is larger than zero,
soft-core potentials are used for the LJ and Coulomb interactions.

expanded
Turns on expanded ensemble simulation, where the alchemical state becomes a dynamic vari-
able, allowing jumping between different Hamiltonians. See the expanded ensemble options
for controlling how expanded ensemble simulations are performed. The different Hamiltonians
used in expanded ensemble simulations are defined by the other free energy options.

init-lambda
(-1) starting value for lambda (float). Generally, this should only be used with slow growth
(i.e. nonzero delta—lambda (page 65)). In other cases, init—-Ilambda—-state (page 65)
should be specified instead. If a lambda vector is given, :mdp: init—-lambda (page 65) is
used to interpolate the vector instead of setting lambda directly. Must be greater than or equal
to 0.

delta-lambda
(0) increment per time step for lambda

init-lambda-state
(-1) starting value for the lambda state (integer). Specifies which columm of the lambda vec-
tor (coul—-lambdas (page 66), vdw—1ambdas (page 66), bonded—1ambdas (page 66),
restraint—-lambdas (page 66), mass—lambdas (page 66), temperature—-lambdas
(page 66), fep-lambdas (page 65)) should be used. This is a zero-based index:
init-lambda-state (page 65) 0 means the first column, and so on.

fep-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0; values

3.7. Molecular dynamics parameters (.mdp options) 65



GROMACS Documentation, Release 2022.3

greater than 1 are allowed but should be used carefully. Free energy differences between differ-
ent lambda values can then be determined with gmx bar (page 120). fep—Ilambdas (page 65)
is different from the other -lambdas keywords because all components of the lambda vector
that are not specified will use fep—-lambdas (page 65) (including restraint-Ilambdas
(page 66) and therefore the pull code restraints).

coul-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0; values
greater than 1 are allowed but should be used carefully. If soft-core potentials are used, values
must be between 0 and 1. Only the electrostatic interactions are controlled with this component
of the lambda vector (and only if the lambda=0 and lambda=1 states have differing electrostatic
interactions).

vdw-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and
written to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0;
values greater than 1 are allowed but should be used carefully. If soft-core potentials are used,
values must be between 0 and 1. Only the van der Waals interactions are controlled with this
component of the lambda vector.

bonded-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and
written to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0;
values greater than 1 are allowed but should be used carefully. Only the bonded interactions are
controlled with this component of the lambda vector.

restraint-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0; values
greater than 1 are allowed but should be used carefully. Only the restraint interactions: dihedral
restraints, and the pull code restraints are controlled with this component of the lambda vector.

mass—-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0; values
greater than 1 are allowed but should be used carefully. Only the particle masses are controlled
with this component of the lambda vector.

temperature-lambdas
[array] Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl (page 68) steps. Values must be greater than or equal to 0; values
greater than 1 are allowed but should be used carefully. Only the temperatures are controlled
with this component of the lambda vector. Note that these lambdas should not be used for replica
exchange, only for simulated tempering.

calc-lambda—-neighbors

(1) Controls the number of lambda values for which Delta H values will be calculated and written
out, if init-Iambda-state (page 65) has been set. A positive value will limit the number
of lambda points calculated to only the nth neighbors of init—-Ilambda-state (page 65): for
example, if init—-lambda-state (page 65)is 5 and this parameter has a value of 2, energies
for lambda points 3-7 will be calculated and writen out. A value of -1 means all lambda points
will be written out. For normal BAR such as with gmx bar (page 120), a value of 1 is sufficient,
while for MBAR -1 should be used.

sc—function
(beutler)

beutler

Beutler et al. soft-core function

gapsys
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Gapsys et al. soft-core function

sc—alpha
(0) for sc-function=beutler (page 66) the soft-core alpha parameter, a value of
0 results in linear interpolation of the LJ and Coulomb interactions. Used only with
sc—-function=beutler (page 66)

sc-r-power
(6) power 6 for the radial term in the soft-core equation. Used only with
sc-function=beutler (page 66)

sc—coul
(no) Whether to apply the soft-core free energy interaction transformation to the Columbic in-
teraction of a molecule. Default is no, as it is generally more efficient to turn off the Coulomic
interactions linearly before turning off the van der Waals interactions. Note that it is only
taken into account when lambda states are used, not with couple-Iambda0 (page 67) /
couple-lambdal (page 68), and you can still turn off soft-core interactions by setting
sc—alpha (page 67) to 0. Used only with sc-function=beutler (page 66)

sc-power
(1) the power for lambda in the soft-core function, only the values 1 and 2 are supported. Used
only with sc-function=beutler (page 66)

sc—sigma
(0.3) [nm] for sc-function=beutler (page 66) the soft-core sigma for particles which
have a C6 or C12 parameter equal to zero or a sigma smaller than sc—sigma (page 67). Used
only with sc—-function=beutler (page 66)

sc—gapsys—-scale-linpoint-1j
(0.85) for sc—-function=gapsys (page 66) it is the unitless alphalL] parameter. It controls
the softness of the van der Waals interactions by scaling the point for linearizing the vdw force.
Setting it to O will result in the standard hard-core van der Waals interactions. Used only with
sc—function=gapsys (page 66)

sc—gapsys—-scale-linpoint—-gq
(0.3) [nm/e”2] For sc-function=gapsys (page 66) the alphaQ parameter with the unit
of [nm/e”2] and default value of 0.3. It controls the softness of the Coulombic interactions.
Setting it to O will result in the standard hard-core Coulombic interactions. Used only with
sc—function=gapsys (page 66)

sc—gapsys—-sigma-1j
(0.3) [nm] for sc—function=gapsys (page 66) the soft-core sigma for particles which have
a C6 or C12 parameter equal to zero. Used only with sc-function=gapsys (page 66)

couple-moltype

Here one can supply a molecule type (as defined in the topology) for calculating solvation or
coupling free energies. There is a special option sy stem that couples all molecule types in the
system. This can be useful for equilibrating a system starting from (nearly) random coordinates.
free—energy (page 65) has to be turned on. The Van der Waals interactions and/or charges
in this molecule type can be turned on or off between lambda=0 and lambda=1, depending on
the settings of couple-Ilambda0 (page 67) and couple-lambdal (page 68). If you want
to decouple one of several copies of a molecule, you need to copy and rename the molecule
definition in the topology.

couple-lambda0l

vdw—-q
all interactions are on at lambda=0

vdw
the charges are zero (no Coulomb interactions) at lambda=0
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q
the Van der Waals interactions are turned at lambda=0; soft-core interactions will be re-
quired to avoid singularities

none

the Van der Waals interactions are turned off and the charges are zero at lambda=0; soft-core
interactions will be required to avoid singularities.

couple-lambdal
analogous to couple—lambdal (page 68), but for lambda=1

couple-intramol

no
All intra-molecular non-bonded interactions for moleculetype couple-moltype
(page 67) are replaced by exclusions and explicit pair interactions. In this manner the
decoupled state of the molecule corresponds to the proper vacuum state without periodicity
effects.

yes
The intra-molecular Van der Waals and Coulomb interactions are also turned on/off. This
can be useful for partitioning free-energies of relatively large molecules, where the intra-
molecular non-bonded interactions might lead to kinetically trapped vacuum conforma-
tions. The 1-4 pair interactions are not turned off.

nstdhdl
(100) the frequency for writing dH/dlambda and possibly Delta H to dhdl.xvg, 0 means no
ouput, should be a multiple of nstcalcenergy (page 42).

dhdl-derivatives
(yes)

If yes (the default), the derivatives of the Hamiltonian with respect to lambda at each nstdhd1
(page 68) step are written out. These values are needed for interpolation of linear energy differ-
ences with gmx bar (page 120) (although the same can also be achieved with the right foreign
lambda setting, that may not be as flexible), or with thermodynamic integration

dhdl-print-energy
(no)

Include either the total or the potential energy in the dhdl file. Options are ‘no’, ‘potential’, or
‘total’. This information is needed for later free energy analysis if the states of interest are at
different temperatures. If all states are at the same temperature, this information is not needed.
‘potential’ is useful in case one is using mdrun -rerun to generate the dhdl.xvg file.
When rerunning from an existing trajectory, the kinetic energy will often not be correct, and
thus one must compute the residual free energy from the potential alone, with the kinetic energy
component computed analytically.

separate—dhdl-file

yes
The free energy values that are calculated (as specified with the foreign lambda and
dhdl-derivatives (page 68) settings) are written out to a separate file, with the default
name dhdl . xvg. This file can be used directly with gmx bar (page 120).

no
The free energy values are written out to the energy output file (ener . edr, in accumulated
blocks at every nstenergy (page 42) steps), where they can be extracted with gmx energy
(page 158) or used directly with gmx bar (page 120).

dh-hist-size
(0) If nonzero, specifies the size of the histogram into which the Delta H values (specified with
foreign lambda) and the derivative dH/dI values are binned, and written to ener.edr. This can be

3.7. Molecular dynamics parameters (.mdp options) 68



GROMACS Documentation, Release 2022.3

used to save disk space while calculating free energy differences. One histogram gets written
for each foreign lambda and two for the dH/dI, at every nstenergy (page 42) step. Be aware
that incorrect histogram settings (too small size or too wide bins) can introduce errors. Do not
use histograms unless you’re certain you need it.

dh-hist-spacing
(0.1) Specifies the bin width of the histograms, in energy units. Used in conjunction with
dh-hist-size (page 68). This size limits the accuracy with which free energies can be
calculated. Do not use histograms unless you’re certain you need it.

Expanded Ensemble calculations

nstexpanded
The number of integration steps beween attempted moves changing the system Hamiltonian in
expanded ensemble simulations. Must be a multiple of nstcalcenergy (page 42), but can
be greater or less than nstdhdl (page 68).

lmc-stats

no
No Monte Carlo in state space is performed.

metropolis—-transition
Uses the Metropolis weights to update the expanded ensemble weight of each state.
Min{1,exp(-(beta_new u_new - beta_old u_old)}

barker-transition
Uses the Barker transition critera to update the expanded ensemble weight of each state i,
defined by exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

wang-landau
Uses the Wang-Landau algorithm (in state space, not energy space) to update the expanded
ensemble weights.

min-variance
Uses the minimum variance updating method of Escobedo et al. to update the expanded
ensemble weights. Weights will not be the free energies, but will rather emphasize states
that need more sampling to give even uncertainty.

lmc—-mc—move

no
No Monte Carlo in state space is performed.

metropolis—-transition
Randomly chooses a new state up or down, then uses the Metropolis critera to decide
whether to accept or reject: Min{1,exp(-(beta_new u_new - beta_old u_old)}

barker-transition
Randomly chooses a new state up or down, then uses the Barker transition critera to decide
whether to accept or reject: exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old
u_old))

gibbs
Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k
exp(beta_i u_i) to decide which state to move to.

metropolized—gibbs
Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k
exp(beta_i u_i) to decide which state to move to, EXCLUDING the current state, then uses
a rejection step to ensure detailed balance. Always more efficient that Gibbs, though only
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marginally so in many situations, such as when only the nearest neighbors have decent
phase space overlap.

lmc-seed
(-1) random seed to use for Monte Carlo moves in state space. When Imc—seed (page 70) is
set to -1, a pseudo random seed is us

mc—temperature
Temperature used for acceptance/rejection for Monte Carlo moves. If not specified, the temper-
ature of the simulation specified in the first group of ref—t (page 49) is used.

wl-ratio
(0.8) The cutoff for the histogram of state occupancies to be reset, and the free energy incremen-
tor to be changed from delta to delta * w1—-scale (page 70). If we define the Nratio = (number
of samples at each histogram) / (average number of samples at each histogram). wl-ratio
(page 70) of 0.8 means that means that the histogram is only considered flat if all Nratio > 0.8
AND simultaneously all 1/Nratio > 0.8.

wl-scale
(0.8) Each time the histogram is considered flat, then the current value of the Wang-Landau
incrementor for the free energies is multiplied by w1—-scale (page 70). Value must be between
Oand 1.

init-wl-delta
(1.0) The initial value of the Wang-Landau incrementor in kT. Some value near 1 kT is usually
most efficient, though sometimes a value of 2-3 in units of kT works better if the free energy
differences are large.

wl-oneovert

(no) Set Wang-Landau incrementor to scale with 1/(simulation time) in the large sample limit.
There is significant evidence that the standard Wang-Landau algorithms in state space presented
here result in free energies getting ‘burned in’ to incorrect values that depend on the initial state.
when wl-oneovert (page 70) is true, then when the incrementor becomes less than 1/N,
where N is the mumber of samples collected (and thus proportional to the data collection time,
hence ‘1 over t”), then the Wang-Lambda incrementor is set to 1/N, decreasing every step. Once
this occurs, wl-ratio (page 70) is ignored, but the weights will still stop updating when the
equilibration criteria set in Imc-weights—-equil (page 71) is achieved.

lmc-repeats
(1) Controls the number of times that each Monte Carlo swap type is performed each iteration. In
the limit of large numbers of Monte Carlo repeats, then all methods converge to Gibbs sampling.
The value will generally not need to be different from 1.

lmc—-gibbsdelta
(-1) Limit Gibbs sampling to selected numbers of neighboring states. For Gibbs sampling,
it is sometimes inefficient to perform Gibbs sampling over all of the states that are defined.
A positive value of Imc-gibbsdelta (page 70) means that only states plus or minus
Imc-gibbsdelta (page 70) are considered in exchanges up and down. A value of -1 means
that all states are considered. For less than 100 states, it is probably not that expensive to include
all states.

lmc-forced-nstart
(0) Force initial state space sampling to generate weights. In order to come up with reasonable
initial weights, this setting allows the simulation to drive from the initial to the final lambda
state, with Imc—forced-nstart (page 70) steps at each state before moving on to the next
lambda state. If Imc—-forced-nstart (page 70) is sufficiently long (thousands of steps,
perhaps), then the weights will be close to correct. However, in most cases, it is probably better
to simply run the standard weight equilibration algorithms.

nst-transition-matrix
(-1) Frequency of outputting the expanded ensemble transition matrix. A negative number
means it will only be printed at the end of the simulation.
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symmetrized-transition—-matrix
(no) Whether to symmetrize the empirical transition matrix. In the infinite limit the matrix will
be symmetric, but will diverge with statistical noise for short timescales. Forced symmetrization,
by using the matrix T_sym = 1/2 (T + transpose(T)), removes problems like the existence of
(small magnitude) negative eigenvalues.

mininum-var-min
(100) The min-variance strategy (option of Imc-stats (page 69) is only valid for
larger number of samples, and can get stuck if too few samples are used at each state.
mininum-var-min (page 71) is the minimum number of samples that each state that are
allowed before the min-variance strategy is activated if selected.

init-lambda-weights
The initial weights (free energies) used for the expanded ensemble states. Default is a vector
of zero weights. format is similar to the lambda vector settings in fep—-Ilambdas (page 65),
except the weights can be any floating point number. Units are kT. Its length must match the
lambda vector lengths.

lmc-weights—-equil

no
Expanded ensemble weights continue to be updated throughout the simulation.

yes
The input expanded ensemble weights are treated as equilibrated, and are not updated
throughout the simulation.

wl-delta
Expanded ensemble weight updating is stopped when the Wang-Landau incrementor falls
below this value.

number-all-lambda
Expanded ensemble weight updating is stopped when the number of samples at all of the
lambda states is greater than this value.

number-steps
Expanded ensemble weight updating is stopped when the number of steps is greater than
the level specified by this value.

number-samples
Expanded ensemble weight updating is stopped when the number of total samples across
all lambda states is greater than the level specified by this value.

count-ratio
Expanded ensemble weight updating is stopped when the ratio of samples at the least sam-
pled lambda state and most sampled lambda state greater than this value.

simulated-tempering
(no) Turn simulated tempering on or off. Simulated tempering is implemented as expanded
ensemble sampling with different temperatures instead of different Hamiltonians.

sim-temp-low
(300) [K] Low temperature for simulated tempering.

sim-temp-high
(300) [K] High temperature for simulated tempering.

simulated-tempering-scaling
Controls the way that the temperatures at intermediate lambdas are calculated from the
temperature—lambdas (page 66) part of the lambda vector.

linear
Linearly interpolates the temperatures using the values of temperature-Ilambdas
(page 66), i.e. if sim-temp-low (page 71) =300, sim-temp-high (page 71) =400,
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then lambda=0.5 correspond to a temperature of 350. A nonlinear set of temperatures can
always be implemented with uneven spacing in lambda.

geometric
Interpolates temperatures geometrically between sim-temp-low (page 71) and
sim-temp-high (page 71). The i:th state has temperature sim—temp—1low (page 71)
* (sim—temp-high (page 71) / sim-temp—Ilow (page 71)) raised to the power of
(i/(ntemps-1)). This should give roughly equal exchange for constant heat capacity, though
of course things simulations that involve protein folding have very high heat capacity peaks.

exponential
Interpolates temperatures exponentially between sim-temp-low (page 71)
and sim-temp-high (page 71). The i:ith state has temperature

sim-temp—low (page 71) + (sim-temp-high (page 71) - sim—temp-Ilow
(page 71))*((exp(temperature—lambdas (page 66) (i))-1)/(exp(1.0)-1)).

Non-equilibrium MD

acc—-grps
groups for constant acceleration (e.g. Protein So1l) all atoms in groups Protein and Sol will
experience constant acceleration as specified in the accelerate (page 72) line. Note that the
kinetic energy of the center of mass of accelarated groups contributes to the kinetic energy and
temperature of the system. If this is not desired, make each accelerate group also a separate
temperature coupling group.

accelerate
(0) [nm ps~] acceleration for acc—grps (page 72); X, y and z for each group (e.g. 0.1 0.0
0.0 -0.1 0.0 0.0 means that first group has constant acceleration of 0.1 nm ps? in X
direction, second group the opposite).

freezegrps
Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated; e.g. Lipid
SOL). freezedim (page 72) specifies for which dimension(s) the freezing applies. To avoid
spurious contributions to the virial and pressure due to large forces between completely frozen
atoms you need to use energy group exclusions, this also saves computing time. Note that
coordinates of frozen atoms are not scaled by pressure-coupling algorithms.

freezedim
dimensions for which groups in freezegrps (page 72) should be frozen, specify Y or N for
X, Y and Z and for each group (e.g. Y Y N N N N means that particles in the first group can
move only in Z direction. The particles in the second group can move in any direction).

cos—acceleration
(0) [nm ps~2] the amplitude of the acceleration profile for calculating the viscosity. The accel-
eration is in the X-direction and the magnitude is cos—-acceleration (page 72) cos(2 pi
z/boxheight). Two terms are added to the energy file: the amplitude of the velocity profile and
1/viscosity.

deform

(00000 0) [nm ps'] The velocities of deformation for the box elements: a(x) b(y) c(z) b(x)
c(x) c(y). Each step the box elements for which de form (page 72) is non-zero are calculated as:
box(ts)+(t-ts)*deform, off-diagonal elements are corrected for periodicity. The coordinates are
transformed accordingly. Frozen degrees of freedom are (purposely) also transformed. The time
ts is set to t at the first step and at steps at which x and v are written to trajectory to ensure exact
restarts. Deformation can be used together with semiisotropic or anisotropic pressure coupling
when the appropriate compressibilities are set to zero. The diagonal elements can be used to
strain a solid. The off-diagonal elements can be used to shear a solid or a liquid.
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Electric fields

electric-field-x
electric—-field-y
electric-field-z

Here you can specify an electric field that optionally can be alternating and pulsed. The general
expression for the field has the form of a gaussian laser pulse:

(t —to)?

E(t) = Egexp [— 902

} cos [w(t —to)]

For example, the four parameters for direction x are set in the fields of e lectric-field-x
(page 73) (and similar for electric-field-y and electric-field-z) like

electric-field-x = EO omega t0 sigma
with units (respectively) V nm™', ps™!, ps, ps.

In the special case that sigma = O, the exponential term is omitted and only the cosine term
is used. In this case, t 0 must be set to 0. If also omega = 0 a static electric field is applied.

Read more at Electric fields (page 486) and in ref. /46 (page 545).

Mixed quantum/classical molecular dynamics

OMMM—-grps
groups to be descibed at the QM level for MiMiC QM/MM

OMMM

no
QM/MM is no longer supported via these .mdp options. For MiMic, use no here.

Computational Electrophysiology

Use these options to switch on and control ion/water position exchanges in “Computational Electro-
physiology” simulation setups. (See the reference manual for details).

swapcoords

no
Do not enable ion/water position exchanges.

X, Y ,; Z
Allow for ion/water position exchanges along the chosen direction. In a typical setup with
the membranes parallel to the x-y plane, ion/water pairs need to be exchanged in Z direction
to sustain the requested ion concentrations in the compartments.

swap—frequency
(1) The swap attempt frequency, i.e. every how many time steps the ion counts per compartment
are determined and exchanges made if necessary. Normally it is not necessary to check at every
time step. For typical Computational Electrophysiology setups, a value of about 100 is sufficient
and yields a negligible performance impact.

split—group0
Name of the index group of the membrane-embedded part of channel #0. The center of mass
of these atoms defines one of the compartment boundaries and should be chosen such that it is
near the center of the membrane.
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split—groupl
Channel #1 defines the position of the other compartment boundary.

massw-splitO
(no) Defines whether or not mass-weighting is used to calculate the split group center.

no
Use the geometrical center.

yes
Use the center of mass.

massw-splitl
(no) As above, but for split-group #1.

solvent—-group
Name of the index group of solvent molecules.

coupl-steps
(10) Average the number of ions per compartment over these many swap attempt steps. This
can be used to prevent that ions near a compartment boundary (diffusing through a channel, e.g.)
lead to unwanted back and forth swaps.

iontypes
(1) The number of different ion types to be controlled. These are during the simulation ex-
changed with solvent molecules to reach the desired reference numbers.

iontypeO—-name
Name of the first ion type.

iontypeO-in-A
(-1) Requested (=reference) number of ions of type 0 in compartment A. The default value of -1
means: use the number of ions as found in time step O as reference value.

iontype0O-in-B
(-1) Reference number of ions of type 0 for compartment B.

bulk-offsetA
(0.0) Offset of the first swap layer from the compartment A midplane. By default (i.e. bulk offset
=0.0), ion/water exchanges happen between layers at maximum distance (= bulk concentration)
to the split group layers. However, an offset b (-1.0 <b < +1.0) can be specified to offset the bulk
layer from the middle at 0.0 towards one of the compartment-partitioning layers (at +/- 1.0).

bulk-offsetB
(0.0) Offset of the other swap layer from the compartment B midplane.

threshold
(1) Only swap ions if threshold difference to requested count is reached.

cylO-r
(2.0) [nm] Radius of the split cylinder #0. Two split cylinders (mimicking the channel pores) can
optionally be defined relative to the center of the split group. With the help of these cylinders
it can be counted which ions have passed which channel. The split cylinder definition has no
impact on whether or not ion/water swaps are done.

cylO-up

(1.0) [nm] Upper extension of the split cylinder #0.
cylO-down

(1.0) [nm] Lower extension of the split cylinder #0.
cyll-r

(2.0) [nm] Radius of the split cylinder #1.
cyll-up

(1.0) [nm] Upper extension of the split cylinder #1.
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cyll-down
(1.0) [nm] Lower extension of the split cylinder #1.

Density-guided simulations

These options enable and control the calculation and application of additional forces that are derived
from three-dimensional densities, e.g., from cryo electron-microscopy experiments. (See the refer-
ence manual for details)

density-guided-simulation-active
(no) Activate density-guided simulations.

density—-guided-simulation—group
(protein) The atoms that are subject to the forces from the density-guided simulation and con-
tribute to the simulated density.

density-guided-simulation-similarity-measure
(inner-product) Similarity measure between the density that is calculated from the atom posi-
tions and the reference density.

inner-product
Takes the sum of the product of reference density and simulated density voxel values.

relative—-entropy
Uses the negative relative entropy (or Kullback-Leibler divergence) between reference den-
sity and simulated density as similarity measure. Negative density values are ignored.

cross—correlation
Uses the Pearson correlation coefficient between reference density and simulated density
as similarity measure.

density—-guided-simulation—-atom-spreading-weight
(unity) Determines the multiplication factor for the Gaussian kernel when spreading atoms on
the grid.

unity
Every atom in the density fitting group is assigned the same unit factor.

mass
Atoms contribute to the simulated density proportional to their mass.

charge
Atoms contribute to the simulated density proportional to their charge.

density—-guided-simulation-force-constant
(1e+09) [kJ mol '] The scaling factor for density-guided simulation forces. May also be nega-
tive.

density—-guided-simulation—gaussian-transform-spreading-width
(0.2) [nm] The Gaussian RMS width for the spread kernel for the simulated density.

density—-guided-simulation-gaussian-transform-spreading-range-in-multiples-of-width
(4) The range after which the gaussian is cut off in multiples of the Gaussian RMS width de-
scribed above.

density—guided-simulation-reference-density—-filename
(reference.mrc) Reference density file name using an absolute path or a path relative to the to
the folder from which gmx mdrun (page 186) is called.

density-guided-simulation-nst
(1) Interval in steps at which the density fitting forces are evaluated and applied. The forces are
scaled by this number when applied (See the reference manual for details).
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density—-guided-simulation—-normalize—-densities
(true) Normalize the sum of density voxel values to one for the reference density as well as the
simulated density.

density-guided-simulation-adaptive—-force-scaling
(false) Adapt the force constant to ensure a steady increase in similarity between simulated and
reference density.

true
Use adaptive force scaling.

density—-guided-simulation—-adaptive—-force-scaling-time—constant
(4) [ps] Couple force constant to increase in similarity with reference density with this time
constant. Larger times result in looser coupling.

density-guided-simulation-shift-vector
(0,0,0) [nm] Add this vector to all atoms in the density-guided-simulation-group before cal-
culating forces and energies for density-guided-simulations. Affects only the density-guided-
simulation forces and energies. Corresponds to a shift of the input density in the opposite direc-
tion by (-1) * density-guided-simulation-shift-vector.

density-guided-simulation-transformation-matrix
(1,0,0,0,1,0,0,0,1) Multiply all atoms with this matrix in the density-guided-simulation-group
before calculating forces and energies for density-guided-simulations. Affects only the density-
guided-simulation forces and energies. Corresponds to a transformation of the input density by
the inverse of this matrix. The matrix is given in row-major order. This option allows, e.g.,
rotation of the density-guided atom group around the z-axis by 6 degress by using following
input: (cos#, —sin6,0,sin 6, cos6,0,0,0,1) .

QM/MM simulations with CP2K Interface

These options enable and control the calculation and application of additional QM/MM forces that
are computed by the CP2K package if it is linked into GROMACS. For further details about QM/MM
interface implementation follow Hybrid Quantum-Classical simulations (OM/MM) with CP2K inter-
face (page 497).
gmmm—-cp2k—-active

(false) Activate QM/MM simulations. Requires CP2K to be linked with GROMACS

gmmm—-cp2k—-gmgroup
(System) Index group with atoms that are treated with QM.

gmmm—-cp2k—-gmmethod
(PBE) Method used to describe the QM part of the system.

PBE
DFT using PBE functional and DZVP-MOLOPT basis set.

BLYP
DFT using BLYP functional and DZVP-MOLOPT basis set.

INPUT
Provide an external input file for CP2K when running gmx grompp (page 169) with
the —gmi command-line option. External input files are subject to the limitations that
are described in Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface
(page 497).
gmmm—-cp2k—gmcharge
(0) Total charge of the QM part.
gmmm—-cp2k—-gmmultiplicity
(1) Multiplicity or spin-state of QM part. Default value 1 means singlet state.
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gmmm—-cp2k—-gmfilenames
() Names of the CP2K files that will be generated during the simulation. When using the default,
empty, value the name of the simulation input file will be used with an additional _cp2k suffix.

User defined thingies

userl-grps

user2-grps

userintl (0)
userint2 (0)
userint3 (0)
userint4 (0)
userreall (0)
userreal2 (0)
userreal3 (0)

userreald (0)
These you can use if you modify code. You can pass integers and reals and groups to your
subroutine. Check the inputrec definition in src/gromacs/mdtypes/inputrec.h

Removed features

These features have been removed from GROMACS, but so that old mdp (page 450) and 1pr
(page 456) files cannot be mistakenly misused, we still parse this option. gmx grompp (page 169)
and gmx mdrun (page 186) will issue a fatal error if this is set.

adress

(no)

implicit-solvent
(no)

3.8 Useful mdrun features

This section discusses features in gmx mdrun (page 186) that don’t fit well elsewhere.

3.8.1 Re-running a simulation

The rerun feature allows you to take any trajectory file traj.trr and compute quantities based
upon the coordinates in that file using the model physics supplied in the topol.tpr file. It can
be used with command lines like mdrun -s topol -rerun traj.trr. That pr (page 456)
could be different from the one that generated the trajectory. This can be used to compute the energy
or forces for exactly the coordinates supplied as input, or to extract quantities based on subsets of the
molecular system (see gmx convert-tpr (page 133) and gmx trjconv (page 241)). It is easier to do a
correct “single-point” energy evaluation with this feature than a O-step simulation.

Neighbor searching is performed for every frame in the trajectory independently of the value in
nstlist (page 42), since gmx mdrun (page 186) can no longer assume anything about how the
structures were generated. Naturally, no update or constraint algorithms are ever used.

The rerun feature cannot, in general, compute many of the quantities reported during full simulations.
It does only take positions as input (ignoring potentially present velocities), and does only report
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potential energies, volume and density, dH/dl terms, and restraint information. It does notably not
report kinetic, total or conserved energy, temperature, virial or pressure.

3.8.2 Running a simulation in reproducible mode

It is generally difficult to run an efficient parallel MD simulation that is based primarily on floating-
point arithmetic and is fully reproducible. By default, gmx mdrun (page 186) will observe how things
are going and vary how the simulation is conducted in order to optimize throughput. However, there
is a “reproducible mode” available with mdrun -reprod that will systematically eliminate all
sources of variation within that run; repeated invocations on the same input and hardware will be bi-
nary identical. However, running in this mode on different hardware, or with a different compiler, etc.
will not be reproducible. This should normally only be used when investigating possible problems.

3.8.3 Halting running simulations

When gmx mdrun (page 186) receives a TERM or INT signal (e.g. when ctrl+C is pressed), it will
stop at the next neighbor search step or at the second global communication step, whichever happens
later. When gmx mdrun (page 186) receives a second TERM or INT signal and reproducibility is not
requested, it will stop at the first global communication step. In both cases all the usual output will be
written to file and a checkpoint file is written at the last step. When gmx mdrun (page 186) receives an
ABRT signal or the third TERM or INT signal, it will abort directly without writing a new checkpoint
file. When running with MPI, a signal to one of the gmx mdrun (page 186) ranks is sufficient, this
signal should not be sent to mpirun or the gmx mdrun (page 186) process that is the parent of the
others.

3.8.4 Running multi-simulations

There are numerous situations where running a related set of simulations within the same invocation
of mdrun are necessary or useful. Running a replica-exchange simulation requires it, as do simulations
using ensemble-based distance or orientation restraints. Running a related series of lambda points for
a free-energy computation is also convenient to do this way.

This feature requires configuring |Gromacs| with an external MPI library (page 6) so that the set
of simulations can communicate. The n simulations within the set can use internal MPI parallelism
also, so that mpirun -np x gmx_mpi mdrun for x a multiple of n will use x/n ranks per
simulation.

There are two ways of organizing files when running such simulations. All of the normal mechanisms
work in either case, including —de f fnm.

-multidir You must create a set of n directories for the n simulations, place all the relevant input
files in those directories (e.g. named topol.tpr), and run with mpirun -np x gmx_-—
mpi mdrun -s topol -multidir <names-of-directories>. If the order of the
simulations within the multi-simulation is significant, then you are responsible for ordering their
names when you provide them to -mult idir. Be careful with shells that do filename globbing

dictionary-style, e.g. dirl dirl0 dirll ... dir2 .... This option is generally the
most convenient to use. gmx mdrun -table for the group cutoff-scheme works only in this
mode.
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Examples running multi-simulations

mpirun -np 32 gmx_mpi mdrun —-multidir a b c d

Starts a multi-simulation on 32 ranks with 4 simulations. The input and output files are found in
directories a, b, ¢, and d.

mpirun -np 32 gmx_mpi mdrun -multidir a b ¢ d —-gputasks,,
—~0000000011111111

Starts the same multi-simulation as before. On a machine with two physical nodes and two GPUs per
node, there will be 16 MPI ranks per node, and 8 MPI ranks per simulation. The 16 MPI ranks doing
PP work on a node are mapped to the GPUs with IDs 0 and 1, even though they come from more than
one simulation. They are mapped in the order indicated, so that the PP ranks from each simulation
use a single GPU. However, the order 0101010101010101 could run faster.

Running replica-exchange simulations

When running a multi-simulation, using gmx mdrun -replex n means that a replica exchange
is attempted every given number of steps. The number of replicas is set with -multidir option,
described above. All run input files should use a different value for the coupling parameter (e.g.
temperature), which ascends over the set of input files. The random seed for replica exchange is set
with —~reseed. After every exchange, the velocities are scaled and neighbor searching is performed.
See the Reference Manual for more details on how replica exchange functions in GROMACS.

3.8.5 Controlling the length of the simulation

Normally, the length of an MD simulation is best managed through the mdp (page 450) option
nsteps (page 39), however there are situations where more control is useful. gmx mdrun
-nsteps 100 overrides the mdp (page 450) file and executes 100 steps. gmx mdrun -maxh
2. 5 will terminate the simulation shortly before 2.5 hours elapse, which can be useful when running
under cluster queues (as long as the queuing system does not ever suspend the simulation).

3.9 Getting good performance from mdrun

Here we give an overview on the parallelization and acceleration schemes employed by GROMACS.
The aim is to provide an understanding of the underlying mechanisms that make GROMACS one
of the fastest molecular dynamics packages. The information presented should help choosing appro-
priate parallelization options, run configuration, as well as acceleration options to achieve optimal
simulation performance.

The GROMACS build system and the gmx mdrun (page 186) tool have a lot of built-in and config-
urable intelligence to detect your hardware and make pretty effective use of it. For a lot of casual and
serious use of gmx mdrun (page 186), the automatic machinery works well enough. But to get the
most from your hardware to maximize your scientific quality, read on!
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3.9.1 Hardware background information

Modern computer hardware is complex and heterogeneous, so we need to discuss a little bit of back-
ground information and set up some definitions. Experienced HPC users can skip this section.

core A hardware compute unit that actually executes instructions. There is normally more than one
core in a processor, often many more.

cache A special kind of memory local to core(s) that is much faster to access than main memory,
kind of like the top of a human’s desk, compared to their filing cabinet. There are often several
layers of caches associated with a core.

socket A group of cores that share some kind of locality, such as a shared cache. This makes it more
efficient to spread computational work over cores within a socket than over cores in different
sockets. Modern processors often have more than one socket.

node A group of sockets that share coarser-level locality, such as shared access to the same memory
without requiring any network hardware. A normal laptop or desktop computer is a node. A
node is often the smallest amount of a large compute cluster that a user can request to use.

thread A stream of instructions for a core to execute. There are many different programming abstrac-
tions that create and manage spreading computation over multiple threads, such as OpenMP,
pthreads, winthreads, CUDA, OpenCL, and OpenACC. Some kinds of hardware can map more
than one software thread to a core; on Intel x86 processors this is called “hyper-threading”,
while the more general concept is often called SMT for “simultaneous multi-threading”. IBM
Power8 can for instance use up to 8 hardware threads per core. This feature can usually be en-
abled or disabled either in the hardware bios or through a setting in the Linux operating system.
GROMACS can typically make use of this, for a moderate free performance boost. In most
cases it will be enabled by default e.g. on new x86 processors, but in some cases the system
administrators might have disabled it. If that is the case, ask if they can re-enable it for you.
If you are not sure if it is enabled, check the output of the CPU information in the log file and
compare with CPU specifications you find online.

thread affinity (pinning) By default, most operating systems allow software threads to migrate be-
tween cores (or hardware threads) to help automatically balance workload. However, the perfor-
mance of gmx mdrun (page 186) can deteriorate if this is permitted and will degrade dramatically
especially when relying on multi-threading within a rank. To avoid this, gmx mdrun (page 186)
will by default set the affinity of its threads to individual cores/hardware threads, unless the user
or software environment has already done so (or not the entire node is used for the run, i.e. there
is potential for node sharing). Setting thread affinity is sometimes called thread “pinning”.

MPI The dominant multi-node parallelization-scheme, which provides a standardized language in
which programs can be written that work across more than one node.

rank In MPI, a rank is the smallest grouping of hardware used in the multi-node parallelization
scheme. That grouping can be controlled by the user, and might correspond to a core, a socket,
a node, or a group of nodes. The best choice varies with the hardware, software and compute
task. Sometimes an MPI rank is called an MPI process.

GPU A graphics processing unit, which is often faster and more efficient than conventional proces-
sors for particular kinds of compute workloads. A GPU is always associated with a particular
node, and often a particular socket within that node.

OpenMP A standardized technique supported by many compilers to share a compute workload over
multiple cores. Often combined with MPI to achieve hybrid MPI/OpenMP parallelism.

CUDA A proprietary parallel computing framework and API developed by NVIDIA that allows
targeting their accelerator hardware. GROMACS uses CUDA for GPU acceleration support
with NVIDIA hardware.

OpenCL An open standard-based parallel computing framework that consists of a C99-based com-
piler and a programming API for targeting heterogeneous and accelerator hardware. GRO-
MACS uses OpenCL for GPU acceleration on AMD devices (both GPUs and APUs) and Intel
integrated GPUs; NVIDIA hardware is also supported.
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SIMD A type of CPU instruction by which modern CPU cores can execute multiple floating-point
instructions in a single cycle.

3.9.2 Work distribution by parallelization in GROMACS

The algorithms in gmx mdrun (page 186) and their implementations are most relevant when choosing
how to make good use of the hardware. For details, see the Reference Manual (page 305). The most
important of these are

Domain Decomposition The domain decomposition (DD) algorithm decomposes the (short-ranged)
component of the non-bonded interactions into domains that share spatial locality, which permits
the use of efficient algorithms. Each domain handles all of the particle-particle (PP) interactions
for its members, and is mapped to a single MPI rank. Within a PP rank, OpenMP threads can
share the workload, and some work can be offloaded to a GPU. The PP rank also handles any
bonded interactions for the members of its domain. A GPU may perform work for more than
one PP rank, but it is normally most efficient to use a single PP rank per GPU and for that rank to
have thousands of particles. When the work of a PP rank is done on the CPU, mdrun (page 186)
will make extensive use of the SIMD capabilities of the core. There are various command-line
options (page 83) to control the behaviour of the DD algorithm.

Particle-mesh Ewald The particle-mesh Ewald (PME) algorithm treats the long-ranged component
of the non-bonded interactions (Coulomb and possibly also Lennard-Jones). Either all, or just
a subset of ranks may participate in the work for computing the long-ranged component (of-
ten inaccurately called simply the “PME” component). Because the algorithm uses a 3D FFT
that requires global communication, its parallel efficiency gets worse as more ranks participate,
which can mean it is fastest to use just a subset of ranks (e.g. one-quarter to one-half of the
ranks). If there are separate PME ranks, then the remaining ranks handle the PP work. Other-
wise, all ranks do both PP and PME work.

3.9.3 Parallelization schemes

GROMACS, being performance-oriented, has a strong focus on efficient parallelization. There are
multiple parallelization schemes available, therefore a simulation can be run on a given hardware
with different choices of run configuration.

Intra-core parallelization via SIMD: SSE, AVX, etc.

One level of performance improvement available in GROMACS is through the use of Single
Instruction Multiple Data (SIMD) instructions. In detail information for those can be
found under SIMD support (page 10) in the installation guide.

In GROMACS, SIMD instructions are used to parallelize the parts of the code with the highest impact
on performance (nonbonded and bonded force calculation, PME and neighbour searching), through
the use of hardware specific SIMD kernels. Those form one of the three levels of non-bonded kernels
that are available: reference or generic kernels (slow but useful for producing reference values for
testing), optimized plain-C kernels (can be used cross-platform but still slow) and SIMD intrinsics
accelerated kernels.

The SIMD intrinsic code is compiled by the compiler. Technically, it is possible to compile different
levels of acceleration into one binary, but this is difficult to manage with acceleration in many parts of
the code. Thus, you need to configure and compile GROMACS for the SIMD capabilities of the target
CPU. By default, the build system will detect the highest supported acceleration of the host where
the compilation is carried out. For cross-compiling for a machine with a different highest SIMD
instructions set, in order to set the target acceleration, the ~-DGMX_ SIMD CMake option can be used.
To use a single installation on multiple different machines, it is convenient to compile the analysis
tools with the lowest common SIMD instruction set (as these rely little on SIMD acceleration), but
for best performance mdrun (page 186) should be compiled be compiled separately with the highest
(latest) nat ive SIMD instruction set of the target architecture (supported by GROMACS).
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Recent Intel CPU architectures bring tradeoffs between the maximum clock frequency of the CPU (ie.
its speed), and the width of the SIMD instructions it executes (ie its throughput at a given speed). In
particular, the Intel Skylake and Cascade Lake processors (e.g. Xeon SP Gold/Platinum), can
offer better throughput when using narrower SIMD because of the better clock frequency available.
Consider building mdrun (page 186) configured with GMX_SIMD=AVX2_256 instead of GMX_—
SIMD=AVX512 for better performance in GPU accelerated or highly parallel MPI runs.

Some of the latest ARM based CPU, such as the Fujitsu A64fx, support the Scalable Vector Ex-
tensions (SVE). Though SVE can be used to generate fairly efficient Vector Length Agnostic (VLA)
code, this is not a good fit for GROMACS (as the SIMD vector length assumed to be known at CMake
time). Consequently, the SVE vector length must be fixed at CMake time. The default is to automati-
cally detect the default vector length at CMake time (via the /proc/sys/abi/sve_default_-
vector_length pseudo-file, and this can be changed by configuring with GMX_SIMD_ARM_-
SVE_LENGTH=<1len>. The supported vector lengths are 128, 256, 512 and 1024. Since the SIMD
short-range non-bonded kernels only support up to 16 floating point numbers per SIMD vector, 1024
bits vector length is only valid in double precision (e.g. ~DGMX_DOUBLE=on). Note that even if
mdrun (page 186) does check the SIMD vector length at runtime, running with a different vector
length than the one used at CMake time is undefined behavior, and mdrun (page 186) might crash
before reaching the check (that would abort with a user-friendly error message).

Process(-or) level parallelization via OpenMP

GROMACS mdrun (page 186) supports OpenMP multithreading for all parts of the code. OpenMP is
enabled by default and can be turned on/off at configure time with the GMX__OPENMP CMake variable
and at run-time with the —-ntomp option (or the OMP_NUM_THREADS environment variable). The
OpenMP implementation is quite efficient and scales well for up to 12-24 threads on Intel and 6-8
threads on AMD CPUs.

Node level parallelization via GPU offloading and thread-MPI

Multithreading with thread-MPI

The thread-MPI library implements a subset of the MPI 1.1 specification, based on the system thread-
ing support. Both POSIX pthreads and Windows threads are supported, thus providing great portabil-
ity to most UNIX/Linux and Windows operating systems. Acting as a drop-in replacement for MPI,
thread-MPI enables compiling and running mdrun (page 186) on a single machine (i.e. not across
a network) without MPI. Additionally, it not only provides a convenient way to use computers with
multicore CPU(s), but thread-MPI does in some cases make mdrun (page 186) run slightly faster than
with MPI.

Thread-MPI is included in the GROMACS source and it is the default parallelization since version
4.5, practically rendering the serial mdrun (page 186) deprecated. Compilation with thread-MPI is
controlled by the GMX_THREAD_MP I CMake variable.

Thread-MPI is compatible with most mdrun (page 186) features and parallelization schemes, includ-
ing OpenMP, GPUs; it is not compatible with MPI and multi-simulation runs.

By default, the thread-MPI mdrun (page 186) will use all available cores in the machine by starting
an appropriate number of ranks or OpenMP threads to occupy all of them. The number of ranks can
be controlled using the —nt and —ntmpi options. —nt represents the total number of threads to be
used (which can be a mix of thread-MPI and OpenMP threads.
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Hybrid/heterogeneous acceleration

Hybrid acceleration means distributing compute work between available CPUs and GPUs to improve
simulation performance. New non-bonded algorithms have been developed with the aim of efficient
acceleration both on CPUs and GPUs.

The most compute-intensive parts of simulations, non-bonded force calculation, as well as possibly
the PME, bonded force calculation and update and constraints can be offloaded to GPUs and carried
out simultaneously with remaining CPU work. Native GPU acceleration is supported for the most
commonly used algorithms in GROMACS. For more information about the GPU kernels, please see
the Installation guide (page 6).

The native GPU acceleration can be turned on or off, either at run-time using the mdrun (page 186)
—-nb option, or at configuration time using the GMX_GPU CMake variable.

To efficiently use all compute resource available, CPU and GPU computation is done simultaneously.
Overlapping with the OpenMP multithreaded bonded force and PME long-range electrostatic calcu-
lations on the CPU, non-bonded forces are calculated on the GPU. Multiple GPUs, both in a single
node as well as across multiple nodes, are supported using domain-decomposition. A single GPU is
assigned to the non-bonded workload of a domain, therefore, the number GPUs used has to match
the number of of MPI processes (or thread-MPI threads) the simulation is started with. The available
CPU cores are partitioned among the processes (or thread-MPI threads) and a set of cores with a GPU
do the calculations on the respective domain.

With PME electrostatics, mdrun (page 186) supports automated CPU-GPU load-balancing by shifting
workload from the PME mesh calculations, done on the CPU, to the particle-particle non-bonded
calculations, done on the GPU. At startup a few iterations of tuning are executed during the first 100
to 1000 MD steps. These iterations involve scaling the electrostatics cut-off and PME grid spacing to
determine the value that gives optimal CPU-GPU load balance. The cut-off value provided using the
rcoulomb (page 45) =rvdw mdp (page 450) option represents the minimum electrostatics cut-off
the tuning starts with and therefore should be chosen as small as possible (but still reasonable for the
physics simulated). The Lennard-Jones cut-off rvdw is kept fixed. We don’t allow scaling to shorter
cut-off as we don’t want to change rvdw and there would be no performance gain.

While the automated CPU-GPU load balancing always attempts to find the optimal cut-off setting, it
might not always be possible to balance CPU and GPU workload. This happens when the CPU threads
finish calculating the bonded forces and PME faster than the GPU the non-bonded force calculation,
even with the shortest possible cut-off. In such cases the CPU will wait for the GPU and this time
will show up as Wait GPU local in the cycle and timing summary table at the end of the log file.

Parallelization over multiple nodes via MPI

At the heart of the MPI parallelization in GROMACS is the neutral-territory domain decomposition
(page 81) with dynamic load balancing. To parallelize simulations across multiple machines (e.g.
nodes of a cluster) mdrun (page 186) needs to be compiled with MPI which can be enabled using the
GMX_MP I CMake variable.

Controlling the domain decomposition algorithm

This section lists options that affect how the domain decomposition algorithm decomposes the work-
load to the available parallel hardware.

—rdd Can be used to set the required maximum distance for inter charge-group bonded interactions.
Communication for two-body bonded interactions below the non-bonded cut-off distance always
comes for free with the non-bonded communication. Particles beyond the non-bonded cut-off
are only communicated when they have missing bonded interactions; this means that the extra
cost is minor and nearly independent of the value of —rdd. With dynamic load balancing,
option —rdd also sets the lower limit for the domain decomposition cell sizes. By default —rdd
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is determined by gmx mdrun (page 186) based on the initial coordinates. The chosen value will
be a balance between interaction range and communication cost.

—ddcheck On by default. When inter charge-group bonded interactions are beyond the bonded
cut-off distance, gmx mdrun (page 186) terminates with an error message. For pair interactions
and tabulated bonds that do not generate exclusions, this check can be turned off with the option
—noddcheck.

—-rcon When constraints are present, option —rcon influences the cell size limit as well. Particles
connected by NC constraints, where NC is the LINCS order plus 1, should not be beyond the
smallest cell size. A error message is generated when this happens, and the user should change
the decomposition or decrease the LINCS order and increase the number of LINCS iterations.
By default gmx mdrun (page 186) estimates the minimum cell size required for P-LINCS in a
conservative fashion. For high parallelization, it can be useful to set the distance required for
P-LINCS with ~rcon.

—dds Sets the minimum allowed x, y and/or z scaling of the cells with dynamic load balancing. gm.x
mdrun (page 186) will ensure that the cells can scale down by at least this factor. This option is
used for the automated spatial decomposition (when not using —dd) as well as for determining
the number of grid pulses, which in turn sets the minimum allowed cell size. Under certain
circumstances the value of —~dds might need to be adjusted to account for high or low spatial
inhomogeneity of the system.

Multi-level parallelization: MPI and OpenMP

The multi-core trend in CPU development substantiates the need for multi-level parallelization. Cur-
rent multiprocessor machines can have 2-4 CPUs with a core count as high as 64. As the memory
and cache subsystem is lagging more and more behind the multicore evolution, this emphasizes non-
uniform memory access (NUMA) effects, which can become a performance bottleneck. At the same
time, all cores share a network interface. In a purely MPI-parallel scheme, all MPI processes use the
same network interface, and although MPI intra-node communication is generally efficient, commu-
nication between nodes can become a limiting factor to parallelization. This is especially pronounced
in the case of highly parallel simulations with PME (which is very communication intensive) and
with ' 'fat'' nodes connected by a slow network. Multi-level parallelism aims to address the
NUMA and communication related issues by employing efficient intra-node parallelism, typically
multithreading.

Combining OpenMP with MPI creates an additional overhead especially when running separate
multi-threaded PME ranks. Depending on the architecture, input system size, as well as other fac-
tors, MPI+OpenMP runs can be as fast and faster already at small number of processes (e.g. multi-
processor Intel Westmere or Sandy Bridge), but can also be considerably slower (e.g. multi-processor
AMD Interlagos machines). However, there is a more pronounced benefit of multi-level paralleliza-
tion in highly parallel runs.

Separate PME ranks

On CPU ranks, particle-particle (PP) and PME calculations are done in the same process one after
another. As PME requires all-to-all global communication, this is most of the time the limiting factor
to scaling on a large number of cores. By designating a subset of ranks for PME calculations only,
performance of parallel runs can be greatly improved.

OpenMP mutithreading in PME ranks is also possible. Using multi-threading in PME can can im-
prove performance at high parallelization. The reason for this is that with N>1 threads the number
of processes communicating, and therefore the number of messages, is reduced by a factor of N. But
note that modern communication networks can process several messages simultaneously, such that it
could be advantageous to have more processes communicating.

Separate PME ranks are not used at low parallelization, the switch at higher parallelization happens
automatically (at > 16 processes). The number of PME ranks is estimated by mdrun. If the PME

3.9. Getting good performance from mdrun 84



GROMACS Documentation, Release 2022.3

load is higher than the PP load, mdrun will automatically balance the load, but this leads to additional
(non-bonded) calculations. This avoids the idling of a large fraction of the ranks; usually 3/4 of the
ranks are PP ranks. But to ensure the best absolute performance of highly parallel runs, it is advisable
to tweak this number which is automated by the trune_pme (page 245) tool.

The number of PME ranks can be set manually on the mdrun (page 186) command line using the
—npme option, the number of PME threads can be specified on the command line with -nt omp_pme
or alternatively using the GMX_PME_NUM_THREADS environment variable. The latter is especially
useful when running on compute nodes with different number of cores as it enables setting different
number of PME threads on different nodes.

3.9.4 Running mdrun within a single node

gmx mdrun (page 186) can be configured and compiled in several different ways that are efficient to
use within a single node. The default configuration using a suitable compiler will deploy a multi-level
hybrid parallelism that uses CUDA, OpenMP and the threading platform native to the hardware. For
programming convenience, in GROMACS, those native threads are used to implement on a single
node the same MPI scheme as would be used between nodes, but much more efficient; this is called
thread-MPI. From a user’s perspective, real MPI and thread-MPI look almost the same, and GRO-
MACS refers to MPI ranks to mean either kind, except where noted. A real external MPI can be used
for gmx mdrun (page 186) within a single node, but runs more slowly than the thread-MPI version.

By default, gmx mdrun (page 186) will inspect the hardware available at run time and do its best to
make fairly efficient use of the whole node. The log file, stdout and stderr are used to print diagnostics
that inform the user about the choices made and possible consequences.

A number of command-line parameters are available to modify the default behavior.

—nt The total number of threads to use. The default, 0, will start as many threads as available cores.
Whether the threads are thread-MPI ranks, and/or OpenMP threads within such ranks depends
on other settings.

—ntmpi The total number of thread-MPI ranks to use. The default, 0, will start one rank per GPU
(if present), and otherwise one rank per core.

—ntomp The total number of OpenMP threads per rank to start. The default, 0, will start one thread
on each available core. Alternatively, mdrun (page 186) will honor the appropriate system
environment variable (e.g. OMP_NUM_THREADS) if set. Note that the maximum number of
OpenMP threads (per rank) is, for efficiency reasons, limited to 64. While it is rarely beneficial
to use a number of threads higher than this, the GMX_OPENMP_MAX_THREADS CMake
variable can be used to increase the limit.

—npme The total number of ranks to dedicate to the long-ranged component of PME, if used. The
default, -1, will dedicate ranks only if the total number of threads is at least 12, and will use
around a quarter of the ranks for the long-ranged component.

-ntomp_pme When using PME with separate PME ranks, the total number of OpenMP threads per
separate PME rank. The default, 0, copies the value from —nt omp.

99 <

—pin Can be set to “auto,” “on” or “off” to control whether mdrun (page 186) will attempt to set the
affinity of threads to cores. Defaults to “auto,” which means that if mdrun (page 186) detects
that all the cores on the node are being used for mdrun (page 186), then it should behave like
“on,” and attempt to set the affinities (unless they are already set by something else).

—-pinoffset If —-pin on, specifies the logical core number to which mdrun (page 186) should
pin the first thread. When running more than one instance of mdrun (page 186) on a node, use
this option to to avoid pinning threads from different mdrun (page 186) instances to the same
core.

—-pinstride If -pin on, specifies the stride in logical core numbers for the cores to which mdrun
(page 186) should pin its threads. When running more than one instance of mdrun (page 186)
on a node, use this option to avoid pinning threads from different mdrun (page 186) instances to
the same core. Use the default, 0, to minimize the number of threads per physical core - this lets
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mdrun (page 186) manage the hardware-, OS- and configuration-specific details of how to map
logical cores to physical cores.

9 G

—ddorder Can be set to “interleave,” “pp_pme” or “cartesian.” Defaults to “interleave,” which
means that any separate PME ranks will be mapped to MPI ranks in an order like PP, PP, PME,
PP, PP, PME, etc. This generally makes the best use of the available hardware. “pp_pme” maps
all PP ranks first, then all PME ranks. “cartesian” is a special-purpose mapping generally useful
only on special torus networks with accelerated global communication for Cartesian communi-
cators. Has no effect if there are no separate PME ranks.

-nb Used to set where to execute the short-range non-bonded interactions. Can be set to “auto”,
“cpu”, “gpu.” Defaults to “auto,” which uses a compatible GPU if available. Setting “cpu”
requires that no GPU is used. Setting “gpu” requires that a compatible GPU is available and

will be used.

—pme Used to set where to execute the long-range non-bonded interactions. Can be set to “auto”,
“cpu”, “gpu.” Defaults to “auto,” which uses a compatible GPU if available. Setting “gpu”
requires that a compatible GPU is available. Multiple PME ranks are not supported with PME

on GPU, so if a GPU is used for the PME calculation -npme must be set to 1.

-bonded Used to set where to execute the bonded interactions that are part of the PP workload for a
domain. Can be set to “auto”, “cpu”, “gpu.” Defaults to “auto,” which uses a compatible CUDA
GPU only when one is available, a GPU is handling short-ranged interactions, and the CPU is
handling long-ranged interaction work (electrostatic or LJ). The work for the bonded interac-
tions takes place on the same GPU as the short-ranged interactions, and cannot be independently

assigned. Setting “gpu” requires that a compatible GPU is available and will be used.

—update Used to set where to execute update and constraints, when present. Can be set to “auto”,
“cpu”, “gpu.” Defaults to “auto,” which currently always uses the CPU. Setting “gpu” requires
that a compatible CUDA GPU is available, the simulation uses a single rank. Update and con-
straints on a GPU is currently not supported with mass and constraints free-energy perturba-
tion, domain decomposition, virtual sites, Ewald surface correction, replica exchange, constraint

pulling, orientation restraints and computational electrophysiology.

—gpu_id A string that specifies the ID numbers of the GPUs that are available to be used by ranks
on each node. For example, “12” specifies that the GPUs with IDs 1 and 2 (as reported by the
GPU runtime) can be used by mdrun (page 186). This is useful when sharing a node with other
computations, or if a GPU that is dedicated to a display should not be used by GROMACS.
Without specifying this parameter, mdrun (page 186) will utilize all GPUs. When many GPUs
are present, a comma may be used to separate the IDs, so “12,13” would make GPUs 12 and 13
available to mdrun (page 186). It could be necessary to use different GPUs on different nodes
of a simulation, in which case the environment variable GMX_GPU__ID can be set differently for
the ranks on different nodes to achieve that result. In GROMACS versions preceding 2018 this
parameter used to specify both GPU availability and GPU task assignment. The latter is now
done with the —gputasks parameter.

—gputasks A string that specifies the ID numbers of the GPUs to be used by corresponding GPU
tasks on this node. For example, “0011” specifies that the first two GPU tasks will use GPU
0, and the other two use GPU 1. When using this option, the number of ranks must be known
to mdrun (page 186), as well as where tasks of different types should be run, such as by using
-nb gpu - only the tasks which are set to run on GPUs count for parsing the mapping. See
Assigning tasks to GPUs (page 94) for more details. Note that —gpu_id and —gputasks can
not be used at the same time! In GROMACS versions preceding 2018 only a single type of
GPU task (“PP”) could be run on any rank. Now that there is some support for running PME
on GPUs, the number of GPU tasks (and the number of GPU IDs expected in the —gputasks
string) can actually be 3 for a single-rank simulation. The IDs still have to be the same in this
case, as using multiple GPUs per single rank is not yet implemented. The order of GPU tasks per
rank in the string is PP first, PME second. The order of ranks with different kinds of GPU tasks
is the same by default, but can be influenced with the ~ddorder option and gets quite complex
when using multiple nodes. Note that the bonded interactions for a PP task may run on the same
GPU as the short-ranged work, or on the CPU, which can be controlled with the ~-bonded flag.
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The GPU task assignment (whether manually set, or automated), will be reported in the mdrun
(page 186) output on the first physical node of the simulation. For example:

gmx mdrun —-gputasks 0001 -nb gpu -pme gpu —-npme 1 -ntmpi 4

will produce the following output in the log file/terminal:

On host tcbll4 2 GPUs selected for this run.

Mapping of GPU IDs to the 4 GPU tasks in the 4 ranks on this_
—node:

PP:0,PP:0,PP:0,PME: 1

In this case, 3 ranks are set by user to compute PP work on GPU 0, and 1 rank to compute PME
on GPU 1. The detailed indexing of the GPUs is also reported in the log file.

For more information about GPU tasks, please refer to Types of GPU tasks (page 92).

-pmefft Allows choosing whether to execute the 3D FFT computation on a CPU or GPU. Can be
set to “auto”, “cpu”, “gpu.”. When PME is offloaded to a GPU -pmefft gpu is the default,
and the entire PME calculation is executed on the GPU. However, in some cases, e.g. with a
relatively slow or older generation GPU combined with fast CPU cores in a run, moving some
work off of the GPU back to the CPU by computing FFTs on the CPU can improve performance.

Examples for mdrun on one node

gmx mdrun

Starts mdrun (page 186) using all the available resources. mdrun (page 186) will automatically choose
a fairly efficient division into thread-MPI ranks, OpenMP threads and assign work to compatible
GPUs. Details will vary with hardware and the kind of simulation being run.

gmx mdrun -nt 8

Starts mdrun (page 186) using 8 threads, which might be thread-MPI or OpenMP threads depending
on hardware and the kind of simulation being run.

gmx mdrun -ntmpi 2 -ntomp 4

Starts mdrun (page 186) using eight total threads, with two thread-MPI ranks and four OpenMP
threads per rank. You should only use these options when seeking optimal performance, and must
take care that the ranks you create can have all of their OpenMP threads run on the same socket. The
number of ranks should be a multiple of the number of sockets, and the number of cores per node
should be a multiple of the number of threads per rank.

gmnx mdrun -ntmpi 4 -nb gpu —-pme cpu

Starts mdrun (page 186) using four thread-MPI ranks. The CPU cores available will be split evenly
between the ranks using OpenMP threads. The long-range component of the forces are calculated
on CPUs. This may be optimal on hardware where the CPUs are relatively powerful compared to
the GPUs. The bonded part of force calculation will automatically be assigned to the GPU, since the
long-range component of the forces are calculated on CPU(s).

gmx mdrun -ntmpi 1 -nb gpu -pme gpu -bonded gpu -update gpu

Starts mdrun (page 186) using a single thread-MPI rank that will use all available CPU cores. All
interaction types that can run on a GPU will do so. This may be optimal on hardware where the CPUs
are extremely weak compared to the GPUs.
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gmx mdrun -ntmpi 4 -nb gpu -pme cpu —-gputasks 0011

Starts mdrun (page 186) using four thread-MPI ranks, and maps them to GPUs with IDs 0 and 1. The
CPU cores available will be split evenly between the ranks using OpenMP threads, with the first two
ranks offloading short-range nonbonded force calculations to GPU 0, and the last two ranks offloading
to GPU 1. The long-range component of the forces are calculated on CPUs. This may be optimal on
hardware where the CPUs are relatively powerful compared to the GPUs.

gmx mdrun -ntmpi 4 —-nb gpu -pme gpu —npme 1 —gputasks 0001

Starts mdrun (page 186) using four thread-MPI ranks, one of which is dedicated to the long-range
PME calculation. The first 3 threads offload their short-range non-bonded calculations to the GPU
with ID 0, the 4th (PME) thread offloads its calculations to the GPU with ID 1.

gmx mdrun -ntmpi 4 -nb gpu —-pme gpu -npme 1 —-gputasks 0011

Similar to the above example, with 3 ranks assigned to calculating short-range non-bonded forces, and
one rank assigned to calculate the long-range forces. In this case, 2 of the 3 short-range ranks offload
their nonbonded force calculations to GPU 0. The GPU with ID 1 calculates the short-ranged forces
of the 3rd short-range rank, as well as the long-range forces of the PME-dedicated rank. Whether
this or the above example is optimal will depend on the capabilities of the individual GPUs and the
system composition.

gmx mdrun —-gpu_id 12

Starts mdrun (page 186) using GPUs with IDs 1 and 2 (e.g. because GPU 0 is dedicated to running
a display). This requires two thread-MPI ranks, and will split the available CPU cores between them
using OpenMP threads.

gmx mdrun -nt 6 -pin on -pinoffset 0 -pinstride 1
gmx mdrun -nt 6 -pin on -pinoffset 6 -pinstride 1

Starts two mdrun (page 186) processes, each with six total threads arranged so that the processes
affect each other as little as possible by being assigned to disjoint sets of physical cores. Threads
will have their affinities set to particular logical cores, beginning from the first and 7th logical cores,
respectively. The above would work well on an Intel CPU with six physical cores and hyper-threading
enabled. Use this kind of setup only if restricting mdrun (page 186) to a subset of cores to share a node
with other processes. A word of caution: The mapping of logical CPUs/cores to physical cores may
differ between operating systems. On Linux, cat /proc/cpuinfo can be examined to determine
this mapping.

mpirun -np 2 gmx_mpi mdrun

When using an gmx mdrun (page 186) compiled with external MPI, this will start two ranks and as
many OpenMP threads as the hardware and MPI setup will permit. If the MPI setup is restricted to
one node, then the resulting gmx mdrun (page 186) will be local to that node.

3.9.5 Running mdrun on more than one node

This requires configuring GROMACS to build with an external MPI library. By default, this mdrun
(page 186) executable is run with gmx_mpi mdrun. All of the considerations for running single-
node mdrun (page 186) still apply, except that —-ntmpi and —nt cause a fatal error, and instead the
number of ranks is controlled by the MPI environment. Settings such as —npme are much more im-
portant when using multiple nodes. Configuring the MPI environment to produce one rank per core is
generally good until one approaches the strong-scaling limit. At that point, using OpenMP to spread
the work of an MPI rank over more than one core is needed to continue to improve absolute perfor-
mance. The location of the scaling limit depends on the processor, presence of GPUs, network, and
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simulation algorithm, but it is worth measuring at around ~200 particles/core if you need maximum
throughput.

There are further command-line parameters that are relevant in these cases.

—tunepme Defaults to “on.” If “on,” a simulation will optimize various aspects of the PME and DD
algorithms, shifting load between ranks and/or GPUs to maximize throughput. Some mdrun
(page 186) features are not compatible with this, and these ignore this option.

—d1lb Can be set to “auto,” “no,” or “yes.” Defaults to “auto.” Doing Dynamic Load Balancing be-
tween MPI ranks is needed to maximize performance. This is particularly important for molec-
ular systems with heterogeneous particle or interaction density. When a certain threshold for
performance loss is exceeded, DLB activates and shifts particles between ranks to improve per-
formance. If available, using —-bonded gpu is expected to improve the ability of DLB to
maximize performance.

During the simulation gmx mdrun (page 186) must communicate between all PP ranks to compute
quantities such as kinetic energy for log file reporting, or perhaps temperature coupling. By default,
this happens whenever necessary to honor several mdp options (page 37), so that the period between
communication phases is the least common denominator of nst 11 st (page 42), nstcalcenergy
(page 42), nsttcouple (page 49), and nstpcouple (page 50).

Note that —t unepme has more effect when there is more than one node, because the cost of commu-
nication for the PP and PME ranks differs. It still shifts load between PP and PME ranks, but does
not change the number of separate PME ranks in use.

Note also that ~d1b and ~tunepme can interfere with each other, so if you experience performance
variation that could result from this, you may wish to tune PME separately, and run the result with
mdrun —notunepme -dlb yes.

The gmx tune_pme (page 245) utility is available to search a wider range of parameter space, including
making safe modifications to the 7pr (page 456) file, and varying —npme. It is only aware of the
number of ranks created by the MPI environment, and does not explicitly manage any aspect of
OpenMP during the optimization.

Examples for mdrun on more than one node

The examples and explanations for for single-node mdrun (page 186) are still relevant, but —-ntmpi
is no longer the way to choose the number of MPI ranks.

mpirun -np 16 gmx_mpi mdrun

Starts gmx mdrun (page 186) with 16 ranks, which are mapped to the hardware by the MPI library,
e.g. as specified in an MPI hostfile. The available cores will be automatically split among ranks using
OpenMP threads, depending on the hardware and any environment settings such as OMP_NUM_ -
THREADS.

mpirun —np 16 gmx_mpi mdrun -npme 5

Starts gmx mdrun (page 186) with 16 ranks, as above, and require that 5 of them are dedicated to the
PME component.

mpirun —np 11 gmx_mpi mdrun —-ntomp 2 —-npme 6 -ntomp_pme 1

Starts gmx mdrun (page 186) with 11 ranks, as above, and require that six of them are dedicated to
the PME component with one OpenMP thread each. The remaining five do the PP component, with
two OpenMP threads each.

mpirun —np 4 gmx_mpi mdrun -ntomp 6 -nb gpu —-gputasks 00

Starts gmx mdrun (page 186) on a machine with two nodes, using four total ranks, each rank with six
OpenMP threads, and both ranks on a node sharing GPU with ID 0.
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mpirun -np 8 gmx_mpi mdrun -ntomp 3 —-gputasks 0000

Using a same/similar hardware as above, starts gmx mdrun (page 186) on a machine with two nodes,
using eight total ranks, each rank with three OpenMP threads, and all four ranks on a node sharing
GPU with ID 0. This may or may not be faster than the previous setup on the same hardware.

mpirun -np 20 gmx_mpi mdrun -ntomp 4 -gputasks 00

Starts gmx mdrun (page 186) with 20 ranks, and assigns the CPU cores evenly across ranks each to
one OpenMP thread. This setup is likely to be suitable when there are ten nodes, each with one GPU,
and each node has two sockets each of four cores.

mpirun —np 10 gmx_mpi mdrun —-gpu_id 1

Starts gmx mdrun (page 186) with 20 ranks, and assigns the CPU cores evenly across ranks each to
one OpenMP thread. This setup is likely to be suitable when there are ten nodes, each with two GPUs,
but another job on each node is using GPU 0. The job scheduler should set the affinity of threads of
both jobs to their allocated cores, or the performance of mdrun (page 186) will suffer greatly.

mpirun -np 20 gmx_mpi mdrun —-gpu_id 01

Starts gmx mdrun (page 186) with 20 ranks. This setup is likely to be suitable when there are ten
nodes, each with two GPUs, but there is no need to specify —gpu__1id for the normal case where all
the GPUs on the node are available for use.

3.9.6 Approaching the scaling limit

There are several aspects of running a GROMACS simulation that are important as the number of
atoms per core approaches the current scaling limit of ~100 atoms/core.

One of these is that the use of constraints = all-bonds with P-LINCS sets an artificial
minimum on the size of domains. You should reconsider the use of constraints to all bonds (and bear
in mind possible consequences on the safe maximum for dt), or change lincs_order and lincs_iter
suitably.

3.9.7 Finding out how to run mdrun better

The Wallcycle module is used for runtime performance measurement of gmx mdrun (page 186). At
the end of the log file of each run, the “Real cycle and time accounting” section provides a table with
runtime statistics for different parts of the gmx mdrun (page 186) code in rows of the table. The table
contains columns indicating the number of ranks and threads that executed the respective part of the
run, wall-time and cycle count aggregates (across all threads and ranks) averaged over the entire run.
The last column also shows what precentage of the total runtime each row represents. Note that the
gmx mdrun (page 186) timer resetting functionalities (-resethway and —resetstep) reset the
performance counters and therefore are useful to avoid startup overhead and performance instability
(e.g. due to load balancing) at the beginning of the run.

The performance counters are:
* Particle-particle during Particle mesh Ewald
* Domain decomposition
* Domain decomposition communication load
* Domain decomposition communication bounds
* Virtual site constraints

¢ Send X to Particle mesh Ewald
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L]

Neighbor search

Launch GPU operations
Communication of coordinates
Force

Waiting + Communication of force
Particle mesh Ewald

PME redist. X/F

PME spread

PME gather

PME 3D-FFT

PME 3D-FFT Communication
PME solve Lennard-Jones
PME solve LJ

PME solve Elec

PME wait for particle-particle
Wait + Receive PME force
Wait GPU nonlocal

Wait GPU local

Wait PME GPU spread

Wait PME GPU gather
Reduce PME GPU Force
Non-bonded position/force buffer operations
Virtual site spread

COM pull force

AWH (accelerated weight histogram method)
Write trajectory

Update

Constraints

Communication of energies
Enforced rotation

Add rotational forces

Position swapping

Interactive MD

As performance data is collected for every run, they are essential to assessing and tuning the per-
formance of gmx mdrun (page 186) performance. Therefore, they benefit both code developers as
well as users of the program. The counters are an average of the time/cycles different parts of the
simulation take, hence can not directly reveal fluctuations during a single run (although comparisons
across multiple runs are still very useful).

Counters will appear in an MD log file only if the related parts of the code were executed during the
gmx mdrun (page 186) run. There is also a special counter called “Rest” which indicates the amount
of time not accounted for by any of the counters above. Therefore, a significant amount “Rest” time
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(more than a few percent) will often be an indication of parallelization inefficiency (e.g. serial code)
and it is recommended to be reported to the developers.

An additional set of subcounters can offer more fine-grained inspection of performance. They are:
* Domain decomposition redistribution
* DD neighbor search grid + sort
* DD setup communication
* DD make topology
* DD make constraints
e DD topology other
» Neighbor search grid local
* NS grid non-local
* NS search local
* NS search non-local
* Bonded force
* Bonded-FEP force
* Restraints force
 Listed buffer operations
* Nonbonded pruning
* Nonbonded force
* Launch non-bonded GPU tasks
* Launch PME GPU tasks
» Ewald force correction
* Non-bonded position buffer operations
* Non-bonded force buffer operations

Subcounters are geared toward developers and have to be enabled during compilation. See Build
system overview (page 592) for more information.

3.9.8 Running mdrun with GPUs

Types of GPU tasks

To better understand the later sections on different GPU use cases for calculation of short range
(page 93), PME (page 93), bonded interactions (page 93) and update and constraints (page 94) we
first introduce the concept of different GPU tasks. When thinking about running a simulation, several
different kinds of interactions between the atoms have to be calculated (for more information please
refer to the reference manual). The calculation can thus be split into several distinct parts that are
largely independent of each other (hence can be calculated in any order, e.g. sequentially or concur-
rently), with the information from each of them combined at the end of time step to obtain the final
forces on each atom and to propagate the system to the next time point. For a better understanding
also please see the section on domain decomposition (page 81).

Of all calculations required for an MD step, GROMACS aims to optimize performance bottom-up for
each step from the lowest level (SIMD unit, cores, sockets, accelerators, etc.). Therefore many of the
individual computation units are highly tuned for the lowest level of hardware parallelism: the SIMD
units. Additionally, with GPU accelerators used as co-processors, some of the work can be offloaded,
that is calculated simultaneously/concurrently with the CPU on the accelerator device, with the result
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being communicated to the CPU. Right now, GROMACS supports GPU accelerator offload of two
tasks: the short-range nonbonded interactions in real space (page 93), and PME (page 93).

GROMACS supports two major offload modes: force-offload and GPU-resident. The former involves
offloading interaction calculations with integration on the CPU (hence requiring per-step data move-
ment). In the GPU-resident mode by offloading integration and constraints (when used) less data
movement is necessary.

The force-offload mode is the more broadly supported GPU-acceleration mode with short-range non-
bonded offload supported on a wide range of GPU accelerators (NVIDIA, AMD, and Intel). This is
compatible with the grand majority of the features and parallelization modes and can be used to scale
to large machines. Simultaneously offloading both short-range nonbonded and long-range PME work
to GPU accelerators has some restrictions in terms of feature and parallelization compatibility (please
see the section below (page 93)). Offloading (most types of) bonded interactions is only supported in
CUDA. The GPU-resident mode is supported with CUDA and SYCL, but it has additional limitations
as described in the GPU update section (page 94).

GPU computation of short range nonbonded interactions

Using the GPU for the short-ranged nonbonded interactions provides the majority of the available
speed-up compared to run using only the CPU. Here, the GPU acts as an accelerator that can effec-
tively parallelize this problem and thus reduce the calculation time.

GPU accelerated calculation of PME

GROMACS now allows the offloading of the PME calculation to the GPU, to further reduce the load
on the CPU and improve usage overlap between CPU and GPU. Here, the solving of PME will be
performed in addition to the calculation of the short range interactions on the same GPU as the short
range interactions.

Known limitations

Please note again the limitations outlined below!
* Only a PME order of 4 is supported on GPUs.

* PME can run on a GPU only when exactly one rank has a PME task, ie. decompositions with
multiple ranks (hence multiple GPUs) computing PME are not supported. Note that experimen-
tal PME decomposition in hybrid mode (-pmefft cpu) is supported from the 2022 release.

* Only dynamical integrators are supported (ie. leap-frog, Velocity Verlet, stochastic dynamics)

* LJ PME is not supported on GPUs.

GPU accelerated calculation of bonded interactions (CUDA only)

GROMACS now allows the offloading of the bonded part of the PP workload to a CUDA-compatible
GPU. This is treated as part of the PP work, and requires that the short-ranged non-bonded task
also runs on a GPU. Typically, there is a performance advantage to offloading bonded interactions in
particular when the amount of CPU resources per GPU is relatively little (either because the CPU is
weak or there are few CPU cores assigned to a GPU in a run) or when there are other computations
on the CPU. A typical case for the latter is free-energy calculations.
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GPU accelerated calculation of constraints and coordinate update (CUDA and SYCL
only)

GROMACS makes it possible to also perform the coordinate update and (if requested) constraint
calculation on a GPU. This parallelization mode is referred to as “GPU-resident” as all force and
coordinate data can remain resident on the GPU for a number of steps (typically between temper-
ature/pressure coupling or neighbor searching steps). The GPU-resident mode allows executing all
(supported) computation of a simulation step on the GPU. This has the benefit that there is less cou-
pling between CPU host and GPU and on typical MD steps data does not need to be transferred
between CPU and GPU in contrast to the force-offload scheme requires coordinates and forces to be
transferred every step between the CPU and GPU. The GPU-resident scheme however is still able to
carry out part of the computation on the CPU concurrently with GPU calculation. This helps support-
ing the broad range of GROMACS features not all of which are ported to GPUs. At the same time,
it also allows improving performance by making use of the otherwise mostly idle CPU. It can often
be advantageous to move the bonded or PME calculation back to the CPU, but the details of this will
depending on the relative performance if the CPU cores paired in a simulation with a GPU.

It is possible to change the default behaviour by setting the GMX_FORCE_UPDATE_DEFAULT_GPU
environment variable to a non-zero value. In this case simulations will try to run all parts by default
on the GPU, and will only fall back to the CPU based calculation if the simulation is not compatible.

Using this parallelization mode is typically advantageous in cases where a fast GPU is used with a
slower CPU, in particular if there is only single simulation assigned to a GPU. However, in typical
throughput cases where multiple runs are assigned to each GPU, offloading everything, especially
without moving back some of the work to the CPU can perform worse than the parallelization mode
where only force computation is offloaded.

Assigning tasks to GPUs

Depending on which tasks should be performed on which hardware, different kinds of calculations
can be combined on the same or different GPUs, according to the information provided for running
mdrun (page 186).

It is possible to assign the calculation of the different computational tasks to the same GPU, meaning
that they will share the computational resources on the same device, or to different processing units
that will each perform one task each.

One overview over the possible task assignments is given below:
GROMACS version 2018:

Two different types of assignable GPU accelerated tasks are available, (short-range) non-
bonded and PME. Each PP rank has a nonbnonded task that can be offloaded to a GPU. If
there is only one rank with a PME task (including if that rank is a PME-only rank), then
that task can be offloaded to a GPU. Such a PME task can run wholly on the GPU, or have
its latter stages run only on the CPU.

Limitations are that PME on GPU does not support PME domain decomposition, so that
only one PME task can be offloaded to a single GPU assigned to a separate PME rank,
while the nonbonded can be decomposed and offloaded to multiple GPUs.

GROMACS version 2019:

No new assignable GPU tasks are available, but any bonded interactions may run on the
same GPU as the short-ranged interactions for a PP task. This can be influenced with the
-bonded flag.

GROMACS version 2020:

Update and constraints can run on the same GPU as the short-ranged nonbonded and
bonded interactions for a PP task. This can be influenced with the —update flag.

GROMACS version 2021/2022:

3.9. Getting good performance from mdrun 94



GROMACS Documentation, Release 2022.3

Communication and auxiliary tasks can also be offloaded. In domain-decomposition halo
exchange and PP-PME communication, instead of staging transfers between GPUs though
the CPU, direct GPU-GPU communication is possible. As an auxiliary tasks for halo ex-
change data packing and unpacking is performed which is also offloaded to the GPU. In
the 2021 release this is supported with thread-MPI and from the 2022 release it is also
supported using GPU-aware MPI. Direct GPU communication is not enabled by default
and can be triggered using the GMX_ENABLE_DIRECT_GPU_COMM environment vari-
able (will only have an effect on supported systems).

Performance considerations for GPU tasks

1) The performance balance depends on the speed and number of CPU cores you have vs the speed
and number of GPUs you have.

2) The GPU-resident parallelization mode (with update/constraints offloaded) is less sensitive to
the appropriate CPU-GPU balance than the force-offload mode.

3) With slow/old GPUs and/or fast/modern CPUs with many cores, it might make more sense to
let the CPU do PME calculation, with the GPUs focused on the nonbonded calculation.

4) With fast/modern GPUs and/or slow/old CPUs with few cores, it generally helps to have the
GPU do PME.

5) Offloading bonded work to a GPU will often not improve simulation performance as efficient
CPU-based kernels can complete the bonded computation before the GPU is done with other
offloaded work. Therefore, gmx mdrun (page 186) will default to no bonded offload when PME
is offloaded. Typical cases where performance can be improvement with bonded offload are:
with significant bonded work (e.g. pure lipid or mostly polymer systems with little solvent),
with very few and/or slow CPU cores per GPU, or when the CPU does other computation (e.g.
PME, free energy).

6) It is possible to use multiple GPUs with PME offload by letting e.g. 3 MPI ranks use one GPU
each for short-range interactions, while a fourth rank does the PME on its GPU.

7) The only way to know for sure what alternative is best for your machine is to test and check
performance.

Reducing overheads in GPU accelerated runs

In order for CPU cores and GPU(s) to execute concurrently, tasks are launched and executed asyn-
chronously on the GPU(s) while the CPU cores execute non-offloaded force computation (like long-
range PME electrostatics). Asynchronous task launches are handled by GPU device driver and require
CPU involvement. Therefore, the work of scheduling GPU tasks will incur an overhead that can in
some cases significantly delay or interfere with the CPU execution.

Delays in CPU execution are caused by the latency of launching GPU tasks, an overhead that can
become significant as simulation ns/day increases (i.e. with shorter wall-time per step). The overhead
is measured by gmx mdrun (page 186) and reported in the performance summary section of the log
file (“Launch GPU ops” row). A few percent of runtime spent in this category is normal, but in fast-
iterating and multi-GPU parallel runs 10% or larger overheads can be observed. In general, a user
can do little to avoid such overheads, but there are a few cases where tweaks can give performance
benefits. In OpenCL runs, timing of GPU tasks is by default enabled and, while in most cases its
impact is small, in fast runs performance can be affected. In these cases, when more than a few
percent of “Launch GPU ops” time is observed, it is recommended to turn off timing by setting the
GMX_DISABLE_GPU_TIMING environment variable. In parallel runs with many ranks sharing a
GPU, launch overheads can also be reduced by starting fewer thread-MPI or MPI ranks per GPU; e.g.
most often one rank per thread or core is not optimal.

The second type of overhead, interference of the GPU driver with CPU computation, is caused by
the scheduling and coordination of GPU tasks. A separate GPU driver thread can require CPU re-
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sources which may clash with the concurrently running non-offloaded tasks, potentially degrading
the performance of PME or bonded force computation. This effect is most pronounced when using
AMD GPUs with OpenCL with older driver releases (e.g. fglrx 12.15). To minimize the overhead
it is recommended to leave a CPU hardware thread unused when launching gmx mdrun (page 186),
especially on CPUs with high core counts and/or HyperThreading enabled. E.g. on a machine with a
4-core CPU and eight threads (via HyperThreading) and an AMD GPU, try gmx mdrun -ntomp
7 —pin on. This will leave free CPU resources for the GPU task scheduling reducing interference
with CPU computation. Note that assigning fewer resources to gmx mdrun (page 186) CPU com-
putation involves a tradeoff which may outweigh the benefits of reduced GPU driver overhead, in
particular without HyperThreading and with few CPU cores.

3.9.9 Running the OpenCL version of mdrun

Currently supported hardware architectures are: - GCN-based AMD GPUs; - NVIDIA GPUs (with
at least OpenCL 1.2 support); - Intel iGPUs. Make sure that you have the latest drivers installed. For
AMD GPUs, the compute-oriented ROCm stack is recommended; alternatively, the AMDGPU-PRO
stack is also compatible; using the outdated and unsupported £glrx proprietary driver and runtime
is not recommended (but for certain older hardware that may be the only way to obtain support). In
addition Mesa version 17.0 or newer with LLVM 4.0 or newer is also supported. For NVIDIA GPUs,
using the proprietary driver is required as the open source nouveau driver (available in Mesa) does
not provide the OpenCL support. For Intel integrated GPUs, the Neo driver is recommended.

The minimum OpenCL version required is unknown. See also the known limitations (page 96).

Devices from the AMD GCN architectures (all series) are compatible and regularly tested; NVIDIA
Kepler and later (compute capability 3.0) are known to work, but before doing production runs always
make sure that the GROMACS tests pass successfully on the hardware.

The OpenCL GPU kernels are compiled at run time. Hence, building the OpenCL program can take
a few seconds, introducing a slight delay in the gmx mdrun (page 186) startup. This is not normally a
problem for long production MD, but you might prefer to do some kinds of work, e.g. that runs very
few steps, on just the CPU (e.g. see —nb above).

The same —gpu_1id option (or GMX__GPU_ID environment variable) used to select CUDA devices,
or to define a mapping of GPUs to PP ranks, is used for OpenCL devices.

Some other OpenCL management (page 292) environment variables may be of interest to developers.

Known limitations of the OpenCL support

Limitations in the current OpenCL support of interest to GROMACS users:
¢ Intel integrated GPUs are supported. Intel CPUs and Xeon Phi are not supported.

* Due to blocking behavior of some asynchronous task enqueuing functions in the NVIDIA
OpenCL runtime, with the affected driver versions there is almost no performance gain when
using NVIDIA GPUs. The issue affects NVIDIA driver versions up to 349 series, but it known
to be fixed 352 and later driver releases.

* On NVIDIA GPUs the OpenCL kernels achieve much lower performance than the equivalent
CUDA kernels due to limitations of the NVIDIA OpenCL compiler.

* On the NVIDIA Volta and Turing architectures the OpenCL code is known to produce incorrect
results with driver version up to 440.x (most likely due to compiler issues). Runs typically fail
on these architectures.

Limitations of interest to GROMACS developers:

* The current implementation requires a minimum execution with of 16; kernels compiled for
narrower execution width (be it due to hardware requirements or compiler choice) will not be
suitable and will trigger a runtime error.
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3.9.10 Performance checklist

There are many different aspects that affect the performance of simulations in GROMACS. Most
simulations require a lot of computational resources, therefore it can be worthwhile to optimize the use
of those resources. Several issues mentioned in the list below could lead to a performance difference
of a factor of 2. So it can be useful go through the checklist.

GROMACS configuration

* Don’t use double precision unless you’re absolute sure you need it.

* Compile the FFTW library (yourself) with the correct flags on x86 (in most cases, the correct
flags are automatically configured).

* On x86, use gcc as the compiler (not icc, pgi or the Cray compiler).
* On POWER, use gcc instead of IBM’s xlc.

» Use a new compiler version, especially for gcc (e.g. from version 5 to 6 the performance of the
compiled code improved a lot).

e MPI library: OpenMPI usually has good performance and causes little trouble.
* Make sure your compiler supports OpenMP (some versions of Clang don’t).
¢ If you have GPUs that support either CUDA, OpenCL, or SYCL, use them.
— Configure with -DGMX_GPU=CUDA, -DGMX_GPU=0penCL, or -DGMX_GPU=SYCL.

— For CUDA, use the newest CUDA available for your GPU to take advantage of the latest
performance enhancements.

— Use arecent GPU driver.

— Make sure you use an gmx mdrun (page 186) with GMX__SIMD appropriate for the CPU
architecture; the log file will contain a warning note if suboptimal setting is used. However,
prefer AVX2™ over °~AVX512 in GPU or highly parallel MPI runs (for more informa-
tion see the intra-core parallelization information (page 81)).

— If compiling on a cluster head node, make sure that GMX_SIMD is appropriate for the
compute nodes.

Run setup

* For an approximately spherical solute, use a rhombic dodecahedron unit cell.

* When using a time-step of <=2 fs, use constraints=h-bonds (page 52) (and not
constraints=all-bonds (page 52)), since: * this is faster, especially with GPUs; * it is
necessary to be able to use GPU-resident mode; * and most force fields have been parametrized
with only bonds involving hydrogens constrained.

* You can increase the time-step to 4 or 5 fs when using virtual interaction sites (gmx pdb2gmx
-vsite h).

» For massively parallel runs with PME, you might need to try different numbers of PME ranks
(gmx mdrun -npme ?7?7?)to achieve best performance; gmx fune_pme (page 245) can help
automate this search.

* For massively parallel runs (also gmx mdrun -multidir), or with a slow network, global
communication can become a bottleneck and you can reduce it by choosing larger periods for
algorithms such as temperature and pressure coupling).
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Checking and improving performance

* Look at the end of the md . 1og file to see the performance and the cycle counters and wall-clock
time for different parts of the MD calculation. The PP/PME load ratio is also printed, with a
warning when a lot of performance is lost due to imbalance.

* Adjust the number of PME ranks and/or the cut-off and PME grid-spacing when there is a large
PP/PME imbalance. Note that even with a small reported imbalance, the automated PME-tuning
might have reduced the initial imbalance. You could still gain performance by changing the mdp
parameters or increasing the number of PME ranks.

* (Especially) In GPU-resident runs (—update gpu):

— Frequent virial or energy computation can have a large overhead (and this will not show up
in the cycle counters). To reduce this overhead, increase nstcalcenergy;

— Frequent temperature or pressure coupling can have significant overhead; to reduce this,
make sure to have as infrequent coupling as your algorithms allow (typically >=50-100
steps).

« If the neighbor searching and/or domain decomposition takes a lot of time, increase nst1list.
If a Verlet buffer tolerance is used, this is done automatically by gmx mdrun (page 186) and the
pair-list buffer is increased to keep the energy drift constant.

— especially with multi-GPU runs, the automatic increasing of nst1ist at mdrun startup
can be conservative and larger value is often be optimal (e.g. nst1ist=200-300 with
PME and default Verlet buffer tolerance).

e If Comm. energies takes a lot of time (a note will be printed in the log file), increase nst-
calcenergy.

e If all communication takes a lot of time, you might be running on too many cores, or you
could try running combined MPI/OpenMP parallelization with 2 or 4 OpenMP threads per MPI
process.

¢ In multi-GPU runs avoid using as many ranks as cores (or hardware threads) since this intro-
duces a major inefficiency due to overheads associated to GPUs sharing by several MPI ranks.
Use at most a few ranks per GPU, 1-3 ranks is generally optimal; with GPU-resident mode and
direct GPU communication typically 1 rank/GPU is best.

3.10 Common errors when using GROMACS

The vast majority of error messages generated by GROMACS are descriptive, informing the user
where the exact error lies. Some errors that arise are noted below, along with more details on what
the issue is and how to solve it.

3.10.1 Common errors during usage

Out of memory when allocating
The program has attempted to assign memory to be used in the calculation, but is unable to due to
insufficient memory.
Possible solutions are:
* reduce the scope of the number of atoms selected for analysis.
* reduce the length of trajectory file being processed.

* in some cases confusion between Angstrém and nm may lead to users generating a pdb2gmx
(page 204) water box that is 10 times larger than what they think it is (e.g. gmx solvate

(page 229)).
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* use a computer with more memory.
* install more memory in the computer.

The user should bear in mind that the cost in time and/or memory for various activities will scale
with the number of atoms/groups/residues N or the simulation length T as order N, NlogN, or N? (or
maybe worse!) and the same for 7, depending on the type of activity. If it takes a long time, have a
think about what you are doing, and the underlying algorithm (see the Reference manual, man page,
or use the -h flag for the utility), and see if there’s something sensible you can do that has better
scaling properties.

3.10.2 Errors in pdb2gmx

Residue ‘XXX’ not found in residue topology database

This means that the force field you have selected while running pdb2gmx (page 204) does not have an
entry in the residue database (page 453) for XXX. The residue database (page 453) entry is necessary
both for stand-alone molecules (e.g. formaldehyde) or a peptide (standard or non-standard). This
entry defines the atom types, connectivity, bonded and non-bonded interaction types for the residue
and is necessary to use pdb2gmx (page 204) to build a rop (page 455) file. A residue database
(page 453) entry may be missing simply because the database does not contain the residue at all, or
because the name is different.

For new users, this error appears because they are running pdb2gmx (page 204) on a PDB (page 452)
file they have, without consideration of the contents of the file. A force field (page 287) is not magical,
it can only deal with molecules or residues (building blocks) that are provided in the residue database
(page 453) or included otherwise.

If you want to use pdb2gmx (page 204) to automatically generate your topology, you have to ensure
that the appropriate r7p (page 453) entry is present within the desired force field (page 287) and has
the same name as the building block you are trying to use. If you call your molecule “HIS,” then
pdb2gmx (page 204) will try to build histidine, based on the [ HIS ] entry in the rfp (page 453)
file, so it will look for the exact atomic entries for histidine, no more no less.

If you want a fopology (page 455) for an arbitrary molecule, you cannot use pdb2gmx (page 204)
(unless you build the rp (page 453) entry yourself). You will have to build that entry by hand, or use
another program (such as x2rop (page 257) or one of the scripts contributed by users) to build the rop
(page 455) file.

If there is not an entry for this residue in the database, then the options for obtaining the force field
parameters are:

* see if there is a different name being used for the residue in the residue database (page 453) and
rename as appropriate,

» parameterize the residue / molecule yourself (lots of work, even for an expert),

* find a fopology file (page 455) for the molecule, convert it to an ifp (page 449) file and include it
in your fop (page 455) file,

* use another force field (page 287) which has parameters available for this,

* search the primary literature for publications for parameters for the residue that are consistent
with the force field that is being used.

Once you have determined the parameters and topology for your residue, see adding a residue to a
force field (page 295) for instructions on how to proceed.
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Long bonds and/or missing atoms

There are probably atoms missing earlier in the pdb (page 452) file which makes pdb2gmx (page 204)
go crazy. Check the screen output of pdb2gmx (page 204), as it will tell you which one is missing.
Then add the atoms in your pdb (page 452) file, energy minimization will put them in the right place,
or fix the side chain with e.g. the WHAT IF program.

Chain identifier ‘X’ was used in two non-sequential blocks

This means that within the coordinate file (page 444) fed to pdb2gmx (page 204), the X chain has
been split, possibly by the incorrect insertion of one molecule within another. The solution is simple:
move the inserted molecule to a location within the file so that it is not splitting another molecule.
This message may also mean that the same chain identifier has been used for two separate chains. In
that case, rename the second chain to a unique identifier.

WARNING: atom X is missing in residue XXX Y in the pdb file

Related to the long bonds/missing atoms error above, this error is usually quite obvious in its meaning.
That is, pdb2gmx (page 204) expects certain atoms within the given residue, based on the entries in
the force field r7p (page 453) file. There are several cases to which this error applies:

* Missing hydrogen atoms; the error message may be suggesting that an entry in the hdb
(page 448) file is missing. More likely, the nomenclature of your hydrogen atoms simply does
not match what is expected by the r7p (page 453) entry. In this case, use —ignh to allow
pdb2gmx (page 204) to add the correct hydrogens for you, or re-name the problematic atoms.

¢ A terminal residue (usually the N-terminus) is missing H atoms; this usually suggests that the
proper —ter option has not been supplied or chosen properly. In the case of the AMBER force
fields (page 35), nomenclature is typically the problem. N-terminal and C-terminal residues
must be prefixed by N and C, respectively. For example, an N-terminal alanine should not be
listed in the pdb (page 452) file as ALA, but rather NALA, as specified in the ffamber instructions.

e Atoms are simply missing in the structure file provided to pdb2gmx (page 204); look for
REMARK 465 and REMARK 470 entries in the pdb (page 452) file. These atoms will have
to be modeled in using external software. There is no GROMACS tool to re-construct incom-
plete models.

Contrary to what the error message says, the use of the option -missing is almost always inap-
propriate. The —missing option should only be used to generate specialized topologies for amino
acid-like molecules to take advantage of r/p (page 453) entries. If you find yourself using —-missing
in order to generate a topology for a protein or nucleic acid, don’t; the topology produced is likely
physically unrealistic.

Atom X in residue YYY not found in rtp entry

If you are attempting to assemble a topology using pdb2gmx (page 204), the atom names are expected
to match those found in the r7p (page 453) file that define the building block(s) in your structure.
In most cases, the problem arises from a naming mismatch, so simply re-name the atoms in your
coordinate file (page 444) appropriately. In other cases, you may be supplying a structure that has
residues that do not conform to the expectations of the force field (page 287), in which case you
should investigate why such a difference is occurring and make a decision based on what you find -
use a different force field (page 287), manually edit the structure, etc.
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No force fields found (files with name ‘forcefield.itp’ in subdirectories ending on *.ff’)

This means your environment is not configured to use GROMACS properly, because pdb2gmx
(page 204) cannot find its databases of forcefield information. This could happen because a GRO-
MACS installation was moved from one location to another. Either follow the instructions about
Getting access to GROMACS after installation (page 19) or re-install GROMACS before doing so.

3.10.3 Errors in grompp

Found a second defaults directive file

This is caused by the [defaults] directive appearing more than once in the fopology (page 455) or
Jorce field (page 287) files for the system - it can only appear once. A typical cause of this is a second
defaults being set in an included topology (page 455) file, itp (page 449), that has been sourced from
somewhere else. For specifications on how the topology files work, see the reference manual, Section
5.6.

[ defaults ]
; nbfunc comb-rule gen-pairs fudgeld fudgeQQ
1 1 no 1.0 1.0

One solution is to simply comment out (or delete) the lines of code out in the file where it is included
for the second time i.e.,:

; [ defaults |
; nbfunc comb-rule gen-pairs fudgelLJ fudgeQQ
;1 1 no 1.0 1.0

A better approach to finding a solution is to re-think what you are doing. The [defaults] directive
should only be appearing at the top of your fop (page 455) file where you choose the force field
(page 287). If you are trying to mix two force fields (page 287), then you are asking for trouble. If
a molecule itp (page 449) file tries to choose a force field, then whoever produced it is asking for
trouble.

Invalid order for directive xxx

The directives in the .top and .itp files have rules about the order in which they can appear, and this
error is seen when the order is violated. Consider the examples and discussion in chapter 5 of the
reference manual, and/or from tutorial material. The include file mechanism (page 26) cannot be used
to #include a file in just any old location, because they contain directives and these have to be
properly placed.

In particular, Invalid order for directive defaults is aresult of defaults being set in
the topology (page 455) or force field (page 287) files in the inappropriate location; the [defaults]
section can only appear once and must be the first directive in the fopology (page 455). The
[defaults] directive is typically present in the force field (page 287) file (forcefield.itp), and
is added to the topology (page 455) when you #1include this file in the system topology.

If the directive in question is [atomtypes] (which is the most common source of this error) or
any other bonded or nonbonded [ xtypes] directive, typically the user is adding some non-standard
species (ligand, solvent, etc) that introduces new atom types or parameters into the system. As indi-
cated above, these new types and parameters must appear before any [moleculetype] directive.
The force field (page 287) has to be fully constructed before any molecules can be defined.

3.10. Common errors when using GROMACS 101



GROMACS Documentation, Release 2022.3

Atom index n in position_restraints out of bounds

A common problem is placing position restraint files for multiple molecules out of order. Recall that
a position restraint ifp (page 449) file containing a [ position_restraints ] block can only
belong to the [ moleculetype ] block that contains it. For example:

WRONG:

#include "topol A.itp"
#include "topol_B.itp"
#include "ligand.itp"

#ifdef POSRES

#include "posre A.itp"
#include "posre_ B.itp"
#include "ligand posre.itp"”
#endif

RIGHT:

n

#include "topol_ A.itp
#1ifdef POSRES
#include "posre_ A.itp"
#endif

#include "topol_B.itp"
#1fdef POSRES
#include "posre B.itp"
#endif

#include "ligand.itp"
#1ifdef POSRES

#include "ligand posre.itp"
#endif

Further, the atom index of each [position_restraint] must be relative to the
[moleculetype], not relative to the system (because the parsing has not reached [molecules]
yet, there is no such concept as “system”). So you cannot use the output of a tool like genrestr
(page 168) blindly (as genrestr -h warns).

System has non-zero total charge

Notifies you that counter-ions may be required for the system to neutralize the charge or there may be
problems with the topology.

If the charge is not very close to an integer, then this indicates that there is a problem with the ropology
(page 455). If pdb2gmx (page 204) has been used, then look at the right-hand comment column of the
atom listing, which lists the cumulative charge. This should be an integer after every residue (and/or
charge group where applicable). This will assist in finding the residue where things start departing
from integer values. Also check the terminal capping groups that have been used.

If the charge is already close to an integer, then the difference is caused by rounding errors (page 293)
and not a major problem.

Note for PME users: It is possible to use a uniform neutralizing background charge in PME to
compensate for a system with a net background charge. This may however, especially for non-
homogeneous systems, lead to unwanted artifacts, as shown in /87 (page 547) (http://pubs.acs.org/
doi/abs/10.1021/ct400626b). Nevertheless, it is a standard practice to actually add counter-ions to
make the system net neutral.
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Incorrect number of parameters

Look at the topology (page 455) file for the system. You’ve not given enough parameters for one of
the bonded definitions. Sometimes this also occurs if you’ve mangled the Include File Mechanism
(page 26) or the topology file format (see: reference manual Chapter 5) when you edited the file.

Number of coordinates in coordinate file does not match topology

This is pointing out that, based on the information provided in the fopology (page 455) file, top
(page 455), the total number of atoms or particles within the system does not match exactly with what
is provided within the coordinate file (page 444), often a gro (page 447) or a pdb (page 452).

The most common reason for this is simply that the user has failed to update the topology file after
solvating or adding additional molecules to the system, or made a typographical error in the number
of one of the molecules within the system. Ensure that the end of the topology file being used contains
something like the following, that matches exactly with what is within the coordinate file being used,
in terms of both numbers and order of the molecules:

[ molecules ]

; Compound #mol
Protein 1

SOL 10189
NA+ 10

Fatal error: No such moleculetype XXX

Each type of molecule in your [ molecules ] section of your fop (page 455) file must have a
corresponding [ moleculetype ] section defined previously, either in the fop (page 455) file
or an included (page 26) itp (page 449) file. See the reference manual section 5.6.1 for the syntax
description. Your fop (page 455) file doesn’t have such a definition for the indicated molecule. Check
the contents of the relevant files, how you have named your molecules, and how you have tried to
refer to them later. Pay attention to the status of #ifdef and/or #include statements.

T-Coupling group XXX has fewer than 10% of the atoms

It is possible to specify separate thermostats (page 282) (temperature coupling groups) for every
molecule type within a simulation. This is a particularly bad practice employed by many new users
to molecular dynamics simulations. Doing so is a bad idea, as you can introduce errors and artifacts
that are hard to predict. In some cases it is best to have all molecules within a single group, using
the default System group. If separate coupling groups are required to avoid the hot-solvent,
cold-solute problem, then ensure that they are of sufficient size and combine molecule
types that appear together within the simulation. For example, for a protein in water with counter-ions,
one would likely want to use Protein and Non-Protein.

The cut-off length is longer than half the shortest box vector or longer than the small-
est box diagonal element. Increase the box size or decrease rlist

This error is generated in the cases as noted within the message. The dimensions of the box are
such that an atom will interact with itself (when using periodic boundary conditions), thus violating
the minimum image convention. Such an event is totally unrealistic and will introduce some serious
artefacts. The solution is again what is noted within the message, either increase the size of the
simulation box so that it is at an absolute minimum twice the cut-off length in all three dimensions
(take care here if are using pressure coupling, as the box dimensions will change over time and if
they decrease even slightly, you will still be violating the minimum image convention) or decrease
the cut-off length (depending on the force field (page 287) utilised, this may not be an option).
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Atom index (1) in bonds out of bounds

This kind of error looks like:

Fatal error:

[ file spc.itp, line 32 ]

Atom index (1) in bonds out of bounds (1-0).

This probably means that you have inserted topology
section "settles" in a part belonging to a different
molecule than you intended to. in that case move the
"settles" section to the right molecule.

This error is fairly self-explanatory. You should look at your fop (page 455) file and check that
all of the [molecules] sections contain all of the data pertaining to that molecule, and no other
data. That is, you cannot #include another molecule type (ifp (page 449) file) before the previous
[moleculetype] has ended. Consult the examples in chapter 5 of the reference manual for infor-
mation on the required ordering of the different [sections]. Pay attention to the contents of any
files you have included (page 26) with #include directives.

This error can also arise if you are using a water model that is not enabled for use with your chosen
force field (page 287) by default. For example, if you are attempting to use the SPC water model with
an AMBER force field (page 35), you will see this error. The reason is that, in spc. itp, there is no
#1fdef statement defining atom types for any of the AMBER force fields (page 35). You can either
add this section yourself, or use a different water model.

XXX non-matching atom names

This error usually indicates that the order of the topology (page 455) file does not match that of the
coordinate file (page 444). When running grompp (page 169), the program reads through the ropology
(page 455), mapping the supplied parameters to the atoms in the coordinate (page 444) file. If there
is a mismatch, this error is generated. To remedy the problem, make sure that the contents of your [
molecules ] directive matches the exact order of the atoms in the coordinate file.

In a few cases, the error is harmless. Perhaps you are using a coordinate (page 444) file that has
the old (pre-4.5) ion nomenclature. In this case, allowing grompp (page 169) to re-assign names is
harmless. For just about any other situation, when this error comes up, it should not be ignored. Just
because the -maxwarn option is available does not mean you should use it in the blind hope of your
simulation working. It will undoubtedly blow up (page 284).

The sum of the two largest charge group radii (X) is larger than rlist - rvdw/rcoulomb

This error warns that some combination of settings will result in poor energy conservation at the
longest cutoff, which occurs when charge groups move in or out of pair list range. The error can have
two sources:

* Your charge groups encompass too many atoms. Most charge groups should be less than 4 atoms
or less.

* Your mdp (page 450) settings are incompatible with the chosen algorithms. For switch or shift
functions, rlist must be larger than the longest cutoff (rvdw or rcoulomb) to provide buffer
space for charge groups that move beyond the neighbor searching radius. If set incorrectly, you
may miss interactions, contributing to poor energy conservation.

A similar error (“The sum of the two largest charge group radii (X) is larger than rlist”) can arise
under two following circumstances:

» The charge groups are inappropriately large or rlist is set too low.

* Molecules are broken across periodic boundaries, which is not a problem in a periodic system.
In this case, the sum of the two largest charge groups will correspond to a value of twice the box
vector along which the molecule is broken.

3.10. Common errors when using GROMACS 104



GROMACS Documentation, Release 2022.3

Invalid line in coordinate file for atom X

This error arises if the format of the gro (page 447) file is broken in some way. The most common
explanation is that the second line in the gro (page 447) file specifies an incorrect number of atoms,
causing grompp (page 169) to continue searching for atoms but finding box vectors.

3.10.4 Errors in mdrun

Stepsize too small, or no change in energy. Converged to machine precision, but not
to the requested Fpax

This may not be an error as such. It is simply informing you that during the energy minimization
process mdrun reached the limit possible to minimize the structure with your current parameters.
It does not mean that the system has not been minimized fully, but in some situations that may be
the case. If the system has a significant amount of water present, then an E, of the order of -10°
to -10° (in conjunction with an F,, between 10 and 1000 kJ mol! nm™) is typically a reasonable
value for starting most MD simulations from the resulting structure. The most important result is
likely the value of Fy,.x, as it describes the slope of the potential energy surface, i.e. how far from an
energy minimum your structure lies. Only for special purposes, such as normal mode analysis type of
calculations, it may be necessary to minimize further. Further minimization may be achieved by using
a different energy minimization method or by making use of double precision-enabled GROMACS.

Energy minimization has stopped because the force on at least one atom is not finite

This likely indicates that (at least) two atoms are too close in the input coordinates, and the forces
exerted on each other are greater in magnitude than can be expressed to the extent of the precision
of GROMACS, and therefore minimization cannot proceed. It is sometimes possible to minimize
systems that have infinite forces with the use of soft-core potentials, which scale down the magnitude
of Lennard-Jones interactions with the use of the GROMACS free energy code. This approach is an
accepted workflow for equilibration of some coarse-grained systems such as Martini.

LINCS/SETTLE/SHAKE warnings

Sometimes, when running dynamics, mdrun (page 186) may suddenly stop (perhaps after writing
several pdb (page 452) files) after a series of warnings about the constraint algorithms (e.g. LINCS,
SETTLE or SHAKE) are written to the log (page 449) file. These algorithms often used to constrain
bond lengths and/or angles. When a system is blowing up (page 284) (i.e. exploding due to diverging
forces), the constraints are usually the first thing to fail. This doesn’t necessarily mean you need to
troubleshoot the constraint algorithm. Usually it is a sign of something more fundamentally wrong
(physically unrealistic) with your system. See also the advice here about diagnosing unstable systems
(page 285).

1-4 interaction not within cut-off

Some of your atoms have moved so two atoms separated by three bonds are separated by more than
the cut-off distance. This is BAD. Most importantly, do not increase your cut-off! This error
actually indicates that the atoms have very large velocities, which usually means that (part of) your
molecule(s) is (are) blowing up (page 284). If you are using LINCS for constraints, you probably also
already got a number of LINCS warnings. When using SHAKE this will give rise to a SHAKE error,
which halts your simulation before the 1-4 not within cutoff error can appear.

There can be a number of reasons for the large velocities in your system. If it happens at the beginning
of the simulation, your system might be not equilibrated well enough (e.g. it contains some bad
contacts). Try a(nother) round of energy minimization to fix this. Otherwise you might have a very
high temperature, and/or a timestep that is too large. Experiment with these parameters until the error
stops occurring. If this doesn’t help, check the validity of the parameters in your fopology (page 455)!
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Simulation running but no output

Not an error as such, but mdrun appears to be chewing up CPU time but nothing is being written to
the output files. There are a number of reasons why this may occur:

* Your simulation might simply be (very) slow (page 79), and since output is buffered, it can
take quite some time for output to appear in the respective files. If you are trying to fix some
problems and you want to get output as fast as possible, you can set the environment variable
GMX_LOG_BUFFER to 0.

* Something might be going wrong in your simulation, causing e.g. not-a-numbers (NAN) to be
generated (these are the result of e.g. division by zero). Subsequent calculations with NAN’s
will generate floating point exceptions which slow everything down by orders of magnitude.

* You might have all nst ~ parameters (see your mdp (page 450) file) set to 0, this will suppress
most output.

* Your disk might be full. Eventually this will lead to mdrun (page 186) crashing, but since output
is buffered, it might take a while for mdrun to realize it can’t write.

Can not do Conjugate Gradients with constraints

This means you can’t do energy minimization with the conjugate gradient algorithm if your topology
has constraints defined. Please check the reference manual.

Pressure scaling more than 1%

This error tends to be generated when the simulation box begins to oscillate (due to large pressures
and / or small coupling constants), the system starts to resonate and then crashes (page 284). This can
mean that the system isn’t equilibrated sufficiently before using pressure coupling. Therefore, better
/ more equilibration may fix the issue.

It is recommended to observe the system trajectory prior and during the crash. This may indicate if a
particular part of the system / structure is the problem.

In some cases, if the system has been equilibrated sufficiently, this error can mean that the pressure
coupling constant, tau—p (page 50), is too small (particularly when using the Berendsen weak cou-
pling method). Increasing that value will slow down the response to pressure changes and may stop
the resonance from occurring. You are also more likely to see this error if you use Parrinello-Rahman
pressure coupling on a system that is not yet equilibrated - start with the much more forgiving Berend-
sen method first, then switch to other algorithms.

This error can also appear when using a timestep that is too large, e.g. 5 fs, in the absence of con-
straints and / or virtual sites.

Range Checking error

This usually means your simulation is blowing up (page 284). Probably you need to do better energy
minimization and/or equilibration and/or topology design.
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X particles communicated to PME node Y are more than a cell length out of the domain
decomposition cell of their charge group

This is another way that mdrun (page 186) tells you your system is blowing up (page 284). If you
have particles that are flying across the system, you will get this fatal error. The message indicates
that some piece of your system is tearing apart (hence out of the “cell of their charge group”). Refer
to the Blowing Up (page 284) page for advice on how to fix this issue.

A charge group moved too far between two domain decomposition steps.

See information above.

Software inconsistency error: Some interactions seem to be assigned multiple times

See information above

There is no domain decomposition for n ranks that is compatible with the given box
and a minimum cell size of x nm

This means you tried to run a parallel calculation, and when mdrun (page 186) tried to partition your
simulation cell into chunks, it couldn’t. The minimum cell size is controlled by the size of the largest
charge group or bonded interaction and the largest of rvdw, rlist and rcoulomb, some other
effects of bond constraints, and a safety margin. Thus it is not possible to run a small simulation
with large numbers of processors. So, if grompp (page 169) warned you about a large charge group,
pay attention and reconsider its size. mdrun (page 186) prints a breakdown of how it computed this
minimum size in the log (page 449) file, so you can perhaps find a cause there.

If you didn’t think you were running a parallel calculation, be aware that from 4.5, GROMACS uses
thread-based parallelism by default. To prevent this, give mdrun (page 186) the -ntmpi 1 command
line option. Otherwise, you might be using an MPI-enabled GROMACS and not be aware of the fact.

3.11 Command-line reference

3.11.1 molecular dynamics simulation suite
Synopsis

gmx [—[no]h] [—-[no]lquiet] [-[no]version] [-[no]copyright] [—-nice <int>]
[-[nolbackup]

Description

GROMACS is a full-featured suite of programs to perform molecular dynamics simulations, i.e., to
simulate the behavior of systems with hundreds to millions of particles using Newtonian equations
of motion. It is primarily used for research on proteins, lipids, and polymers, but can be applied to a
wide variety of chemical and biological research questions.
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Options

Other options:

—[no]h (no) Print help and quit

—[no]quiet (no) Do not print common startup info or quotes
—[no]version (no) Print extended version information and quit
—[no]copyright (no) Print copyright information on startup
—nice <int> (19) Set the nicelevel (default depends on command)

—[no]backup (yes) Write backups if output files exist

gmx commands

The following commands are available. Please refer to their individual man pages or gmx help
<command> for further details.

Trajectory analysis

gmx—gangle (1) Calculate angles

gmx—-convert—-trj (1) Converts between different trajectory types

gmx-distance (1) Calculate distances between pairs of positions

gmx—-extract—-cluster (1) Allows extracting frames corresponding to clusters from trajectory
gmx—-freevolume (1) Calculate free volume

gmx-msd (1) Compute mean squared displacements

gmx—-pairdist (1) Calculate pairwise distances between groups of positions

gmx—-rdf (1) Calculate radial distribution functions

gmx—-sasa (1) Compute solvent accessible surface area

gmx-select (1) Print general information about selections

gmx—-trajectory (1) Print coordinates, velocities, and/or forces for selections

Generating topologies and coordinates

gmx—-editconf (1) Edit the box and write subgroups

gmx-x2top (1) Generate a primitive topology from coordinates

gmx—-solvate (1) Solvate a system

gmx—-insert-molecules (1) Insert molecules into existing vacancies
gmx—genconf (1) Multiply a conformation in ‘random’ orientations

gmx—genion (1) Generate monoatomic ions on energetically favorable positions
gmx—-genrestr (1) Generate position restraints or distance restraints for index groups

gmx—-pdb2gmx (1) Convert coordinate files to topology and FF-compliant coordinate files
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Running a simulation

gmx—grompp (1) Make a run input file
gmx-mdrun (1) Perform a simulation, do a normal mode analysis or an energy minimization

gmx—-convert—tpr (1) Make a modifed run-input file

Viewing trajectories

gmx-nmtraj (1) Generate a virtual oscillating trajectory from an eigenvector

gmx-view (1) View a trajectory on an X-Windows terminal

Processing energies

gmx—-enemat (1) Extract an energy matrix from an energy file
gmx—energy (1) Writes energies to xvg files and display averages

gmx-mdrun (1) (Re)calculate energies for trajectory frames with -rerun

Converting files

gmx—editconf (1) Convert and manipulates structure files

gmx—eneconv (1) Convert energy files

gmx-sigeps (1) Convert c6/12 or c6/cn combinations to and from sigma/epsilon
gmx—-trjcat (1) Concatenate trajectory files

gmx—-trjconv (1) Convert and manipulates trajectory files

gmx-xpm2ps (1) Convert XPM (XPixelMap) matrices to postscript or XPM

Tools

gmx—-analyze (1) Analyze data sets

gmx-awh (1) Extract data from an accelerated weight histogram (AWH) run
gmx—-filter (1) Frequency filter trajectories, useful for making smooth movies
gmx-lie (1) Estimate free energy from linear combinations

gmx—-pme_error (1) Estimate the error of using PME with a given input file
gmx—-sham (1) Compute free energies or other histograms from histograms
gmx—-spatial (1) Calculate the spatial distribution function

gmx-traj (1) Plotx, v, f, box, temperature and rotational energy from trajectories
gmx—-tune_pme (1) Time mdrun as a function of PME ranks to optimize settings
gmx-wham (1) Perform weighted histogram analysis after umbrella sampling
gmx—check (1) Check and compare files

gmx—dump (1) Make binary files human readable

gmx-make ndx (1) Make index files

gmx-mk_angndx (1) Generate index files for ‘gmx angle’
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gmx—-trjorder (1) Order molecules according to their distance to a group
gmx-xpm2ps (1) Convert XPM (XPixelMap) matrices to postscript or XPM

gmx-report-methods (1) Write short summary about the simulation setup to a text file and/or
to the standard output.

Distances between structures

gmx—-cluster (1) Cluster structures
gmx—confrms (1) Fittwo structures and calculates the RMSD
gmx—-rms (1) Calculate RMSDs with a reference structure and RMSD matrices

gmx—-rmsf (1) Calculate atomic fluctuations

Distances in structures over time

gmx-mindist (1) Calculate the minimum distance between two groups
gmx—-mdmat (1) Calculate residue contact maps
gmx—-polystat (1) Calculate static properties of polymers

gmx—-rmsdist (1) Calculate atom pair distances averaged with power -2, -3 or -6

Mass distribution properties over time

gmx-gyrate (1) Calculate the radius of gyration

gmx—-polystat (1) Calculate static properties of polymers

gmx—-rdf (1) Calculate radial distribution functions

gmx—-rotacf (1) Calculate the rotational correlation function for molecules
gmx-rotmat (1) Plot the rotation matrix for fitting to a reference structure
gmx-sans (1) Compute small angle neutron scattering spectra

gmx-saxs (1) Compute small angle X-ray scattering spectra

gmx—-traj(1l) Plotx,v,f, box, temperature and rotational energy from trajectories

gmx—vanhove (1) Compute Van Hove displacement and correlation functions

Analyzing bonded interactions

gmx—-angle (1) Calculate distributions and correlations for angles and dihedrals

gmx-mk_angndx (1) Generate index files for ‘gmx angle’
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Structural properties

gmx-bundle (1) Analyze bundles of axes, e.g., helices

gmx—-clustsize (1) Calculate size distributions of atomic clusters
gmx—disre (1) Analyze distance restraints

gmx-hbond (1) Compute and analyze hydrogen bonds

gmx—-order (1) Compute the order parameter per atom for carbon tails
gmx-principal (1) Calculate principal axes of inertia for a group of atoms
gmx—-rdf (1) Calculate radial distribution functions

gmx-saltbr (1) Compute salt bridges

gmx-sorient (1) Analyze solvent orientation around solutes

gmx-spol (1) Analyze solvent dipole orientation and polarization around solutes

Kinetic properties

gmx-bar (1) Calculate free energy difference estimates through Bennett’s acceptance ratio
gmx—-current (1) Calculat