CP2K Open Source Molecular Dynamics

This document is intended to be a recipe for building and running the Intel branch of CP2K, which uses the Intel
Development Tools and the Intel runtime environment. Differences compared to CP2K/trunk may be incorporated
into the mainline version of CP2K at any time (and subsequently released). For example, starting with CP2K 3.0 an
LIBXSMM integration is available which is (optionally) substituting CP2K’s "libsmm" library.

Some additional reference can found under https://groups.google.com/d/msg/cp2k/xgkJc5INKGw/U5v5FtzTBwAJ.
Getting the Source Code

The source code is hosted at GitHub and is supposed to represent the master version of CP2K in a timely fashion.
CP2K’s main repository is hosted at SourceForge but automatically mirrored at GitHub. The LIBXSMM library can
be found under https://github.com/hfp/libxsmm.

Build Instructions

In order to build CP2K/intel from source, one may rely on Intel Compiler 16 or 17 series (the 2018 version may be
supported at a later point in time). For the Intel Compiler 2017 prior to Update 4, one should source the compiler
followed by sourcing a specific version of Intel MKL (to avoid an issue in Intel MKL):

source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/compilervars.sh intel64
source /opt/intel/compilers_and_libraries_2017.0.098/1linux/mkl/bin/mklvars.sh intel64

Since Update 4 of the 2017-suite, the compiler and libraries can be used right away:

source /opt/intel/compilers_and_libraries_2017.4.196/1linux/bin/compilervars.sh intel64

LIBXSMM is automatically built in an out-of-tree fashion when building CP2K/intel branch. The only prerequisite is
that the LIBXSMMROOT path needs to be detected (or supplied on the make command line). A recipe targeting
"Haswell" (HSW) may look like below.

git clone https://github.com/hfp/libxsmm.git

git clone --branch intel https://github.com/cp2k/cp2k.git cp2k.git
In -s cp2k.git/cp2k cp2k

cd cp2k/makefiles

make ARCH=Linux-x86-64-intel VERSION=psmp AVX=2

To target for instance "Knights Landing" (KNL), use "AVX=3 MIC=1" instead of "AVX=2". Since CP2K 3.0, the
mainline version (non-Intel branch) supports LIBXSMM as well. If an own ARCH file is used or prepared, the
LIBXSMM library needs to be built separately and one may follow the official guide. Building LIBXSMM is rather
simple (instead of the master revision, an official release can used as well):

git clone https://github.com/hfp/libxsmm.git
cd libxsmm ; make

To download and build an official CP2K release, one can still use the ARCH files that are part of the CP2K/intel
branch. In this case, LIBXSMM is also built implicitly.

git clone https://github.com/hfp/libxsmm.git

wget http://downloads.sourceforge.net/project/cp2k/cp2k-4.1.tar.bz2

tar xvf cp2k-4.1.tar.bz2

cd cp2k-4.1/arch

wget https://github.com/cp2k/cp2k/raw/intel/cp2k/arch/Linux-x86-64-intel.x
wget https://github.com/cp2k/cp2k/raw/intel/cp2k/arch/Linux-x86-64-intel.popt
wget https://github.com/cp2k/cp2k/raw/intel/cp2k/arch/Linux-x86-64-intel.psmp
wget https://github.com/cp2k/cp2k/raw/intel/cp2k/arch/Linux-x86-64-intel.sopt
wget https://github.com/cp2k/cp2k/raw/intel/cp2k/arch/Linux-x86-64-intel.ssmp
cd ../makefiles

source /opt/intel/compilers_and_libraries_2017.4.196/1linux/bin/compilervars.sh intel64
make ARCH=Linux-x86-64-intel VERSION=psmp AVX=2

For Intel MPI, usually any version is fine. For product suites, the compiler and the MPI library are sourced in one step.
To work around known issues, one may combine components from different suites. To further improve performance
and versatility, one may supply LIBINTROOT, LIBXCROOT, and ELPAROOT when relying on CP2K/intel’s ARCH
files (see later sections about these libraries).

To further adjust CP2K at build time of the application, additional key-value pairs can be passed at make’s command
line (like ARCH=Linux-x86-64-intel Or VERSION=psmp).


https://github.com/cp2k/cp2k/tree/intel
https://www.cp2k.org/version_history
https://groups.google.com/d/msg/cp2k/xgkJc59NKGw/U5v5FtzTBwAJ
http://libxsmm.readthedocs.io
https://github.com/cp2k/cp2k/tree/intel
https://www.cp2k.org/version_history
https://www.cp2k.org/howto:compile
https://github.com/hfp/libxsmm/releases
https://www.cp2k.org/download
https://www.cp2k.org/howto:compile
https://sourceforge.net/projects/cp2k/files/

e SYM: set syM=1 to include debug symbols into the executable e.g., helpful with performance profiling.
e DBG: set DBG=1 to include debug symbols, and to generate non-optimized code.

Run Instructions

Running the application may go beyond a single node, however for first example the pinning scheme and thread
affinization is introduced. As a rule of thumb, a high rank-count for single-node computation (perhaps according
to the number of physical CPU cores) may be preferred. In contrast (communication bound), a lower rank count
for multi-node computations may be desired. In general, CP2K prefers the total rank-count to be a square-number
(two-dimensional communication pattern) rather than a Power-of-Two (POT) number.

Running an MPI/OpenMP-hybrid application, an MPI rank-count that is half the number of cores might be a good
starting point (below command could be for an HT-enabled dual-socket system with 16 cores per processor and 64
hardware threads).
mpirun -np 16 \

-genv I_MPI_PIN_DOMAIN=auto -genv I_MPI_PIN_ORDER=bunch \

-genv KMP_AFFINITY=compact,granularity=fine,1 \

-genv OMP_NUM_THREADS=4 \
cp2k/exe/Linux-x86-64-intel/cp2k.psmp workload.inp

For an actual workload, one may try cp2k/tests/QS/benchmark/H20-32.inp, or for example the workloads under
cp2k/tests/QS/benchmark_single_node which are supposed to fit into a single node (in fact to fit into 16 GB of memory).
For the latter set of workloads (and many others), LIBINT and LIBXC may be required.

The CP2K/intel branch carries several "reconfigurations" and environment variables, which allow to adjust important
runtime options. Most of these options are also accessible via the input file format (input reference e.g., http:
//manual.cp2k.org/trunk/CP2K_INPUT/GLOBAL/DBCSR.html).

« CP2K__RECONFIGURE: environment variable for reconfiguring CP2K (default depends on whether the
ACCeleration layer is enabled or not). With the ACCeleration layer enabled, CP2K is reconfigured (as if
CP2K_RECONFIGURE=1 is set) e.g. an increased number of entries per matrix stack is populated, and
otherwise CP2K is not reconfigured. Further, setting CP2K_ RECONFIGURE=0 is disabling the code specific
to the Intel branch of CP2K, and relies on the (optional) LIBXSMM integration into CP2K 3.0 (and later).

o CP2K_STACKSIZE: environment variable which denotes the number of matrix multiplications which is
collected into a single stack. Usually the internal default performs best across a variety of workloads, however
depending on the workload a different value can be better. This variable is relatively impactful since the work
distribution and balance is affected.

o« CP2K__HUGEPAGES: environment variable for disabling (0) huge page based memory allocation, which is
enabled by default (if TBBROOT was present at build-time of the application).

o CP2K__RMA: enables (1) an experimental Remote Memory Access (RMA) based multiplication algorithm
(requires MPI3).

o« CP2K__SORT: enables (1) an indirect sorting of each multiplication stack according to the C-index (experi-
mental).

LIBINT and LIBXC

Please refer to the XCONFIGURE project (https://github.com/hfp/xconfigure), which helps to configure common
HPC software for Intel software development tools.

To configure, build, and install LIBINT (version 1.1.5 and 1.1.6 have been tested), one can proceed with
https://github.com/hfp/xconfigure/tree/master/config/libint. ~Please note there is no straightforward way to
cross-compile LIBINT 1.1.x for an instruction set extension which is not supported by the compiler host. To
incorporate LIBINT into CP2K, the key LIBINTROOT=/path/to/libint needs to be supplied when using CP2K/intel’s
ARCH files (make).

To configure, build, and install LIBXC (version 3.0.0 has been tested), one can proceed with https://github.com /hfp /xconfigu
To incorporate LIBXC into CP2K, the key LIBXCROOT=/path/to/libxc needs to be supplied when using CP2K/intel’s
ARCH files (make).

ELPA

Please refer to the XCONFIGURE project (https://github.com/hfp/xconfigure), which helps to configure common
HPC software for Intel software development tools. To incorporate the Eigenvalue SoLvers for Petaflop-Applications
(ELPA), one can proceed with https://github.com/hfp/xconfigure/tree/master/config/elpa. To incorporate ELPA


http://manual.cp2k.org/trunk/CP2K_INPUT/GLOBAL/DBCSR.html
http://manual.cp2k.org/trunk/CP2K_INPUT/GLOBAL/DBCSR.html
https://github.com/cp2k/cp2k/tree/intel
https://www.cp2k.org/version_history
http://xconfigure.readthedocs.io
http://xconfigure.readthedocs.io/libint/README/
http://xconfigure.readthedocs.io/libxc/README/
http://xconfigure.readthedocs.io
http://xconfigure.readthedocs.io/elpa/README/

into CP2K, the key ELPAROOT=/path/to/elpa needs to be supplied when using CP2K/intel’s ARCH files (make). The
Intel-branch defaults to ELPA-2017.05 (earlier versions can rely on the ELPA key-value pair e.g., ELPA=201611).

make ARCH=Linux-x86-64-intel VERSION=psmp ELPAROOT=/path/to/elpa/default-arch

At runtime, a build of the Intel-branch supports an environment variable CP2K__ELPA:

e CP2K__ELPA=-1: requests ELPA to be enabled; the actual kernel type depends on the ELPA configuration.
o« CP2K__ELPA=0: ELPA is not enabled by default (only on request via input file); same as non-Intel branch.
o CP2K__ELPA=<not-defined>: requests ELPA-kernel according to CPUID (default with CP2K /Intel-branch).

Memory Allocation

Dynamic allocation of heap memory usually requires global book keeping eventually incurring overhead in shared-
memory parallel regions of an application. For this case, specialized allocation strategies are available. To use such
a strategy, memory allocation wrappers can be used to replace the default memory allocation at build-time or at
runtime of an application.

To use the malloc-proxy of the Intel Threading Building Blocks (Intel TBB), rely on the TBBMALLOC=1 key-value pair at
build-time of CP2K. Usually, Intel TBB is already available when sourcing the Intel development tools (one can check
the TBBROOT environment variable). To use TCMALLOC as an alternative, set TCMALLOCROOT at build-time of CP2K
by pointing to TCMALLOC’s installation path (configured per ./configure --enable-minimal --prefix=<TCMALLOCROOT>).



	CP2K Open Source Molecular Dynamics
	Getting the Source Code
	Build Instructions
	Run Instructions
	LIBINT and LIBXC
	ELPA
	Memory Allocation


